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Foreword 

The Editors have taken the unusual step of devoting an entire Supple­
ment volume of the Encyclopedia to a single topic: "Computers in 
Spaceflight: the NASA Experience." The reason will hopefully be­
come apparent upon reading this volume. NASA's use of computer 
technology has encompassed a long period starting in 1958. During 
this period, hardware and software developments in the computer field 
were progressing through successive generations. A review of 
spaceflight applications of these developments offers a panoramic in­
sight into almost two decades of change in the computer industry and 
into NASA's role. 

NASA's role is summarized at the conclusion of this volume: 
"NASA never asked for anything that could not be done with 

the current technology. But in response, the computer industry 
sometimes pushed itself just a little in a number of areas. Just a 
little better software development practices made onboard 
software safe, just a little better networking made the Launch 
Processing System more efficient, just a little better operating 
system made mission control easier, just a little better chip makes 
image processing faster. NASA did not push the state of the art, 
but nudged it enough times to make a difference." 

This report could not be compressed to typical article size without 
destroying its usefulness and interest. We trust that the readers will 
find this work to be as fascinating as did the editors. 

Allen Kent 

James G. Williams 



Preface 

NASA's use of computers in spaceflight operations is a very impor­
tant and large topic. Any attempt to tell the complete story of the 
people, calculating machines, and computer programs involved in 
spaceflight would fill many volumes, if, in fact, it could be told at all. 
The book you are about to read is a subset of all that could be said. 
This is the explanation of why some things appear here and others do 
not, and why the book is organized as it is. 

When Monte Wright, then director of the NASA History Office, 
and I first discussed the outline for this project in 1981 and 1982, it 
seemed that he thought NASA had had a terrific impact on the 
development of computer technology. Many others shared his view, 
reasoning that since NASA used computers more extensively than al­
most any other organization, the Agency must have prodded the com­
puter industry by making challenge after challenge to its computer 
contractors. One good reason, then, for writing a book on NASA's use 
of computers was to study the impact of NASA's demands. At the 
time, I did not know enough to hypothesize one way or another. 

Obviously, the book required limits. Since the use of computers 
in administrative work paralleled that of private industry, and since 
the chief technological advances occurred in the flight program, we 
agreed to limit the project to an examination of computer systems 
used in actual spaceflight or in close support of it. Computers and sys­
tems used in administration and in aeronautical and other research not 
directly related to spaceflight were ignored. 

Despite these restrictions, the amount of material and the number 
of systems involved remained enormous. Any thought of a 
chronological history had to be abandoned, because keeping the 
various threads running in order and in parallel was too difficult. In­
stead, I wrote a topical history, each chapter dealing with either a 
specific program, such as the Gemini or Apollo onboard computers, or 
a closely related set of systems, such as launch processing or mission 
control. This episodic organization made it possible to adapt the writ­
ing of the book to the present state of the subject area, and also to 
NASA's structure. One disadvantage to this approach is that, at first 
glance, the book has the appearance of a serial description of systems 
with no obvious relationship to one another. In fact, the decision to or­
der the three major parts of the book as they are was strictly arbitrary. 
And yet, this organization actually reflects reality. Nearly all the sys­
tems described here were developed independently, by different 
teams, at different sites. Continuity occured only when a series of sys­
tems were built under the auspices of a single center, such as the 
Gemini, Apollo, and Shuttle systems through the Johnson Space 
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Flight Center. In the rare instances that some technological exchange 
occurred, it is highlighted. Despite the independent development of 
the various systems, some common problems and experiences 
provided threads with which to bind the chapters. These are presented 
in the Introduction and developed throughout the book where they 
apply. 

By nature, the subject of computers is technically intensive. Many 
times things must be discussed that require concentration on the 
design and engineering attributes of a system. Often the main charac­
ters in this history are the machines themselves, and not their creators. 
A glossary of computer terms and frequent explanatory material in the 
text should be enough to help those not familiar with computers to un­
derstand the story. Additionally, technical material too important to 
be left out of this history but not crucial to following the flow of 
events is set apart in boxes. I have retained the technical material in an 
attempt to fulfill the second objective of the NASA internal history 
program: 

Thoughtful study of NASA history can help agency managers 
accomplish the missions assigned to the agency. Understanding 
NASA's past aids in understanding its present situation and il­
luminates possible future directions. 

Hopefully, my choice of the level of the material does not interfere 
with the first objective, which is the wide "dissemination of infor­
mation concerning its activities and the results thereof." I believe that 
at this time a book on this subject that is more expository than in­
terpretive in nature is of greater use to the agency and the historical 
community. No one before me had waded through this material, there­
fore, much of my job was the identification of the best sources and the 
recording of the most useful experiences. Now that this groundwork 
has been done, more selective and incisive histories can be written. 

One final note: often in corporations and government agencies in­
dividual achievement is buried within the institution. NASA is no ex­
ception. It was exceedingly difficult to get people both in the agency 
and in contractor organizations to identify who did what, or even take 
personal credit where appropriate. Wherever I was able to assign 
responsibility, I did so, but, unfortunately, those instances seem less 
common than the times I had to credit the development to the institu­
tion. Hopefully those who are not mentioned but should have been can 
take pride that their collective achivements are now part of history. 

James E. Tomayko 

Pittsburgh, Pennsylvania 

April, 1987 
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When the National Aeronautics and Space Administration came into 
existence in 1958, the stereotypical computer was the "UNIVAC," a 
collection of spinning tape drives, noisy printers, and featureless 
boxes, filling a house-sized room. Expensive to purchase and operate, 
the giant computer needed a small army of technicians in constant at­
tendance to keep it running. Within a decade and a half, NASA had 
one of the world's largest collections of such monster computers, scat­
tered in each of its centers. Moreover, to the amazement of anyone 
who knew the computer field in 1958, NASA also flew computers in 
orbit, to the moon, and to Mars, the latter machines running un­
attended for months on end. Within another 10 years the giant ground­
based mainframe would be supplanted by clusters of medium-sized 
computers in spaceflight operations, and the single on-board computer 
would be replaced by multiple machines. These remarkable changes 
mirror developments in the commercial arena. Where there were giant 
computers, small computers now do similar tasks. Where there were 
no computers, such as on aircraft or in automobiles, computers now 
ride along. Where once the only solution was the large, centralized 
computing center, distributed computers now share the load. 

Since NASA is well known as an extensive user of computers­
mainly because spaceflight would not be possible without them­
there is a common sense that at least part of the reason for the rapid 
growth and innovation in the computer industry is that NASA has 
served as a main driver due to its requirements. Actually, the situation 
is not so straightforward. In most cases, because of the need for 
reliability and safety, NASA deliberately sought to use proven equip­
ment and techniques. Thus, the agency often found itself in the posi­
tion of having to seek computer solutions that were behind the state of 
the art by flight time. However, in other cases, some use of nearly 
leading edge technology existed, mostly for ground systems, but oc­
casionally when no extensively proven equipment or techniques were 
adequate in a flight situation. This was especially true on unmanned 
spacecraft, because the absence of human pilots allowed greater 
chances to be taken. Thus generalizations cannot be made, other than 
that there was no conscious attempt on the part of NASA in its flight 
programs to improve the technology of computing. Any ways in 
which NASA contributed to the development of computer techniques 
were side effects of specific requirements. 

NASA uses computers on the ground and in manned and un­
manned spacecraft. These three areas have quite different require­
ments, and the nature of the tasks assigned to them resulted in varying 
types of computers and software. Thus, the impact of NASA on com­
puting differs in extent as a result of the separate requirements for 
each field of computer use, which is one reason why the three fields 
are considered in separate parts of this volume. 

Computers are an integral part of all current spacecraft. Today 
they are used for guidance and navigation functions such as rendez-
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vous, re-entry, and mid-course corrections, as well as for system 
management functions, data formatting, and attitude control. 
However, Mercury, the first manned spacecraft, did not carry a com­
puter. Fifteen years of unmanned earth orbital and deep space mis­
sions were carried out without general-purpose computers on board. 
Yet now, the manned Shuttle and the unmanned Galileo spacecraft 
simply could not function without computers. In fact, both carry many 
computers, not just one. This transition has made it possible for cur­
rent spacecraft to be more versatile. Increased versatility is the result 
of the power of software to change the abilities of the computer in 
which it resides and, by extension, the hardware that it controls. As 
missions change and become more complex, using software to adjust 
for the changes is much cheaper and faster than changing the 
hardware. 

On-board computers and ground-based computers store data and 
do their calculations in the same way, but they handle processes and 
input and output differently. A typical ground computer of the early 
1960s, when the first computers flew on manned spacecraft, would 
process programs one at a time, right after each other. This sort of 
processing, in which the entire program must be loaded into memory 
and data must be available in discrete form, is called "batch." Over 
time, computer systems were changed to make them more efficient 
than batch computing allowed. In a batch process, if the computer is 
doing a calculation, the input and output devices are idle. If it is using 
a peripheral device, the calculating circuits are not used. One way to 
improve on efficiency of the batch process would be to develop an 
operating system for computers that could permit one program to use 
resources currently unneeded by another program. Another method is 
to limit each program to a fraction of a second running time before 
going on to the next program, running it for a fraction and then going 
on until the original program gets picked up again. This cyclic, time­
sliced method permits many users to be connected to the computer or 
many jobs to run on the computer in such a way that it appears that 
the machine is processing one at a time. The computer is so fast that 
no one notices that his or her job is being done in small segments. 
Each of these methods presupposes that data for the program are 
available and processed, and then the program stops. So even though 
lots more programs are run through the system in a period of time, 
each is still handled as a batch process. When the computer runs 
through all the processes waiting for execution, it stands idle. 

Spacecraft computers operate in a radically different processing 
environment. They are in "real-time" mode, handling essentially 
asynchronous inputs and outputs and continuous processing, similar to 
a telephone operator who does not know on which line the next call 
will come. For example, computers used for controlling the descend­
ing Shuttle can hardly process commands to the aerodynamic surfaces 
in batch mode. The spacecraft would go out of control or at least lose 
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track of where it was if data were only utilized in small bunches. The 
requirement for real-time processing leads to other requirements for 
spacecraft computers not normally found on earth-based systems. 
Software must not "crash" or have an abnormal end. If the software 
stops, the vehicle ceases to be controllable. Hardware must also be 
highly reliable, or reliability can be obtained through redundancy. If 
the latter course is chosen, overhead in the form of redundancy 
management hardware and software will be high. Memories must be 
nonvolatile in most applications, so if power is lost then the program 
in storage will not disappear. Since modern semiconductor, random­
access memories are usually volatile, older technology memories such 
as ferrite core continue to be used on spacecraft. Weight, size and 
power are other considerations, just as with all components on a 
spacecraft. 

Even though both manned and unmanned spacecraft have similar 
requirements, until very recently they could not use the same com­
puters. No computer with sufficient calculating capability to control 
the Shuttle flew on an unmanned spacecraft. Conversely, the Shuttle 
computers are so large and power hungry they would overwhelm the 
power supply of a deep space probe. Modem powerful microproces­
sors make it possible to overcome these deficiencies, but systems 
described herein predate most microprocessor technology. Also, com­
puters on manned spacecraft are oriented toward relatively short-term 
missions lasting up to a few weeks ( which will change in the Space 
Station and Mars Mission eras). Computers on unmanned earth orbital 
missions and deep space probes need to run reliably for years, yet 
must have low power requirements. Even though both need to be 
trustworthy, the different mission conditions dictate how reliability is 
to be attained. 

NASA's challenge in the 1960s and 1970s was to develop com­
puter systems for spacecraft that could survive the stress of a rocket 
launch, operate in the space environment, and thus provide payloads 
with the increased power and sophistication needed to achieve in­
creasingly ambitious mission objectives. NASA found itself both en­
couraging new technology and adapting proven equipment. In manned 
spacecraft the tendency was to use what was available. On unmanned 
spacecraft innovation had a freer hand. 

In contrast, NASA's ground computer systems reflected the need 
for large-scale data processing similar to many commercial applica­
tions, but in a real-time environment, until recently not normally a re­
quirement of business computing. Therefore, commercially available 
computers could be procured for most of the ground-based processing, 
with any innovation confined to software that handled the real-time 
needs. Preflight checkout, mission control , simulations, and image 
processing all have used varying combinations of standard mainframe 
and minicomputers. So NASA's impact on computing driven by 
ground support requirements was largely in the area of operating sys-
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terns and other software and not as much in hardware, whereas many 
of the on-board computers had to be custom built. Some of the 
software innovations needed on the ground have naturally had greater 
impact on the wider world than those made for on-board computers. 
The techniques of software development learned by NASA while do­
ing both flight and support programming have advanced the state of 
the art of software engineering, which comprise the management and 
technical principles that make it possible to build large, reliable 
software systems. 

Even though the requirements and solutions to computing 
problems in the manned on-board, unmanned on-board, and ground 
arenas are different, several common themes bind the three together. 
In nearly all cases, NASA managers failed to adequately allow for 
system growth, often causing expensive software and hardware ad­
ditions to be made to meet scaled-down objectives. More positively, 
recent developments are designed to enable proven computer systems 
and techniques to fly or support more than one mission, reducing the 
costs associated with customized solutions. Also, there is a continuing 
reliance on multiple smaller computers operating in a network as op­
posed to large single computers, enabling task distribution and more 
economical means of ensuring reliability. This last trend also under­
scores the dependence on communications that has characterized 
NASA's far-flung flight operations since the beginning. These themes 
appear in varying strengths throughout the stories of the individual 
projects. 

Regardless of NASA 's impact on computing, its many uses of 
computing technology from 1958 on provide valuable examples of the 
growth in power, diversity, and effectiveness of the applications of 
computers. The late 1950s marked the beginning of the computer in­
dustry as an indispensable contributor to American science and busi­
ness. NASA's insatiable desire to make the most of what the industry 
could offer resulted in many interesting and innovative applications of 
the ever-improving technology of computing. 





Figure A: The first manned spaceflight program to use computers continuously in all 
mission phases was Apollo. Here mission controllers watch computer-driven displays 
while astronauts explore the lunar surface after a computer-controlled descent. 

PRECED ING PAGE BLANK NOT FILMED 



Part One: 

Manned Spacecraft Computers 

In the first 25 years of its existence, NASA conducted five manned 
spaceflight programs: Mercury, Gemini, Apollo, Skylab, and Shuttle. 
The latter four programs produced spacecraft that had on-board digital 
computers. The Gemini computer was a single unit dedicated to 
guidance and navigation functions. Apollo used computers in the 
command module and lunar excursion module, again primarily for 
guidance and navigation. Skylab had a dual computer system for at­
titude control of the laboratory and pointing of the solar telescope. 
NASA's Space Shuttle is the most computerized spacecraft built to 
date, with five general-purpose computers as the heart of the avionics 
system and twin computers on each of the main engines. The Shuttle 
computers dominate all checkout, guidance, navigation, systems 
management, payload, and powered flight functions. 

NASA's manned spacecraft computers are characterized by in­
creasing power and complexity. Without them, the rendezvous tech­
niques developed in the Gemini program, the complex mission 
profiles followed in Apollo, the survival of the damaged Skylab, and 
the reliability of the Shuttle avionics system would not have been pos­
sible. 

When NASA began to develop systems for manned spacecraft, 
general-purpose computers small and powerful enough to meet the re­
quirements did not exist. Their development involved both commer­
cial and academic organizations in repackaging computer technology 
for spaceflight. 



1 

The Gemini Computer: 

First Machine in Space 
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Project Mercury was America's first man-in-space effort. The 
McDonnell-Douglas Corporation developed the Mercury spacecraft in 
the familiar bell shape. It was barely large enough for its single oc­
cupant and had no independent maneuvering capability save attitude 
control jets. Its orbital path was completely dependent on the accuracy 
of the guidance of the Atlas booster rocket. Re-entry was calculated 
by a real-time computing center on the ground, with retrofire times 
and firing attitude transmitted to the spacecraft while in flight. There­
fore, it was unnecessary for the Mercury spacecraft to have a com­
puter, as all functions required for its limited flight objectives were 
handled by other systems. 

Gemini both continued the objectives of the Mercury program 
and served as a test bed for the development of rendezvous techniques 
critical to lunar missions 1. At first glance, the Mercury and Gemini 
spacecraft are quite similar. They share the bell shape and other 
characteristics, partially because Gemini was designed as an enlarged 
Mercury and because the prime contractor was the same for both craft. 
The obvious difference is the presence of a second crew member and 
an orbital maneuvering system attached to the rear of the main cabin. 
The presence of a second crewman meant that more instrumentation 
could be placed in Gemini and that more experiments could be per­
formed, as an extra set of eyes and hands would be available. 
Gemini's maneuvering capability made it possible to practice rendez­
vous techniques. The main rendezvous target was planned to be the 
Agena, an upper stage rocket with a restartable liquid-propellant en­
gine that could be launched by an Atlas booster. After rendezvous 
with an Agena, the Gemini would have greatly increased maneuvering 
capability because it could use the rocket on the Agena to raise its or­
bit. 

Successful rendezvous required accurate orbital insertion, com­
plex catch-up maneuvering, finely tuned movements while making the 
final approach to the target, and guidance during maneuvers with the 
Agena. Safety during the critical powered ascent phase demanded 
some backup to the ascent guidance system on the Titan II booster 
vehicle. The Gemini designers also wanted to add accuracy to re-entry 
and to automate some of the preflight checkout functions. These 
varied requirements dictated that the spacecraft carry some sort of ac­
tive, on-board computing capability. The resulting device was the 
Gemini digital computer. 

The Gemini computer functioned in six mission phases: 
prelaunch, ascent backup, insertion, catch-up, rendezvous, and re­
entry. These requirements demanded a very reliable, fairly sophis­
ticated digital computer with simple crew interfaces. IBM built such a 
machine for the Gemini spacecraft. 

By the early 1960s, engineers were searching for ways to 
automate checkout procedures and reduce the number of discrete test 
lines connected to launch vehicles and spacecraft. Gemini's computer 
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Figure 1-1. First orbital rendezvous: Gemini VI keeps station after using its on­
board computer to maneuver to position near Gemini VII. (NASA photo 
S-65-63175) 

did its own self checks under software control during the prelaunch 
phase. It also accepted parameters needed for the flight during the last 
150 minutes before launch2. During ascent, the computer received in­
formation about the velocity and course of the booster so that it would 
be ready to take over from the Titan's computers if they failed. 
Switch-over could either be automatic or manual. The computer could 
then issue steering and booster cutoff commands to the Titan3. Even 
if the updated parameters were not necessary to boost guidance, they 
were useful in the calculation of additional velocity needed after the 
Titan's second-stage cutoff to achieve the proper orbit. That velocity 
difference was displayed to the crew so that they could use the 
spacecraft's own propulsion system to reach insertion velocity4. 
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Rendezvous operations required an on-board computer because 
the ground tracking network did not "cover" all parts of the Gemini 
orbital paths. Thus, it would be impossible to provide the sort of con­
tinuous updates needed for rendezvous maneuvers. For example, 
Gemini XI was planned as a first-orbit Agena rendezvous, with some 
of the critical maneuvers conducted outside of telemetry range5. That 
same mission also featured a fully computer-controlled re-entry, 
which resulted in a splashdown 4.6 kilometers from the target6. In 
computer-controlled descents, the roll attitude and rate are handled by 
the computer to affect the point of touchdown and re-entry heating. 
The Gemini spacecraft had sufficient lift capability to adjust the land­
ing point up to 500 miles on the line of flight and 40 miles laterally 
respective to the line of _flight. Five minutes before retrofire, the com­
puter was placed in re-entry mode and began to collect data. It dis­
played velocity changes during and after the retrofire. During the time 
the spacecraft traveled from an altitude of 400,000 feet to when it 
reached 90,000 feet, the computer controlled actual attitude 7. 

HARDWARE 

IBM Corporation received the contract for the Gemini digital 
computer on April 19, 1962, amounting to $26.6 million. It provided 
for the construction of the on-board computer and for integration with 
other spacecraft systems8. The first machine was in its final testing 
phase by August 31, 1963, and IBM delivered the last of 20 such 
machines by December 19659. Engineers at IBM believe that the 
main reason why their company received the contract was the success­
ful development of a core memory used on the Orbiting Astronautical 
Observatory 10. One of them, John J. Lenz, said that the contract for 
Gemini came just at the right time. The best of the engineering teams 
of the IBM Federal Systems Division plant in Owego, New York were 
between assignments and were put on the project, increasing its 
chance for success. 

Restrictions on size, power, and weight influenced the final form 
of the computer in terms of its components, speed, and type of 
memory. The shape and size of the computer was dictated by the 
design of the spacecraft. It was contained in a box measuring 18.9 
inches high by 14.5 inches wide by 12.75 inches deep, weighing 58.98 
pounds 11 . An unpressurized equipment bay to the left of the Gemini 
commander's seat held the computer, as well as the inertial guidance 
system power supply and the computer auxiliary power supply. The 
machine consisted of discrete components, not integrated circuits 12. 
However, circuit modules that held the components were somewhat 
interchangeable. They were plugged into one of five interconnection 
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Figure 1-2 . Locations of key components of the Gemini Guidance System. (From 
McDonnell Corp., Gemini Familiarization Manual) 

boards, and it took 510 of the modules to build the logic section 
alone 13. The computer had no redundant circuits, which meant that 
failures in the computer canceled whatever activity needed to be con­
trolled by it. For example, a failure in the power switch three quarters 
of the way through the Gemini IV mission caused cancellation of the 
planned computer-controlled re-entry. It was possible to fly the 
Gemini computer without a backup because whatever the computer 
did erroneously could be either abandoned (such as rendezvous) or 
handled, albeit more crudely, in other ways (such as re-entry using 
Mercury procedures). 

The machine had an instruction cycle of 140 milliseconds, the 
time it required for an addition. Multiplication took three cycles, or 
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420 milliseconds, with division reqmnng double that time14. The 
arithmetic bit rate was 500 kilocycles, and the memory cycle rate half 
that15. The computer was serial in operation, passing bits one at a 
time, which explains the relatively slow processing speeds, slower 
than some vacuum tube computers such as the Whirlwind. Also, its 
fixed decimal point arithmetic unit design limited the precision of the 
calculations but greatly reduced complexity. The Gemini digital com­
puter used ferrite cores for its primary memory. Core memories store 
one bit in each ferrite ring by magnetizing the ring in either a clock­
wise or counterclockwise direction. One direction means a one is 
stored and the opposite direction is a zero. Each core is mounted at a 
perpendicular crossing of two wires. Thousands of such crossings are 
in each core plane, consisting of rows of wires running up and down 
(the x wires) and others running left and right (they wires). Therefore, 
to change the value of a bit at a specific location, half the voltage re­
quired for the change is sent on each of two wires, one in the x direc­
tion and one in the y direction. This way only the core at the intersec­
tion of the two wires is selected for change. All the others on the same 
wires would have received only half the required voltage. By the use 
of a third wire it is possible to "sense" whether a selected core is a one 
or a zero. In this way, each individual core can be read. 

The ferrite core memory in the Gemini computer had a unique 
design. It consisted of 39 planes of 64 by 64-bit arrays, resulting in 
4,096 addresses, each containing 39 bits. A word was considered to be 
39 bits in length, but it was divided into three syllables of 13 bits. The 
memory itself divided into 18 sectors. Therefore, it was necessary to 
specify sector and syllable to make a complete address. Instructions 
used 13 bits of the word, with data representations of 26 bits. Data 
words were always stored in syllables O and 1 of a full word, but in­
structions could be in any syllable. This means that up to three in­
structions could be placed in any full word, but only one data item 
could be in a full word l 6. 

The arithmetic and logic circuit boards and the core memory 
made up the main part of the Gemini computer. These components in­
terfaced to a plethora of spacecraft systems, most of which were con­
cerned with guidance and navigation functions. This system was the 
Gemini digital computer through the Gemini VII mission. Beginning 
with Gemini VIII, the computer included a secondary storage system, 
which had impact on the spacecraft computer systems built by IBM 
and flown on the Skylab and Shuttle. 

During the 1950s and well into the 1960s, the most ubiquitous 
method of providing large secondary storage for computers was the 
use of high-speed, high-density magnetic tape. By 1980, tape was 
used mainly to store large blocks of data unneeded on a regular basis 
or to mail programs and data between sites. Disk systems have con­
siderably faster access times and have rapidly increased in storage 
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Figure 1-3. Cores like these were used in Gemini's memory. (IBM photo) 

capacity, rivaling or even exceeding tape, and thus supplanting it in 
common use. In 1962, disk systems were large, expensive, and far 
from fully reliable. When the software for the Gemini computer 
threatened to exceed the storage capacity of the core memory, IBM 
proposed an Auxiliary Tape Memory to store software modules that 
did not need to be in the computer at lift-off. For example, programs 
that provided backup booster guidance and insertion assistance would 
be in the core memory for the early part of the flight. The re-entry 
program could be loaded into the core shortly before it was needed, 
thus writing over the programs already there. This concept, fairly 
common in earth-bound computer usage, was a first for aerospace 
computing. 

IBM chose the Raymond En~ineering Laboratory of Middletown, 
Connecticut to build the device1 . The unit weighed 26 pounds and 
filled about 700 cubic inches of space in the adapter module of the 
Gemini spacecraft18. The tape memory increased the available storage 
of the Gemini computer by seven and one-half times with its capacity 
of 1,170,000 bits. Programs loaded from the tape would fill syllables 0 
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Figure 1-4. Layout of the Gemini Digital Computer core memory. (From 
McDonnell Corp., Gemini Familiarization Manual) 
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and 1 of the core memory locations19. It took 6 minutes to load a 
program from the tape drive into core20. 

NASA's natural insistence on high reliability in manned 
spaceflight operations challenged the computer industry of the early 
1960s. Tape error rates were 1 bit in 100,000 and IBM wanted to raise 
this rate to 1 bit in 1,000,000,00021 . The method used was to triple 
record each program on the tape, pass each set of three corresponding 
bits through a voter circuit, and send the result of the vote to the core 
memory22. This scheme was later used on the Shuttle. 

Gemini Vill was the first mission with the Auxiliary Tape 
Memory on board. Shortly after a successful rendezvous with an 
Agena, the combined spacecraft began to spin out of control. Mission 
Control decided to disengage the Agena and bring the Gemini down, 
as large amounts of attitude control thruster fuel had been wasted try­
ing to regain control of the spacecraft. Thus, the first attempt to load a 
program from the tape was made while the spacecraft was spinning. 
Even though the Auxiliary Tape Memory design parameters specified 
low vibration levels,23 the re-entry program was successfully loaded 
and used in the subsequent descent. 

IBM obtained this sort of reliability beyond the original specifica­
tions as a result of an extensive testing program. For example, the 
Auxiliary Tape Memory had failed prequalification vibration tests, so 
IBM added a brass flywheel and weights on the tape reels to increase 
stabilization24. This ensured a successful program load under adverse 
conditions. There were also problems with transistors shorting out due 
to loose particles too small to be seen on x-rays but which shook loose 
during acceleration25. Increased cleanliness in manufacturing was one 
solution to this problem. 

The only in-flight failure of a computer component was on the 
48th revolution of the Gemini IV mission, when astronaut James 
McDivitt tried to update the computer in preparation for re-entry. The 
machine would not tum off, and it could not be used for the planned 
"lifting bank" re-entry26. IBM could not duplicate the failure on the 
ground, but the manufacturers did install a manual switch that 
bypassed the failure for Gemini v27. 

SOFTWARE 

In 1962, hardware was still the pacing factor in computer applica­
tions. Everything associated with computers- processors, memories 
and input/output (1/0) peripherals- was expensive. Many considered 
software development an incidental part of the overall applications of 
computing. Specialists wrote most of the software, usually in arcane 
assembly languages. FORTRAN, a high-level language, had only 
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Figure 1- 5. Auxiliary Tape Memory in test. (IBM photo) 
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been available for a few years. Although its use in technical applica­
tions was rapidly spreading, it was still considered too inefficient for 
use on computers like the Gemini digital computer. Many thought its 
compiler-produced machine code to be less effective in utilizing 
machine resources than machine language programs written by 
humans. Experts therefore developed applications programs for 
Gemini using the tiny set of 16 instructions that the computer could 
execute28. This sort of programming was considered to be more of an 
art than a science. Whereas the design and construction of computer 
hardware followed conventional engineering principles, software 
development was largely haphazard, undocumented, and highly 
idiosyncratic. Many managers considered software developers to be a 
different breed and best left alone. This concept of software is a myth, 
and although it persists in some companies and with some people 
today, by and large software is now considered as an engineered 
product, little different from a rocket engine or computer. 

Although the term "software engineering" did not come into com­
mon use until 1968, programmers had applied its basic tenets to both 
large and small software projects for at least 15 years. Software en­
gineering has evolved as programmers learned which techniques 
worked, which did not, and what actually occurred in the development 
of software products. The SAGE (Semi-Automatic Ground 
Environment) air defense system29, the IBM 360 operating system30, 
and NASA's requirements for both spacecraft software and ground­
based software were instances of major software projects that directly 
contributed to the evolution of software engineering. 

Software engineers recognize that software follows a specific 
development cycle, from formal specification of the product, through 
the design and coding of the actual program, and then to testing of the 
product and postdelivery maintenance. This cycle lasts for many years 
in the case of programs such as operating systems, or a short period of 
time in the case of specialized, single-use programs. During this 
development process, strict standards of documentation, configuration 
control, and managing changes and the correction of errors must be 
maintained. Also, breaking down the application into smaller, poten­
tially interchangeable parts, or modules, is a primary technique. Com­
munication between programming teams working on different but in­
terconnected modules must be kept clear and unambiguous. It is in 
~ese ~eas that NASA has had the greatest impact on software en­
gmeermg. 

Development of the Gemini software was a learning experience 
for both NASA and IBM. It was, of course, the first on-board software 
for a manned spacecraft and was certainly a more sophisticated sys­
tem than any that had flown on unmanned spacecraft to that point. 
When the time came to write the software for Gemini, programmers 
envisioned a single software load containing all the code for the flight, 
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with new unique programs to be developed for each mission31 . Soon 
it became obvious that certain parts of the program were relatively un­
changed from mission to mission, such as the ascent guidance backup. 
Designers then introduced modularization, with some modules be­
coming parts of several software loads. 

Another reason for modularization is the fact that the programs 
developed for Gemini quickly exceeded the memory available for 
them. Some were stored on the Auxiliary Tape Memory until needed. 
The problem of poor estimation of total memory requirements has 
plagued each manned spacecraft computer system. In the case of 
Gemini, changed requirements and attempts to squeeze the programs 
into the allotted space resulted in nine different versions of the 
software32. The different versions were referred to by the name 
"Gemini Math Flow." 

Tracing the development of the math flows shows how identify­
ing new functions caused initial memory estimates to be wrong and 
how the project handled changes. Math Flow One consisted of just 
four modules: Ascent, Catch-up, Rendezvous, and Re-entry. Math 
Flow Two was proposed to add orbital navigation and re-entry in­
itialization, but it caused the overall load to exceed the memory size 
and the Gemini program office canceled the additions33 . This version 
of the software flew on spacecraft II in January 1965. By Math Flow 
Four, the re-entry initialization program had been successfully added, 
but the load took up 12,150 of 12,288 available words. The plan had 
been to use this program on spacecraft III and others, but a NASA 
directive of February, 1964 changed the guidance logic of the re-entry 
mode to a constant bank angle rather than a proportional bank angle 
and constant roll rate. Math Flow Five incorporated this change, but it 
filled the memory and was scrubbed in favor of a modified Math Flow 
Three on spacecraft III and IV, followed by Math Flow Six containing 
some changes on spacecraft V through vn34. The final version, Math 
Flow Seven, was used on spacecraft VIII through XII, all of which in­
corporated the Auxiliary Tape Memory. It had six program modules 
with nine operational modes. The six program modules of Math Flow 
Seven were Executor, Prelaunch, Ascent, Catch-Up, Rendezvous, and 
Re-Entry35. The Executor routine selected other routines depending 
upon mission phases. 

The specification procedure for the software required 
McDonnell-Douglas to prepare the Specification Control Document 
(SCD). This was forwarded to the IBM Space Guidance Center in 
Owego, which developed a FORTRAN program to validate the 
guidance equations. The use of simulations such as the FORTRAN 
program was endemic to the Gemini software effort and was later ap­
plied to software development for other spacecraft computers. 

Gemini used three levels of simulations, beginning with the 
equation-validation system. The second was a man-in-the-loop 
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simulation to help define 1/0 requirements, procedures, and displays. 
The third level was a refined digital simulation to determine the per­
formance characteristics of the software, useful in error analysis. This 
third level was carried out in the Configuration Control Test System 
(CCTS) laboratory, which contained a Gemini computer and crew in­
terfaces. This Mission Verification Simulation (MYS) ensured that the 
guidance system worked with the operational mission program. Fur­
ther tests of the software were done at McDonnell-Douglas and at the 
pad36. NASA and IBM emphasized program verification because 
there was no backup computer or backup software. The verification 
process and the tools developed for it were later applied to military 
projects in which IBM became involved37. 

Even if the software is perfect, errors may occur because of tran­
sient hardware or software failures during operation due to power 
fluctuations or unforeseen demands on real-time programs. Some of 
these can be spotted by diagnostic subroutines interleaved in the 
software and used for fault detection38. Such routines were put in the 
Gemini software and are now a part of all IBM computer systems. 

The software produced during the Gemini program was highly 
reliable and successful. Techniques of specification development, 
verification, and simulations developed for Gemini were later applied 
to other IBM and NASA projects. NASA was certainly better 
prepared to monitor software development for the much more difficult 
Apollo program. 

CREW INTERFACES TO THE GEMINI DIGITAL COMPUTER 

Gemini's digital computer had three sets of interfaces: the 
computer's controls, the Manual Data Insertion Unit (MDIU), and the 
Incremental Velocity Indicator (IVI). The controls consisted of a 
mode switch, a start button, a malfunction light, a computation light, 
and a reset switch. The mode switch had seven positions for selection 
of one of the measurement or computation programs. The start button 
caused the computer to run the selected program loaded in its 
memory. The reset switch caused the computer to execute its start-up 
diagnostics and prepare itself for action. The MDIU consisted of two 
parts: a 10-digit keyboard and a 7-digit register. The first two digits of 
the register, a simple odometerlike rotary display, were used to in­
dicate a memory address. Up to 99 such logical addresses could be ac­
cessed. The remaining five digits displayed data. Errors caused all 
zeroes to appear. Negative numbers were inserted by making the first 
digit a nine; the other digits contained the value. The IVI displayed 
velocity increments required for, or as a result of, a powered 
maneuver. It had three-digit feet-per-second displays for each of 
forward-and-back, up-and-down, and left-to-right axes39. 
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On a typical mission the computer would be in operation during 
ascent as the backup to the booster. On orbit, if no powered 
maneuvers were imminent, it could be shut down to save electrical 
power. Due to the nature of core memory, programs and data stored 
magnetically in the cores would not disappear when the power was 
off, as in present day semiconductor memories. This made it possible 
to load the next set of modules, if necessary, from the Auxiliary Tape 
Memory, enter any needed · parameters, and then shut down the 
machine until shortly before its next use. It took 20 seconds for the 
machine to run its start-up diagnostics upon restoration of power. 
After the diagnostics ran successfully, the current program load was 
ready for use, all parameters intact. 

GT-IV was following such a procedure in preparing for re-entry 
on June 7, 1965. The computer was placed in the RNTY mode, and 
the crew received and entered updated parameters given to them when 
they were in contact with the ground stations. But when they tried to 
turn the machine off, the manual on/off switch did not function. The 
power had to be cut off by another means, and the re-entry handled 
manually40. 

Using the computer for catch-up and rendezvous was a relatively 
simple task. The difference between catch-up and rendezvous is that 
catch-up maneuvers are executed to put the spacecraft into position to 
make an orbit-change maneuver. After the orbit change the spacecraft 
is prepared to rendezvous with the target41 . Crews began the catch-up 
by entering the ground-calculated rendezvous angle desired into ad­
dress 83. The rendezvous angle indicated how much farther along in a 
360-degree orbit the rendezvous was to take place. For example, if the 
crew desired rendezvous one-third orbit ahead, 12000 was entered 
into address 83 using the MDIV. The interval at which the pilot 
wanted to see updates was then entered in address 93. For example, if 
04000 was entered, the computer would display on the IVI any re­
quired velocity changes at 120 degrees from the rendezvous point ( the 
start), 80 degrees to go, and 40 degrees to go. If the IVI indicated that 
the. computer had calculated that such a rendezvous was possible 
within the designated fuel limits, the astronauts pressed the ST ART 
button and the IVI displayed the first set of velocity differentials. The 
pilot then fired the thrusters until the displays were all at zero 
(Astronaut John Young reported that there was a tendency to 
"overshoot" in trying to bum to zero42.). After that, nothing was done 
unless the next update indicated a need for more velocity 
adjustments43 . The astronauts also did paper-and-pencil calculations 
of the velocity changes as a backup by using special nomographs 
based on time and angles to the target44. These backup calculations 
were compared with the ground-calculated solution as well as the 
computer solution. However, the figures computed on-board were 
considered the primary solution for the terminal-phase intercept 
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maneuver45. In the rendezvous mode, the radar would feed infor­
mation to the computer, which used it to calculate the velocity adjust-
ments needed for final approach46. 

These examples of the use of the computer on a typical flight 
demonstrate that it was a relatively straightforward assistant in 
guidance and navigation. It permitted the Gemini astronauts to be in­
dependent of the ground in accomplishing rendezvous from the 
terminal-phase intercept maneuver to station keeping, a valuable re­
hearsal for the lunar orbit rendezvous required for the Apollo 
program. The astronauts participated in both the hardware and 
software design of the computer and its interfaces, and they were able 
to go to Owego and be put in the man-in-the-loop simulations. By 
flight time, like everything else in the cockpit, use of the computer 
was second nature. 

THE IMPACT OF THE GEMINI DIGITAL COMPUTER 

The Gemini Digital Computer was a transitional machine. Dale 
F. Bachman of IBM characterized it as the "last of a dying breed. It 
was an airborne computer, ruggedized, special purpose, and slow"47. 
Nonetheless, its designers claim an impressive list of firsts: 

• The first digital computer on a manned spacecraft. 

• The first use of core memory with nondestructive 
readout. The machine was designed in an era of rotating 
drum memories, its designers considered it a step 
forward48. 

• IBM's first completely 
computer49. 

silicon semiconductor 

• The first to use glass delay lines as registers50. 

• Technologically advanced in the area of packaging 
density51 . 

• The first airborne or spaceborne computer to use an 
auxiliary memory52. 

Development of the Gemini computer helped IBM in significant 
ways. It contributed more than anything else to the hardware and 
software of the 4Pi series of computers53. This series eventually 
produced the computer used on Skylab and the AP-101 used in the 
Shuttle. It also helped to develop IBM's reputation for delivering reli­
able and durable spacebome hardware and software54. One Gemini 
computer restarted successfully after being soaked in salt water for 2 
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weeks. Another used system went on to NASA's Electronics Research 
Laboratory in Boston for use on vertical and short takeoff and landing 
projects55. Coupled with IBM's involvement in the real-time comput­
ing centers used to monitor Mercury and Gemini missions, the com­
pany established itself as a major contributor to America's space 
program as it had been to the military research and development ef­
fort. Out of early military work came computer systems such as the 
Harvard Mark I, the 701, and SAGE computers used in air defense. 
However, even though identification with the space program has been 
maintained through several high-visibility projects, no significant 
commercial hardware products resulted as spinoffs. 

For NASA, Gemini and its on-board computer proved that a reli­
able guidance and navigation system could be based on digital com­
puters. It was a valuable test bed for Apollo techniques, especially in 
rendezvous. However, the Gemini digital computer itself was totally 
unlike the machines used in Apollo. With its Auxiliary Tape Memory 
and core memory, the Gemini computer was more like the Skylab and 
Shuttle general purpose computers. It is in those systems where its im­
pact is most apparent. 
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THE NEED FOR AN ON-BOARD COMPUTER 

The Apollo lunar landing program presented a tremendous managerial 
and technical challenge to NASA. Navigating from the earth to the 
moon and the need for a certain amount of spacecraft autonomy dic­
tated the use of a computer to assist in solving the navigation, 
guidance, and flight control problems inherent in such missions. Be­
fore President John F. Kennedy publicly committed the United States 
to a "national goal" of landing a man on the moon, it was necessary to 
determine the feasibility of guiding a spacecraft to a landing from a 
quarter of a million miles away. The availability of a capable com­
puter was a key factor in making that determination. 

The Instrumentation Laboratory of the Massachusetts Institute of 
Technology (MIT) had been working on small computers for 
aerospace use since the late 1950s. Dr. Raymond Alonso designed 
such a device in 1958-19591. Soon after, Eldon Hall designed a com­
puter for an unmanned mission to photograph Mars and retum2. That 
computer could be interfaced with both inertial and optical sensors. In 
addition, MIT was gaining practical experience as the prime contrac­
tor for the guidance system of the Polaris missile. In early 1961, 
Robert G. Chilton at NASA-Langley Space Center and Milton 
Trageser at MIT set the basic configuration for the Apollo guidance 
system3. An on-board digital computer was part of the design. The 
existence of these preliminary studies and the confidence of C. Stark 
Draper, then director of the Instrumentation Lab that now bears his 
name, contributed to NASA's belief that the lunar landing program 
was possible from the guidance standpoint. 

The presence of a computer in the Apollo spacecraft was justified 
for several reasons. Three were given early in the program: (a) to 
avoid hostile jamming, (b) to prepare for later long-duration 
(planetary) manned missions, and (c) to prevent saturation of ground 
stations in the event of multiple missions in space simultaneously4. 
Yet none of these became a primary justification. Rather, it was the 
reality of physics expressed in the 1.5-second time delay in a signal 
path from the earth to the moon and back that provided the motivation 
for a computer in the lunar landing vehicle. With the dangerous land­
ing conditions that were expected, which would require quick decision 
making and feedback, NASA wanted less reliance on ground-based 
computing5. The choice, later in the program, of the lunar orbit ren­
dezvous method over direct flight to the moon, further justified an on­
board computer since the lunar orbit insertion would take place on the 
far side of the moon, out of contact with the earth6. These considera­
tions and the consensus among MIT people that autonomy was 
desirable ensured the place of a computer in the Apollo vehicle. 

Despite the apparent desire for autonomy expressed early in the 
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program, as the mission profile was refined and the realities of build­
ing the actual spacecraft and planning for its use became more im­
mediate, the role of the computer changed. The ground computers be­
came the prime determiners of the vehicle's position in three­
dimensional space "at all times" (except during maneuvers) in the 
missions 7. Planners even decided to calculate the lunar orbit insertion 
bum on the ground and then transmit the solution to the spacecraft 
computer, which somewhat negated one of the reasons for having it. 
Ultimately, the actual Apollo spacecraft was only autonomous in the 
sense it could return safely to earth without help from the ground8. 

Even with its autonomous role reduced, the Apollo on-board 
computer system was integrated so fully into the spacecraft that desig­
ners called it "the fourth crew member"9. Not only did it have naviga­
tion functions, but also system management functions governing the 
guidance and navigation components. It served as the primary source 
of timing signals for 20 spacecraft systems10. The Apollo computer 
system did not have as long a list of responsibilities as later spacecraft 
computers, but it still handled a large number of tasks and was the ob­
ject of constant attention from the crew. 

MIT CHOSEN AS HARDWARE 

AND SOFTWARE CONTRACTOR 

On August 9, 1961, NASA contracted with the MIT Instrumen­
tation Lab for the design, development, and construction of the Apollo 
guidance and navigation system, including software. The project 
manager for this effort was Milton Trageser, and David Hoag was the 
technical director 11 . MIT personnel generally agree that they were 
chosen because their work on Polaris proved that they could handle 
time, weight, and performance restrictions and because of their pre­
vious work in space navigation 12. In fact, the Polaris team was moved 
almost intact to Apollo13. Despite their experience with aerospace 
computers, the Apollo project turned out to be a genuine challenge for 
them. As there were no fixed specifications when the contract was 
signed, not until late 1962 did MIT have a good idea of Apollo's 
requirements 14. One of the MIT people later recalled that 

If the designers had known then [ 1961] what they learned later, 
or had a complete set of specifications been available ... they 
would probably have concluded that there was no solution with 
the technology of the early l 960s 15. 

Fortunately, the technology improved, and the concepts of computer 
science applied to the problem also advanced as MIT developed the 
system. 
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NASA's relationship with MIT also proved to be educational. 
The Apollo computer system was one of NASA's first real-time, large 
scale software application contracts 16. Managing such a project was 
completely outside the NASA experience. A short time after making 
the Apollo guidance contract, NASA became involved in developing 
the on-board software for Gemini (a much smaller and more control­
lable enterprise) and the software for the Integrated Mission Control 
Center. Different teams that started within the Space Task Group, later 
as part of the Manned Spacecraft Center in Houston, managed these 
projects with little interaction until the mid-1960s, when the two 
Gemini systems approached successful completion and serious 
problems remained with the Apollo software. Designers borrowed 
some concepts to assist the Apollo project. In general, NASA person­
nel involved with developing the Apollo software were in the same 
virgin territory as were MIT designers. They were to learn together 
the principles of software engineering as applied to real-time 
problems. 

THE APOLLO COMPUTER SYSTEMS 

The mission profile used in sending a man to the moon went 
through several iterations in the early 1960s. For a number of reasons, 
planners rejected the direct flight method of launching from the earth, 
flying straight to the moon, and landing directly on the surface. Be­
sides the need for an extremely large booster, it would require flaw­
less guidance to land in the selected spot on a moving target a quarter 
of a million miles away. A spacecraft with a separate lander would 
segment the guidance problem into manageable portions. First, the en­
tire translunar spacecraft would be placed in earth orbit for a revolu­
tion or two to properly prepare to enter an intercept orbit with the 
moon. Upon arriving near the moon, the spacecraft would enter a 
lunar orbit. It was easier to target a lunar orbit window than a point on 
the surface. The lander would then detach and descend to the surface, 
needing only to guide itself for a relatively short time. After comple­
tion of the lunar exploration, a part of the lander would return to the 
spacecraft still in orbit and transfer crew and surface samples, after 
which the command module (CM) would leave for earth. 

With a lunar orbit rendezvous mission, more than one computer 
would be required, since both the CM and the lunar excursion module 
(LEM) needed on-board computers for the guidance and navigation 
function. The CM's computer would handle the translunar and tran­
searth navigation and the LEM' s would provide for autonomous land­
ing, ascent, and rendezvous guidance. 

NASA referred to this system with its two computers, identical in 
design but with different software, as the Primary Guidance, Naviga-
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tion, and Control System (PGNCS, pronounced "pings"). The LEM 
had an additional computer as part of the Abort Guidance System 
(AGS), according to the NASA requirement that a first failure should 
not jeopardize the crew. Ground systems backed up the CM computer 
and its associated guidance system so that if the CM system failed, the 
spacecraft could be guided manually based on data transmitted from 
the ground. If contact with the ground were lost, the CM system had 
autonomous return capability. Since the lunar landing did not allow 
the ground to act as an effective backup, the LEM had the AGS to 
provide backup ascent and rendezvous guidance. If the PGNCS failed 
during descent, the AGS would abort to lunar orbit and assist in ren­
dezvous with the CM. It would not be capable of providing landing 
assistance except to monitor the performance of the PGNCS. There­
fore the computer systems on the Apollo spacecraft consisted of three 
processors, two as part of the PGNCS and one as part of the AGS. 

EVOLUTION OF THE HARDWARE: 

Old Technology versus New: Block I and Block I Designs 

The computer envisioned by MIT's preliminary design team in 
1961 was a shadow of what actually flew to the moon in 1969. There 
always seem to be enough deficiencies in a final product that the 
designers wish they had a second chance. In some ways the Apollo 
guidance computer was a second chance for the MIT team since most 
worked on the Polaris computer. That was MIT's most ambitious at­
tempt at an "embedded computer system," a computer that is intrinsic 
to a larger component, such as a guidance system. Although the 
Apollo computer started out to be quite similar to Polaris, it evolved 
into something very different. The Apollo guidance computer had two 
flight versions: Block I and Block II. Block I was basically the same 
technology as the Polaris system. Block II incorporated new technol­
ogy within the original architecture. 

Several factors led from the Block I design to Block II. NASA's 
challenges to the MIT contract and the decision to use the rendezvous 
method instead of a direct ascent to the moon were decisive. A third 
factor related to reliability. Finally, the benefits of the new technology 
influenced the decision to make Block II. 

Before NASA let the contract to MIT, but after it was known that 
the Instrumentation Laboratory would be accorded "sole source" 
status, several NASA individuals began studying ways to consolidate 
flight computer development. In June 1961, Harry J. Goett of God­
dard Space Flight Center recommended that the computers needed for 
the Orbiting Astronomical Observatory (OAO), Apollo, and the 
Saturn launch vehicle be the same. He cited an IBM proposal for $5 
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million to do just that17. On the same day Goett's recommendation, 
RCA proposed the use of a 420-cubic-inch computer with only an 80-
watt power consumption and 24-bit word size as a general-purpose 
spacebome computer18. This proposal got nowhere and NASA's 
Robert G. Chilton challenged Goett's idea, showing that the expected 
savings would not materialize. Even though the projected cost of the 
Apollo computer would decrease to $8 million from $10 million, the 
OAO development costs would rise from $1.5 million to $5 million 19. 
Ironically, in the same month, Ramon Alonso from MIT met with 
Marshall Space Flight Center personnel about the use of the Apollo 
computer in the Saturn. 20 Although MIT got the Apollo contract and 
IBM got the contract for the Saturn computer, the idea of a duplicate 
system did not die. Two years later, when the deficiencies of the 
Polaris-based system were obvious and the solutions offered by the 
new technology of the Block II version still unproved, David 
W. Gilbert, NASA manager for Apollo guidance and control, 
proposed replacing the MIT machine with the one IBM was building 
for Satum21 . It did not occur because Gilbert wanted NASA to accept 
the reprogramming costs, and the existing configuration of the IBM 
computer would not fit in the space allotted for it in the CM. 
Nevertheless, MIT would still have to deal with NASA misgivings 
about the hardware design as late as May 1964, when Maj. Gen. 
Samuel C. Phillips, deputy director of the Apollo Program, reported 
on a meeting to discuss the use of the triple modular redundant Saturn 
launch vehicle computer in Apollo22. 

The decision to have a separate CM and the LEM influenced the 
transition to Block II by providing a convenient dividing point in the 
Apollo program. The early Apollo development flights were to use 
the CM only. Later flights would include the LEM. Since Block I 
design and production had already proceeded, planners decided to use 
the existing Block I in the unmanned and early manned development 
flights (all relatively simple earth-orbital missions) and to switch to 
Block II for the more complex combined CM-LEM missions23 . 

Reliability was another force behind Block II. During early plan­
ning for the guidance system, redundancy was considered a solution 
to the basic reliability problem. Designers thought that two computers 
would be needed to provide the necessary backup; however, they 
dropped this scheme for two reasons. The ground had primary respon­
sibility for determining the state vector (the position of the craft in 
three-dimensional space) in translunar, lunar orbit, and transearth 
flight24. Moreover, none of the variations of the two-computer or 
other redundancy schemes could meet the power, weight, and size 
requirements. 25 One way to provide some measure of protection is to 
make the computer repairable in flight. The Block I design, due to its 
modularity, could be fixed during a mission that carried appropriate 
spares. At any rate, its predicted mean time between failures (MTBF) 
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was 4,200 hours, about 20 times longer than the longest projected 
mission26. But Block I's repair capability became a negative factor 
when sealing the computer began to be considered more important to 
reliability than the ability to repair it27. Aside from packaging, over­
all malfunction detection was improved in the Block II design, further 
increasing reliability28. 

The most important reason for going to Block II was the 
availability of new technology. The Block I design used core transis­
tor logic. It had several disadvantages: 

• It could not be complemented, a very important basic 
operation in computer arithmetic that changes a one to a 
zero or vice versa. 

• It had the characteristic of "destructive readout," in which 
a datum read from a flip-flop using core transistor logic 
loses the datum; that forces the inclusion of a circuit to 
rewrite the datum if it is to be retained after the read 
cycle. 

• Memory cycle time could not be fixed: in Block I it was 
an average of 19.5 milliseconds, which was quite slow for 
computers at .the time, and the varying cycle caused 
timing problems within the machine29. 

These disadvantages led MIT to begin studying, as early as 1962, 
the possible use of integrated circuits (ICs) to replace core transistor 
circuits. I Cs, so ubiquitous today, were only 3 years old then and thus 
had little reliability history. It was therefore difficult to consider their 
use in a manned spacecraft without convincing NASA that the ad­
vantages far outweighed the risks. 

To accomplish this, the MIT team chose a direct-coupled transis­
tor logic (DCTL) NOR gate with a three-input element,30 consisting 
of three transistors and four resistors. NOR logic inverts the results of 
applying a Boolean OR operation to the three inputs. It took nearly 
5,000 of these simple circuits to build an Apollo computer. Using a 
variety of circuits would have simplified the design since the com­
ponent count would have been reduced, but by using the NOR alone, 
overall simplicity and reliability increased31 . Also, the time it took the 
machine to cycle became fixed at 11. 7 milliseconds, a double bonus in 
that speed increased and cycle time was consistent32. 

Aside from these advantages, MIT believed that the lead time to 
the first flight would permit reliability to be established and the cost of 
the I Cs to come down33. At the time, the production of such circuits 
was low, and they were more expensive than building core transistor 
circuits. To place the production rate in perspective, MIT chose the 
NOR ICs in the fall of 1962 and by the summer of 1963, 60% of the 
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total U.S. oufut of microcircuits was being used in Apollo prototype 
construction3 . This is one of the few cases in which NASA's require­
ments acted as a direct spur to the computer industry. When MIT 
switched to ICs, it kept the Apollo computer as "state of the art" at 
least during its design stage. It would be hopelessly outdated tech­
nologically by the time of the lunar landing 7 years later, but in 1962, 
using the new microcircuits seemed to be a risk. This view is con­
tested by one member of the MIT team, who later said that the deci­
sion "wasn't bold; it was just the easy thing to do to get the size and 
power and other requirements"35. 

With the ICs fully incorporated in the Apollo computer and the 
transition from Block I to Block II complete, NASA possessed a 
machine that was more up to date technologically. It had double the 
memory of the largest Block I, more 1/0 capability, was smaller, and 
required less power.36 Besides, it was also more reliable, which was, 
as always, the major consideration. 

THE APOLLO GUIDANCE COMPUTER: HARDWARE 

Overall Configuration and Architecture 

The Apollo Guidance Computer was fairly compact for a com­
puter of its time. The CM housed the computer in a lower equipment 
bay, near the navigator's station. Block II measured 24 by 12.5 by 6 
inches, weighed 70.1 pounds, and required 70 watts at 28 volts DC. 
The machine in the lunar module was identical. 

Crew members could communicate with either computer using 
display and keyboard units (DSKY, pronounced "disky"). Two 
DSKY s were in the CM, one on the main control panel and one near 
the optical instruments at the navigator's station. In addition, a "mark" 
button was at the navigator's station to signal the computer when a 
star fix was being taken. A single DSKY was in the lunar module. The 
DSKYs were 8 by 8 by 7 inches and weighed 17.5 pounds. As well as 
the DSKY s, the computer directly hooked to the inertial measurement 
unit and, in the CM, to the optical units. 

The choice of a 16-bit word size was a careful one. Many scien­
tific computers of the time used 24-bit or longer word lengths and, in 
general, the longer the word the better the precision of the calcula­
tions. MIT considered the following factors in deciding the word 
length: (a) precision desired for navigation variables, (b) range of in­
put variables, and (c) the instruction word format37. Advantages of a 
shorter word are simpler circuits and higher speeds, and greater preci­
sion could be obtained by using multiple words. 38. A single precision 
word of data consisted of 14 bits, with the other 2 bits as a sign bit 
(with a one indicating negative) and a parity bit (odd parity). Two ad-
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jacent words yielded "double precision" and three adjacent, "triple 
precision." To store a three-dimensional vector required three double 
precision words39. Data storage was as fractions (all numbers were 
less than one)40. An instruction word used bits 15-13 (they were 
numbered descending left to right) as an octal operation code. The ad­
dress used bits 12-1. Direct addressing was limited, so a "bank 
register" scheme (discussed below) existed to make it possible to ad­
dress the entire memory41. 

The Apollo computer had a simple packaging system. The com­
puter circuits were in two trays consisting of 24 modules. Each 
module had two groups of 60 flat packs with 72-pin connectors. The 
flatpacks each held two logic gates42. Tray A held the logic circuits, 
interfaces, and the power supply, and tray B had the memory, memory 
electronics, analog alarm devices, and the clock, which had a speed of 
one megahertz43. All units of the computer were hermetically 
sealed44. The memory in Block II consisted of a segment of erasable 
core and six modules of core rope fixed memory. Both types are dis­
cussed fully below. 

The Apollo computer used few flip-flop registers due to size and 
weight considerations45, but seven key registers in the computer did 
use flip-flops: 

• The accumulator, register 00000, referenced as "A". 

• The lower accumulator, 000001, "L". 

• The return address register, 000002, "Q". 

• The erasable bank register, 000003, "EB". 

• The fixed bank register, 000004, "FB". 

• The next address, 000005, "Z". 

• The both bank register, 000006, "BB" ( data stored in EB 
and FB were automatically together here)46. 

The use of bank registers enabled all of the machine's memory to 
be addressed. The largest number that can be contained in 12 bits is 
8,192. The fixed memory of the Apollo computer contained over four 
times that many locations. Therefore, the memory divided into 
"banks" of core, and the addressing could be handled by first indicat­
ing which bank and then the address within the bank. For example, 
taking the metaphor "address" literally, there are probably hundreds of 
"100 Main Street" addresses in any state, but by putting the ap­
propriate city on an envelope, a letter can be delivered to the intended 
100 Main Street without difficulty. 

The computer banks were like the cities of the analogy. The eras­
able bank register held just 3 bits that were used to extend the direct 
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addressing of the erasable memory to its "upper" region, and the fixed 
bank register held 5 bits to indicate which core rope bank to address. 
In addition, for the addresses needing a total of 16 bits, a "super bank 
bit" could be stored and concatenated to the fixed bank data and the 
address bits in the instruction word47. This scheme made it possible to 
handle the addressing using a 16-bit word, but it placed a greater bur­
den on the programmers, who, in an environment short of adequate 
tools, had to attend to setting various bit codes in the instructions to 
indicate the use of the erasable bank, fixed bank, or super bank bit. 
Although this simplified the hardware, it increased the complexity of 
the software, an indication that the importance of the software was not 
fully recognized by the designers. 

To further reduce size and weight, the Apollo computer was 
designed with a single adder circuit, which the computer used to up­
date incremental inputs, advance the next address register, modify 
specified addresses, and do all the arithmetic48 . The adder and the 16 
1/0 channels were probably the busiest circuits in the machine. 

Memory 

The story of memory in the Apollo computer is a story of increas­
ing size as mission requirements developed. In designing or purchas­
ing a computer system for a specific application, the requirements for 
memory are among the most difficult to estimate. NASA and its com­
puter contractors have been consistently unable to make adequate 
judgments in this area. Apollo's computer had both permanent and 
erasable memory, which grew rapidly over initial projections. 

Apollo's computer used erasable memory cells to store inter­
mediate results of calculations, data such as the location of the 
spacecraft, or as registers for logic operations. In Apollo, they also 
contained the data and routines needed to ready the computer for use 
when it was first turned on. Fixed memory contained programs that 
did not need to be changed during the course of a mission. The cycle 
times of the computer's memories were equal for simplicity of 
operation49. 

MIT's original design called for just 4K words of fixed memory 
and 256 words of erasable (at the time, two computers for redundancy 
were still under consideration)50. By June 1963, the figures had 
grown to l0K of fixed and lK of erasable51 . The next jump was to 
12K of fixed, with MIT still insisting that the memory requirement for 
an autonomous lunar mission could be kept under 16K52! Fixed 
memory leapt to 24K and then finally to 36K words, and erasable 
memory had a final configuration of 2K words. 

Lack of memory caused constant and considerable software 
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development problems, despite the increase of fixed memory 18 times 
over original estimates and erasable memory 16 times. Part of the 
software difficulties stemmed from functions and features that had to 
be dropped because of program size considerations, and part because 
of the already described addressing difficulties. If the original desig­
ners had known that so much memory would be needed, they might 
not have chosen the short word size, as a 24-bit word could easily 
directly address a 36K bank, with enough room for a healthy list of in­
struction codes. 

One reason the designers underestimated the memory require­
ments was that NASA did not provide them with detailed specifica­
tions as to the function of the computer. NASA had established a need 
for the machine and had determined its general tasks, and MIT 
received a contract based on only a short, very general requirements 
statement in the request for bid. The requirements started changing 
immediately and continued to change throughout the program. 
Software was not considered a driving factor in the hardware design, 
and the hardware requirements were, at any rate, insufficient. 

The actual composition of the memory was fairly standard in its 
erasable component but somewhat unique in its fixed component. The 
erasable memory consisted of coincident-current ferrite cores similar 
to those on the Gemini computer, and the fixed memory consisted of 
core rope, a high-density read-only memory using cores of similar 
material composition as the erasable memory but of completely dif­
ferent design. MIT adopted the use of core rope in the original Mars 
probe computer design and carried it over to the Apollo53 Chief ad­
vantage of the core rope was that it could put more information in less 
space, with the attendant disadvantages that it was difficult to 
manufacture and the data stored in it were unchangeable once it left 
the factory (see Box 2-1). 
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Box 2- l: Core Rope: A Unique Data Storage Device 

Each core in an erasable memory could store one bit of information, 
and each core in the core rope fixed memory could store four words of 
information. In the erasable memory, cores are magnetized either clock­
wise or counterclockwise, thus indicating the storage of either a one or a 
zero. In fixed memory, each core functions as a miniature transformer, 
and up to 64 wires (four sets of 16-bit words) could be connected to each 
core. If a wire passed through a particular core, a one would be read. If a 
particular wire bypassed the core, a zero would be read. For example, to 
store the data word 1001000100001111 in a core, the first, fourth, eighth, 
and thirteenth through sixteenth wires would pass through that core, the 
rest would bypass it . A 2-bit select code would identify which of the four 
words on a core was being read, and the indicated 16 bits would be sent 
to the appropriate register54. In this way, up to 2,000 bits could be stored 
in a cubic inch55. 

The computer contained core rope arranged in six modules, and 
each module contained 6,144 16-bit words56. The modules further 
divided into "banks" of 1,024 words. The first two banks were called the 
"fixed-fixed memory" and could be directly addressed by 12 bits in an 
instruction word. The remaining 34 were addressable as described in the 
text, using the 5-bit contents of the fixed bank register and the 10 bits in 
an instruction word57. 

The use of core rope constrained NASA's software developers. 
Software to be stored on core rope had to be delivered months before 
a scheduled mission so that the rope could be properly manufactured 
and tested. Once manufactured, it could not be altered easily since 
each sealed module required rewiring to change bits. The software not 
only had to be finished long in advance, but it had to be perfect. 

Even though common sense indicates that it is advantageous to 
complete something as complex and important as software long be­
fore a mission so that it can be used in simulators and tested in various 
other ways, software is rarely either on time or perfect. Fortunately for 
the Apollo program, the nature of core rope put a substantial amount 
of pressure on MIT's programmers to do it right the first time. Unfor­
tunately, the concept of "bug"-free software was alien to most 
programmers of that era. Programming was a fully iterative process of 
removing errors. Even so, many "bugs" would carry over into a 
delivered product due to unsophisticated testing techniques. Errors 
found before a particular system of rope was complete could be fixed 
at the factory58, but most others had to be endured. Raytheon, the sub­
contractor that built the ropes, could eliminate hard-wiring errors in­
troduced during manufacture by testing the rope modules against the 
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Figure 2-1. This diagram shows the principle behind core rope . Suppose that the 
data shown above the cores in the drawing is to be stored in the specific core. 
Thus I 000 is stored in the fust core on the left by attaching the top wire from the 
select circuit to the core and bypassing it with the next three wires. When that 
core is selected for reading, the wire attached to the core will indicate a "one" 
because all cores in a rope are permanently charged as ones; the wires bypassing 
the core will indicate zeroes . 

delivery tape of the programs. The company built a device to do 
this59. 

Production Problems and Testing 

Development and production of the Apollo guidance, navigation, 
and control system reflected the overall speed of the Apollo program. 
Design of the system began in the second quarter of 1961, and NASA 
installed a Block I version in a spacecraft on September 22, 1965. 
Release of the original software (named CORONA) was in January 
1966, with the first flight on August 25, 196660. Less than 3 years 
after that, designers achieved the final program objective. Even 
though fewer than two dozen spacecraft flew, NASA authorized the 
building of 75 computers and 138 DSKYs. Fifty-seven of the com­
puters and 102 of the crew interfaces were of the Block II design61 . 
This represents a considerable production for a special-purpose com­
puter of the type used in Apollo. The need to quickly build high­
quality, high-reliability computers taxed the abilities of Raytheon. 

Through AC Electronic Circuits ( contractor for the entire 
guidance system), Raytheon was chosen to build the computers MIT 
had designed largely because of its Polaris experience, but it had 
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never built a computer as complex as the one for Apollo. The Polaris 
machine was much simpler. Despite the use of experienced Polaris 
personnel, Raytheon's production division for the Apollo computer 
went from 800 to 2,000 employees in a year's time in order to handle 
the increased difficulties and speed of production62. 

Rapid growth, underestimation of production requirements, and 
reliability problems dogged Raytheon throughout the program. 
Changes in design made by MIT in late 1962 caused the company its 
initial trouble. The original request for proposal had featured Polaris 
techniques, so Raytheon bid low, expecting to use the same tools and 
production line for the Apollo machine. The changes in component 
types and memory size caused cost estimates to nearly double, result­
ing in considerable friction with NASA63 . NASA was also worried 
when two comguters and fully 50% of the Block I DSKY s failed 
vibration tests6 . These failures turned out to be largely caused by 
contaminated flat packs and DSKY relays. Particles would shake 
loose during vibration testing65 . The Block II computers would not 
work at first due to excessive signal propagation time in the 
micrologic interconnection matrix. The solution was to switch from 
nickel ribbon connectors to a circuit board, causing an increase of 
$500,000 in production costs66. 

These sorts of problems caused the Manned Spacecraft Center to 
authorize a complete design review of the AGC in February 1966. The 
lack of adequate support documentation was found to be the most sig­
nificant fault of the Block II computer67. This sort of problem is 
usually the result of speeding up development to the point at which 
changes are not adequately documented. 

Continuous and careful attention to reliability led to the discovery 
of problems. Builders flight-screened components lot by lot68 . Post­
production hardware tests included vibration, shock, acceleration, 
temperature, vacuum, humidity, salt fog, and electronic noise. 69 As 
D.C. Fraser, an engineer on the project, later remarked, "reliability of 
the.Apollo computer was bought with money"70. 

THE APOLLO GUIDANCE COMPUTER: SOFTWARE 

Development of the on-board software for the Apollo program 
was an important excercise both for NASA and for the discipline of 
software engineering. NASA acquired considerable experience in 
managing a large, real-time software project that would directly in­
fluence the development of the Shuttle on-board software. Software 
engineering as a specific branch of computer science emerged as a 
result of experiences with large-size military, civilian, and spaceborne 
systems. As one of those systems, the Apollo software effort helped 
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provide examples both of failure and success that could be incor­
porated into the methodology of software engineering. 

In the Apollo program, as well as other space programs with mul­
tiple missions, system software and some subordinate computer 
programs are only written once, with some modifications to help in­
tegrate new software. However, each mission generates new opera­
tional requirements for software, necessitating a design that allows for 
change. Since 1968, when designers first used the term software en­
gineering, consciousness of a software life cycle that includes an ex­
tended operational maintenance period has been an integral part of 
proper software development. 

Even during the early 1960s, the cycle of requirements definition, 
design, coding, testing, and maintenance was followed, if not fully ap­
preciated, by software developers. A Bellcomm report prepared for 
the Apollo program and dated November 30, 1964 could serve as an 
excellent introduction to the concept today 71 . The important dif­
ference from present practice was the report's recommendation that 
modules of code be limited to 200 to 300 lines, about five times larger 
than current suggestions. The main point of the report ( and the thrust 
of software engineering) was that software can be treated the same 
way as hardware, and the same engineering principles can apply. 
However, NASA was more used to hardware development than to 
large-scale software and, thus, initially failed adequately to control the 
software development. MIT, which concentrated on the overall 
guidance s1stem, similarly treated software as a secondary 
occupation 7 . This was so even though MIT manager A.L. Hopkins 
had written early in the program that "upon its execution rests the ef­
ficiency and flexibility of the Apollo Guidance and Navigation 
System"73. Combined with NASA's inexperience, MIT's non­
engineering approach to software caused serious development 
problems that were overcome only with great effort and expense. In 
the end NASA and MIT produced quality software, primarily because 
of the small-group nature of development at MIT and the overall 
dedication shown by nearly everyone associated with the Apollo 
program 74. 

Managing the Apollo Software Development Cycle 

One purpose of defining the stages in the software development 
cycle and of providing documentation at each step is to help control 
the production of software. Programmers have been known to in­
advertently modify a design while trying to overcome a particular 
coding difficulty, thus making it imposs.ible to fulfill the specification. 
Eliminating communication problems and preventing variations from 
the designed solution are among the goals of software engineering. In 
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the Apollo program, with an outside organization developing the 
software, NASA had to provide for quality control of the product. One 
method was a set of standing committees; the other was the accep­
tance cycle. 

Three boards contributed directly to the control of the Apollo 
software and hardware development. The Apollo Spacecraft Con­
figuration Control Board monitored and evaluated changes requested 
in the design and construction of the spacecraft itself, including the 
guidance and control system, of which the computer was a part. The 
Procedures Change Control Board, chaired by Chief Astronaut 
Donald K. Slayton, inspected items that would affect the design of the 
user interfaces. Most important was the Software Configuration Con­
trol Board, established in 1967 in response to continuing problems 
and chaired for a long period by Christopher Kraft. It controlled the 
modifications made to the on-board software 75. All changes in the ex­
isting specification had to be routed through this board for resolution. 
NASA's Stan Mann commented that MIT "could not change a single 
bit without permission"76. 

NASA also developed a specific set of review points that paral­
leled the software development cycle. The Critical Design Review 
(CDR) resulted in acceptance of specifications and requirements for a 
given mission and placed them under configuration control. It fol­
lowed the preparation of the requirements definition, guidance equa­
tion development, and engineering simulations of the equations. Next 
came a First Article Configuration Inspection (FACI). Following the 
coding and testing of programs and the production of a validation 
plan, it marked the completion of the development stage and placed 
the software code under configuration control. After testing was com­
pleted, the Customer Acceptance Readiness Review (CARR) certified 
that the validation process resulted in correct software. After the 
CARR, the code would be released for core rope manufacture. Finally 
the Flight Readiness Review (FRR) was the last step in clearing the 
software for flight77. The acceptance process was mandatory for each 
mission, providing for consistent evaluation of the software and ensur­
ing reliability. The unique characteristic of ICs of the Apollo software 
appeared at each stage of the software life cycle. 

Requirements Definition 

Defining requirements is the single most difficult part of the 
software development cycle. The specification is the customer's state­
ment of what the software product is to do. Improperly prepared or 
poorly defined requirements mean that the resulting software will 
likely be incomplete and unusable. Depending on the type of project, 
the customer may have little or a lot to do with the preparation of the 
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specification. In most cases, a team from the software developers 
works with the customer. 

MIT worked closely with NASA in preparing the Guidance and 
Navigation System Operations Plan (GSOP), which served as the re­
quirements document for each mission. NASA's Mission Planning 
and Analysis Division at the Manned Spacecraft Center provided 
detailed guidance requirements right down to the equation level78 . Of­
ten these re~uirements were in the form of flow charts to show 
detailed logic 9. The division fashioned these requirements into a con­
trolled document that contained specific mission requirements, 
preliminary mission profile, preliminary reference trajectory, and 
operational requirements for spacecraft guidance and navigation. 
NASA planned to review the GSOP at launch minus 18 months, 16 
months, 14 months and then to baseline or "freeze" it at 13.5 months 
before launch. The actual programs were to be finished at launch 
minus 10.5 months and tested until 8 months ahead, when they were 
released to the manufacturer, with tapes also kept at MIT and sent to 
Houston, North American (CM manufacturer), and Grumman (LEM 
manufacturer) for use in simulations. At launch minus 4 months the 
core ropes were to be completed and used throughout the mission80. 

In software engineering practice today, the specification docu­
ment is followed by a design document, from which the coding is 
done. Theoretically, the two together would enable any competent 
programmer to code the program. The GSOPs contained characteris­
tics of both a specification and design document. But, as one of the 
designers of the Apollo and Shuttle software has said, "I don't think I 
could give you the requirements for Apollo and have you build the 
flight software"81 . In fact, the plans varied both· in what they included 
and in the level of detail requirements. This variety gave MIT con­
siderable latitude when actually developing the flight software, thus 
reducing the chance that it would be easily verified and validated. 

Coding: Contents of the Apollo Software 

By 1963, designers determined that the Apollo computer software 
would have a long list of capabilities, including acting as backup to 
the Saturn booster, controlling aborts, targeting, all navigation and 
flight control tasks, attitude determination and control, digital 
autopilot tasks, and eventually all maneuvers involving velocity 
changes82. Programs for these tasks had to fit in the memories of two 
small computers, one in the CM and one in the LEM. Designers 
developed the programs using a Honeywell 1800 computer and later 
an IBM 360, but never with the actual flight hardware. The develop­
ment computers generated binary object code and a listing83. The tape 
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containing the object code would be tested and eventually released for 
core rope manufacture. The listing served as documentation of the 
code84. 

Operating System Architecture 

The AGC was a priority-interrupt system capable of handling 
several jobs at one time. This type of system is quite different from a 
"round-robin executive." In the latter, programs have a fixed amount 
of time in which to run before being suspended while the computer 
moves on to the remaining pending jobs, thus giving each job the 
same amount of attention. A priority-interrupt system is always ex­
ecuting the one job with the highest priority; it then moves on to 
others of equal or lower priority in its queue. 

The Apollo control programs included two related to job schedul­
ing: the Executive and the Waitlist. The Executive could handle up to 
seven jobs at once while the Waitlist had a limit of nine short tasks85. 
Waitlist tasks had execution times of 4 milliseconds or less. If a task 
ran longer than that, it would be promoted by the Waitlist to "job" 
status and moved to the Executive's queue86. The Executive checked 
every 20 milliseconds for jobs or tasks with higher priorities than the 
current ones87. It also managed the DSKY displays88. If the Execu­
tive checked the priority list and found no other jobs waiting, it ex­
ecuted a program called DUMMY JOB continuously until another job 
came into the queue89. 

The Executive had other duties as part of controlling jobs. One 
solution to the tight memory in the AGC was the concept of time­
sharing the erasable memory90. No job had permanent claim to any 
registers in the erasable store. When a job was being executed, the Ex­
ecutive would assign it a "coreset" of 12 erasable memory locations. 
Also, when interpretive jobs were being run (the Interpreter is ex­
plained below), an additional 43 cells were allocated for vector ac­
cumulation (V AC). The final lunar landing programs had eight 
coresets in the LEM computer and just seven in the CM. Both had 
five VACs91 . Moreover, memory locations were given multiple as­
signments where it was assured that the owning processes would 
never execute at the same time. This approach caused innumerable 
problems in testing as software evolved and memory conflicts were 
created due to the changes. 
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Programming the AGC 

One can program a computer on several levels. Machine code, the 
actual binary language of the computer itself, is one method of 
specifying instructions. However, it is tedious to write and prone to 
error. Assembly language, which uses mnemonics for instructions,( e. 
g., ADD in place of a 3-bit operation code) and, depending on its 
sophistication, handles addressing, is at a higher level. Most program­
mers in the early 1960s were quite familiar with assembly languages, 
but such programs suffered from the need to put too much respon­
sibility in the hands of the programmer. For Apollo, MIT developed a 
special higher order language that translated programs into a series of 
subroutine linkages, which were interpreted at execution time. This 
was slower than a comparable assembly language program, but the 
language required less storage to do the same job92. The average in­
struction required two machine cycles-about 24 milliseconds-to 
execute93. 

The interpreter got a starting location in memory, retrieved the 
data in that location, and interpreted the data as though it were an 
instruction94. Instead of having only the 11 instructions available in 
assembler, up to 128 pseudoinstructions were defined95. The larger 
number of instructions in the interpreter meant that equations did not 
have to be broken down excessively96. This increased the speed and 
accuracy of the coding. 

The MIT staff gave the resulting computer programs a variety of 
imaginative names. Many, such as SUNDISK, SUNBURST, and 
SUNDIAL, related to the sun because Apollo was the god of the sun 
in the classical period. But the two major lunar flight programs were 
called COLOSSUS and LUMINARY. The former was chosen be­
cause it began with "C" like the CM, and the latter because it began 
with "L" like the LEM97. Correspondence between NASA and MIT 
often shortened these program names and appended numbers. For ex­
ample, SOLRUM55 was the 55th revision of SOLARIUM for the 
AS501 and 502 missions. BURST116 was the 116th revision of 
SUNBURST98. Although these programs had many similarities, 
COLOSSUS and LUMINARY were the only ones capable of navigat­
ing a flight to the moon. On August 9, 1968, planners decided to put 
the first released version of COLOSSUS on Apollo 8, which made the 
first circumlunar flight possible on that mission99. 

Handling Restarts 

One of the most significant differences between batch-type com-
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puter systems and real-time systems is the fact that in the latter, an ab­
normal termination of a program is not acceptable. If a ground-based, 
non-real-time computer system suffers a software failure ("goes 
down") due to overloads or mismanagement of resources, it can 
usually be brought up again without serious damage to the users. 
However, a failure in a real-time system such as that in an aircraft 
may result in loss of life. Such systems are backed up in many ways, 
but considerable emphasis is still placed on making them failure proof 
from the start. Obviously, the AGC had to be able to recover from 
software failures. A worst-case example would be a failure of the 
computer during an engine burn. The system had to have a method of 
staying "up" at all times. 

The solution was to provide for restarts in case of software 
failures. Such restarts could be caused by a number of conditions: 
voltage failures, clock failure, a "rupt lock" in which the system got 
stuck in interrupt mode, or a signal from the NIGHT WATCHMAN 
program, which checked to see if the NEWJOB register had not been 
tested by the EXECUTIVE, indicating that the operating system was 
hung up in some way 100_ 

An Apollo restart transferred control to a specified address, where 
a program would begin that consulted phase tables to see which jobs 
to schedule first. These jobs would then be directed to pick up from 
the last restart point. The restart point addresses were kept in a restart 
table. Programmers had to ensure that the restart table entries and 
phase table entries were kept up to date by the software as it 
executed lO 1. The restart program also cleared all output channels, 
such as control jet commands, warning lights, and engine on and off 
commands, so that nothing dangerous would take place outside of 
computer control 102. · 

A software failure causing restarts occurred during the Apollo 11 
lunar landing. The software was designed to give counter increment 
requests priority over instructions 1°3. This meant that if some item of 
hardware needed to increment the count in a memory register, its re­
quest to do so would cause the operating system to interrupt current 
jobs, process the request, and then pick up the suspended routines. It 
had been projected that if 85,000 increments arrived in a second, the 
effect would be to completely stop all other work in the system 104. 
Even a smaller number of requests would slow the software down to 
the point at which a restart might occur. During the descent of Apollo 
11 to the moon, the rendezvous radar made so many increment re­
quests that about 15% of the computer systems' resources were tied 
up in responding105. The time spent handling the interrupts meant that 
the interrupted jobs did not have enough computer time to complete 
before they were scheduled to begin again. This situation caused res­
tarts to occur, three of which happened in a 40-second period while 
program P64 of LUMINARY ran during descent 106. The restarts 
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caused a series of warnings to be displayed both in the spacecraft and 
in Mission Control. Steven G. Bales and John R. Gannan, monitoring 
the computer from Mission Control, recognized the origin of the 
problem. After consultation, Bales, reporting to the Flight Director, 
called the system "GO" for landing107. They were right, and the res­
tart software successfully handled the situation. The solution to this 
particular problem was to correct a switch position on the rendezvous 
radar which, through an arcane series of circuitry, had caused the 
analog-to-digital conversion circuitry to race up and down 108. This 
incident proved the need for and effectiveness of built-in software 
recovery for unknown or unanticipated error conditions in flight 
software-a philosophy that has appeared deeply embedded in all 
NASA manned spaceflight software since then. 

Verification and Validation 

There could be no true certification of the Apollo software be­
cause it was impossible to simulate the actual conditions under which 
the software was to operate, such as zero-G. The need for reliability 
motivated an extensive testing program consisting of simulations that 
could be accomplished before flight. Three simulation systems were 
available for verification purposes: all-digital, hybrid, and system test 
labs. All-digital simulations were performed on the Honeywell 1800s 
and IBM 360s used for software development. Their execution rate 
was 10% of real time 109. Technicians did hybrid simulations in a lab 
that contained an actual AGC with a core rope simulator (as core rope 
would not be manufactured until after verification of the program) and 
an actual DSKY. Additionally, an attached Beckman analog computer 
and various interfaces simulated spacecraft responses to computer 
commands 11 O. Further ad hoc verification took place in the mission 
trainers located in Houston and at Cape Canaveral, which would run 
the released programs in their interpretive simulators. 

The simulations followed individual unit tests and integrated tests 
of portions of the software. At first, MIT left these tests to the 
programmers to be done on an informal basis. It was very difficult at 
first to get the Instrumentation Laboratory to supply test plans to 
NASA 111 . The need for formal validation rose with the size of the 
software. Programs of 2,000 instructions took between 50 and 100 test 
runs to be fully debugged, and full-size mission loads took from 1,000 
to 1,200 runs 112. 

NASA exerted some pressure on MIT to be more consistent in 
testing, and it eventually adopted a four-level test structure based 
largely on the verification of the Gemini Mission Control Center 
developed by IBM in 1964113. This is important because formal 
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release of the program for rope manufacture was dependent on the 
digital simulations only. Raytheon performed the hybrid and system 
tests after they had the release tape in hand 114. At that time, MIT 
would have released an "AGC Program Verification Document" to 
NASA. Aside from help from IBM, NASA also had TRW participate 
in developing test plans. Having an outside group do some work on 
verification is a sound software engineering principle, as it is less 
likely to have a vested interest in seeing the software quickly succeed, 
and it helps prevent generic errors. 

Apollo Software Development Problems 

Real-time flight software development on this scale was a new 
experience for both NASA and the MIT Instrumentation Laboratory. 
Memory limitations affected the software so that some features and 
functions had to be abandoned, whereas tricky programming tech­
niques saved others. Quality of the initial code was sometimes poor, 
so verification took longer and was more expensive. Despite valiant 
validation efforts, software bugs remained in released programs, forc­
ing adjustments by users. Several times, NASA administrators put 
pressure on MIT to reduce software complexity because there were 
real doubts about MIT's ability to deliver reliable software on time. 
Apparently, few had anticipated that software would become a pacing 
item for Apollo, nor did they properly anticipate solutions to the 
problems. 

By early 1966, program requirements even exceeded the Block II 
computer's memory. A May software status memo stated that not only 
would the programs for the AS504 mission (earth orbit with a LEM) 
exceed the memory capacity by 11,800 words but that the delivery 
date for the simpler AS207 /208 programs would be too late for the 
scheduled launch115. Lack of memory and the need for faster 
throughput resulted in complicating and delaying the program 
development effort116. One of MIT's top managers explained 

If you are limited in program capacity ... you have to fix. You 
have to get ingenious, and as soon as you start to get ingenious 
you get intermeshing programs, programs that depend upon 
others and utilize other parts of those, and many · things are going 
on simultaneously. So it gets difficult to assign out little task 
groups to program part of the computer; you have to do it with a 
very technical team that understands all the interactions on all 
these things 117. 

The development of obscure code caused problems both in under­
standing the programs and validating them, and this, in turn, caused 
delays. MIT's considerable geographic distance from Houston caused 
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additional problems. Thus, NASA's contract managers had to com­
mute often. Howard W. "Bill" Tindall, newly assigned from the 
Gemini Project as NASA's "watchdog" for MIT software, spent 2 or 3 
days a week in Boston starting in early 1966118. 

Tindall was well known at the Manned Spacecraft Center due to 
his legendary "Tindallgrams "-blunt memos regarding software 
development for Apollo. One of the first to recognize the importance 
of software to mission schedules, he wrote on May 31, 1966 that "the 
computer programs for the Apollo spacecraft will soon become the 
most pacing item for the Apollo flights" 119. MIT was about to make 
the standard emergency move when software was in danger of being 
late: to throw more bodies into the project, a tactic that often back­
fires. As many as 50 people were to be added to the programming 
staff, and the amount of interaction between programmers and, thus, 
the potential for miscommunication increased along with the time 
necessary to train newcomers. MIT tried to protect the tenure of its 
permanent staff by using contractors who could be easily released. 
The hardware effort peaked at 600 workers in June of 1965 and fell 
off rapidly after that, while software workers steadily increased to 400 
by August of 1968. With the completion of the basic version of 
COLOSSUS and LUMINARY, the number of programmers quickly 
decreased120. This method, although in the long-term interests of the 
laboratory, caused considerable waste of resources in communication 
and training. 

Tindall's memo also detailed many of NASA's efforts to improve 
MIT's handling of the software development. Tindall had taken Lyn­
wood Dunseith, then head of the computer systems in Mission Con­
trol, and Richard Hanrahan of IBM to MIT to brief the Instrumen­
tation Laboratory on the Program Development Plan used for manage­
ment of software development in the Real-Time Computing Center 
associated with Mission Control. The objective was to give MIT some 
suggestions on measuring progress and detecting problem areas early. 
One NASA manager pointed out that the Instrumentation Laboratory 
was protective of the image of MIT, and one way to control MIT was 
to threaten its self-esteem121 . The need to call on IBM for advice was 
apparently a form of negative motivation. A couple of weeks later, 
Tindall reported that Edward Copps of MIT was leading the develop­
ment of a Program Development Plan based on one done by IBM 122. 
However, by July he was complaining that MIT was implementing it 
too slowly123. In fact, some aspects of configuration control such as 
discrepancy reporting ( when the software does not match the 
specification) took over a year for MIT to implement 124. 

NASA had to be very careful in approving cuts in the program re­
quirements to achieve some memory savings. Some features were ob­
viously "frosting," and could easily be eliminated; for example, the ef­
fects of the oblate nature of the earth, formerly figured into lunar orbit 
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rendezvous but actually minimal enough to be ignored 125. Also cut 
were some attitude maneuver computations. They therefore left Reac­
tion Control System (RCS) bums to the "feel" of the pilot, which 
meant slightly greater fuel expenditure126. Overall, the cuts resulted 
in software that saved money and accelerated development but could 
not minimize fuel expenditures nor provide the close guidance 
tolerance that was within the capability of the computer, given more 
memory 127. 

Flight AS-204: A Breaking Point 

Despite efforts by both MIT and NASA, by the summer of 1966, 
flight schedules and problems in development put both organizations 
in a dangerous position regarding the software. A study of the 
problems encountered with the software for flight AS-204, which was 
to be the first manned Apollo mission, best demonstrates the urgency. 
On June 13, Tindall reported that the AS-204 program undergoing in­
tegrated tests had bugs in every module. Some had not been unit 
tested prior to being integrated 128. This was a serious breach of 
software engineering practice. If individual modules are unit tested 
and proven bug-free, then bugs found in integrated tests are most 
likely located in the interfaces or calling modules. If unit testing has 
not been done then bugs could be anywhere in the program load, and 
it is very difficult to identify the location properly. This vastly in­
creases the time and, thus, the cost of debugging. It causes a much 
greater slip in schedule than time spent on unit tests. Even worse, Tin­
dall said that the test results would not be formally documented to 
NASA but that they would be on file if needed. 

The AS-204 software schedule problems affected other things. 
All the crew-requested changes in the programs were rejected because 
including them would cause even further delays 129. The AS-501 
program and others began to slip because the AS-204 fixes were 
saturating the Honeywell 1800s used in program development130. 
MIT also added another nine programmers to the team, all from AC 
Electronic, thus increasing communication and training problems. 

The eventual result was that the flight software for the mission 
was of dubious quality. Tindall predicted such would be the case as 
early as June 1966, saying that "we have every expectation that the 
flight program we finally must accept will be of less than desirable 
quality" 131 . In other words, it would contain bugs, bugs that would 
not actually threaten the mission directly but that would have to be 
worked around either by the crew or by ground control. They found 
one such bug less than a month before the scheduled February 21, 
1967, launch date. Ground computers and the Apollo guidance com-
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puter calculated the time for the de-orbit bum that preceded re-entry. 
Simulations performed during January 1967 and reported on the 23rd 
indicated that there was a discrepancy between the two calculations of 
as much as 138 seconds! Since the core rope was already installed in 
the spacecraft, the only possible fix (besides a delay in the launch 
time) would be to have the crew ignore the Apollo computer solution. 
The ground would transmit the Real-Time Computing Center solu­
tion, after which an astronaut would have to key the numbers into the 
Apollo computer132. This situation, and other discrepancies, led one 
NASA engineer to later remark that "we were about to fly with flight 
software that was really suspect" 133. 

AS-204 did not fly, so that software load was never fully tried. 
On January 27, 1967, during a simulation with the crew in the 
spacecraft on the pad, a fire destroyed the CM, killed the crew, and 
delayed the Apollo program for months. The changes in managing 
software development put into effect by NASA and MIT during 1966 
had not had enough time to take effect before the fire. In the ensuing 
period, with manned launches on indefinite delay, MIT was under the 
direction of the NASA team led by Tindall and was able to catch up 
on its work and take steps to make the software more reliable. NASA 
and MIT split the effort among three programs: CM earth orbit, CM 
lunar orbit, and lunar module lunar landing (LM earth orbit was 
dropped) 134. By October 17, 1967, the SUNDISK earth orbit program 
was complete, verified, and ready for core rope manufacture, a year 
before the first manned flight135. The time gained by the delay caused 
by the fire allowed for significant improvements in the Apollo 
software. Tindall observed at the time, "It is becoming evident that we 
are entering a new epoch regarding development of spacecraft com­
puter programs." No longer would programs be declared complete in 
order to meet schedules, requiring the users to work around errors. In­
stead, quality would be the primary consideration l36_ 

The Guidance Software Task Force 

Despite postfire improvements, Apollo software had more hurdles 
to clear. NASA was aware of continuing concern about Apollo's 
computer programs. Associate Administrator for Manned Spaceflight 
George E. Mueller formed a Guidance Software Task Force on 
December 18, 1967 to study ways of improving development and 
verification*. The group met 14 times at various locations before its 
final report in September 1968 13 7. 

*Members of the Task Force included Richard H. Battin, MIT; Leon R. Bush, 
Aerospace Corp.; Donald R. Hagner, Bellcomm; Dick Hanrahan, IBM; James 
S. Martin, NASA-Langley; John P. Mayer, NASA-MSC; Clarence Pitman, TRW; 
and Ludie G. Richard, NASA-Marshall. Mueller was the chairman. 
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Even while the Task Force was investigating, Mueller took other 
steps to challenge MIT. A Software Review Board re-examined the 
software requirements for the lunar mission in early February 1968. 
The board judged the programs to be too sophisticated and complex, 
and Mueller requested that they aim for a 50% reduction in the 
programs, with increased propellant consumption allowed as a 
tradeoff138. An aide reported that Mueller was convinced that MIT 
"might not provide a reliable, checked-out program on schedule" for 
the lunar landing mission l39. 

The recommended 50% scrub did not occur, and the final report 
of the Task Force was very sympathetic to the problems involved in 
developing flight software. It recommended standardization of sym­
bols, constants, and variable names used at both Houston and 
Huntsville to make communication and coding easier140. The Task 
Force acknowledged that requirements would always be dynamic and 
that development schedules would always be accelerated, but rather 
than using this for an excuse for poor quality, the group recommended 
that software not be slighted in future manned programs. Adequate 
resources and personnel were to be assigned early to this "vital and 
underestimated area" 141 . This realization would have great effect on 
managing later software development for the Space Transportation 
System. 

Mueller remained concerned about software even after the Task 
Force dissolved. On March 6, 1969, he wrote a letter to Robert Gil­
ruth, NASA deputy administrator, complaining that software changes 
were being made too haphazardly and should receive more attention, 
equal to that given to hardware change requests. Gilruth replied five 
days later, disagreeing, noting that the Configuration Control Board 
and other committees formed an interlocking system adequate for 
change control 142. 

Lessons of the Apollo Software Development Process 

Overcoming the problems of the Apollo software, NASA did suc­
cessfully land a man on the moon using programs certifiably adequate 
for the purpose. No one doubted the quality of the software eventually 
produced by MIT nor the dedication and ability of the programmers 
and managers at the Instrumentation Lab. It was the process used in 
software development that caused great concern, and NASA helped to 
improve it143. The lessons of this endeavor were the same learned by 
almost every other large system development team of the 1960s: (a) 
documentation is crucial, (b) verification must proceed through 
several levels, (c) requirements must be clearly defined and carefully 
managed, (d) good development plans should be created and ex-
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ecuted, and ( e) more programmers do not mean faster development. 
Fortunately, no software disasters occurred as a result of the rush to 
the moon, which is more a tribute to the ability of the individuals do­
ing the work than to the quality of the tools they used. 

USING THE AGC 

The Apollo computer system made great demands on the crew. It 
took about 10,500 keystrokes to complete a lunar mission; not much 
in the life of an airline reservations clerk but still indicative of how 
computer centered the crew had to be144. During the period in which 
the software was criticized for its complexity, designers attempted to 
reduce the number of keystrokes required to execute various 
programs. When possible, they also eliminated built-in halts as data 
were displayed for astronaut approval. However, the "fourth crew 
member" never abandoned center stage145. 

Apollo's crew employed its computer through the use of the 
DSKYs. In the CM one was on the main control panel opposite the 
commander's couch. The other was at the navigator's station in the 
lower equipment bay, where the computer itself was located. Block I 
had a different DSKY at the navigator's station than on the main 
panel146, but they were identical in the Block II series. DSKY and 
computer activity could be monitored from the ground as the com­
puter transmitted data words to drive real-time displays in Mission 
Control 147. 

The crew could communicate with the computer through keys, 
displays, and warning lights on the DSKY. Additionally, the uplink 
telemetry could provide input to the machine, and so could the 
preflight checkout equipment148. The computer, in tum, could com­
municate with the crew by flashing the PROGram, VERB, and NOUN 
displays149. The DSKY displays included 10 warning lights, a com­
puter activity light, a PROGram display, VERB and NOUN displays, 
three five-digit numeric displays with signs, and 19 keys including 
VERB, NOUN, CLEAR, KEY RELEASE, PROCEED, RESET, 
ENTER, PLUS, MINUS, and the digits 0-9. See Boxes 2-2 and 2-3 
for functions and use. 
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Figure 2-2. The Display and Keyboard (DSKY) of an Apollo spacecraft. 
(Prepared by The Wichita State University Media Services) 
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Box 2-2:-Apollo Display and Keyboard Lights 

Ten DSKY warning lights had the following functions: 

• COMP ACTY: This lit up when the computer was running a 
program. 

• UPLINK ACTY: Lit when data was being received from the 
ground. 

• TEMP: Lit when the temperature of the stable platform was out 
of tolerance. 

• NO ATT: Lit when the inertial subsystem could not provide at­
titude reference. 

• GIMBAL LOCK: Lit when the middle gimbal angle was greater 
than 70 degrees. 

• STB Y: Lit when the computer system was on standby. 

• PROG: Lit when the computer was waiting for additional infor­
mation to be entered by the crew to complete the program. 

• KEY REL: Lit when the computer needed control of the DSKY 
to complete a program. Sometimes display information could be 
"buried" under other routines or by a priority interrupt. The crew 
could press the KEY REL key to release the keyboard to the re­
questing program150. When the KEY REL light went on, that 
signaled the crew to press the key. 

• REST ART: Lit when the computer was in the restart program. 
This was the light that kept coming on during the Apollo 11 land­
ing. 

• QPR ERR: Lit when the computer detected an error on the 
keyboard. 

• TRACKER: Lit when one of the optical coupling units failed . 

The LEM DSKY had three additional lights: NO DAP, ALT, and 
VEL, which were related to failures of the digital autopilot and to warn 
of altitude and velocity readings outside of the predetermined limits. 
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Figure 2-3. Another DSKY was located at the navigator's station in the com­
mand module. Astronaut James A. Lovell takes a star sighting during the Apollo 8 
mission. (NASA photo S-69-35099) 

Box 2-3:-Apollo Display and Keyboard Displays 

Seven displays were available on the DSKY: 

• PROG: This was a two-digit display indicating what numbered 
program the computer was currently executing. 

• VERB: A two-digit display of the verb number being entered 
(the verb-noun system is discussed below). 

• NOUN: A two-digit display of the noun number being entered. 

• Three five-digit numeric displays, which showed numbers in ei­
ther decimal or octal (base eight). When a sign was shown with 
the number, the number was decimal; otherwise, it was octal 151 . 
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Figure 2---4 . The interior of an Apollo Command Module, showing the location of 
the DSKY on the main control panel at the left. Apollo 15 crewmen shown in­
clude Alfred M. Worden (center) and David R. Scott (left). James B. Irwin is 
mostly obscured to the right. (NASA photo S-71-29952) 

Using the Keys and the Verb-Noun System 

Astronauts used keys to enter information and select programs 
and actions. Key inputs caused automatic interrupts in the 
software152. The astronauts would activate a program and then inter­
act with it by requesting and entering information; a typical software 
load consisted of about 40 programs and 30 simultaneous routines153. 
Changing programs and making other requests involved using the 
verb-noun system. Those familiar with current computer keyboards 
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will notice the lack of alphabet keys on the DSKY. Whereas most 
computer commands are entered by typing in the text of the com­
mand, the Apollo computer command list specified verb and noun 
pairs. There were 100 two-digit numbers available for each, and most 
were used on any given flight. Examples of verb-noun pairs are 
"display velocity" and "load angle." Verb 37, for example, was 
"Change Prog," which enabled the crew to set up a new program for 
execution. 

If, for example, the crew wanted to execute the rendezvous target­
ing program, an astronaut would first press the VERB key followed 
by the digits 3 and 7, and then the ENTER key. That sequence in­
formed the computer of a request for a program change. The astronaut 
would then press 3, 1, and ENTER to tell the computer to execute 
program P3 l. Within the program the crew could request maneuver 
angles (verb 50, noun 18), monitor the changes while a maneuver was 
in progress (verb 06, noun 18), or request the velocity change required 
for the next maneuver (verb 06, noun 84), among other functions. The 
CSM G&C Checklist, a set of "cue cards" on three rings changed for 
each mission by the Crew Procedures Division in Houston, described 
all these sequences in detail. The document contained reference data, 
such as a star list, verb list, noun list, alarm codes, error handling and 
recovery, and the checklists for each program carried in the computer. 

Despite the 100 verb-noun pairs, 70-odd programs and routines, 
and a very limited user interface that alternated decimal and octal and 
blinked for attention, the consensus is that the Apollo computer was 
easy to use. As with other aspects of flying space missions, hours in 
simulators made operating the computer second nature. NASA en­
gineer John R. Garman commented that "it's like playing the piano-­
you don't have to see your fingers to know where they are" 154. 
Familiarity with the computer, remarked astronaut Eugene Ceman, 
meant that pressing a wrong key simply and immediately "felt" 
wrong155. Others also confirmed that using the machine eventually 
became relatively natural 156. Apollo astronauts were also willing to 
adapt to design foibles that would frustrate others. There were con­
cerns that a crewman initiating a maneuver from the navigator's sta­
tion would not be able to return to his couch before the burn started. 
In response, Virgil Grissom was accommodating: "Well, we '11 just lie 
down on the floor" 157. Astronauts also tolerated non-life-threatening 
software errors not cleared up before flight as merely something else 
to endure158. They did, however, complain about the annoying num­
ber of keystrokes required during a rendezvous, so designers modified 
the software to make a "minkey" (minimum keystroke) option avail­
able, in which the computer could perform some functions without 
constant crew approval 159. This change contributed to an even more 
compact, straightforward system. 
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THE ABORT GUIDANCE SYSTEM 

The computer in the Abort Guidance System (AGS) is probably 
the most obscure computing machine in the manned spaceflight 
program to date. The 330-page "Apollo Spacecraft News Reference" 
prepared for the first lunar landing mission does not contain a single 
reference to it, compared with several pages of description of the 
Primary Guidance, Navigation, and Control System (PGNCS) com­
puter and its interfaces. The invisiblity of the AGS is a tribute to 
PGNCS, since the AGS was never needed to abort a landing. It was, 
however, an interesting and pioneering system in its own right. 

The AGS owed its existence to NASA's abort policy; an abort is 
ordered if one additional system failure would potentially cause loss 
of crew160. Hence, the failure of either the PGNCS or the AGS would 
have resulted in an abort. The AGS operated in an open loop, parallel 
to the PGNCS in the LEM, and gave the crew an independent source 
of position, velocity, attitude, and steering information161 . It could 
verify navigation data during the periods when the LEM was behind 
the moon and blacked out from ground control. The Apollo program 
first exercised this capability during Apollo 9 and Apollo 10 leading 
up to the first landing mission 162. 

The AGS was a pioneer in that it was the first "strapped-down" 
guidance system. The system used sensors fixed to the LEM to deter­
mine motion rather than a stable platform as in conventional inertial 
guidance systems 163. The entire system occupied only 3 cubic feet 
and consisted of three major components: (a) an Abort Electronic As­
sembly (AEA), which was the computer, (b) an Abort Sensor As­
sembly (ASA), which was the inertial sensor, and (c) a Data Entry and 
Display Assembly (DEDA), which was the DSKY for the AGS. 

AEA and DEDA: The Computer Hardware 

As with the PGNCS computer, the AGS computer went through 
an evolutionary period in which designers clarified and settled the re­
quirements. The first design for the system did not include a true com­
puter at all but rather a "programmer," a fairly straightforward sequen­
cer of about 2,000 words fixed memory, which did not have naviga­
tion functions. Its job was simply to abort the LEM to a "clear" lunar 
orbit ( one that would be higher than any mountain ranges) at which 
point the crew would wait for rescue from the CM, with its more 
sophisticated navigation and maneuvering system164. The require­
ments changed in the fall of 1964. To_ provide more autonomy and 
safety, the AGS had to provide rendezvous capability without outside 
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sources of information165. TRW, the contractor, then decided to in­
clude a computer of about 4,000 words memory. The company con­
sidered an existing Univector accumulation machine but, instead, 
chose a custom designed computer166. 

The computer built for the AGS was the MARCO 4418 (for Man 
Rated Computer). It was an 18-bit machine, with 17 magnitude bits 
and a sign bit. It used 5-bit op codes and 13-bit addresses. Numbers 
were stored in the two's complement form, fixed point, same as in the 
primary computer. Twenty-seven instructions were available, and the 
execution time varied from 10 to 70 microseconds, depending on the 
instruction being performed167. The computer was 5 by 8 by 23.75 
inches, weighed 32.7 pounds, and required 90 watts 168. The memory 
was bit serial access, which made it slower than the PGNCS com­
puter, and it was divided into 2K of fixed cores and 2K of erasable 
cores 169. The actual cores used in the fixed and erasable portions were 
of the same construction, unlike those in the PGNCS computer. 
Therefore, the ratio of fixed memory to erasable in the MARCO 4418 
was variable 170. TRW was obviously thinking in terms of adaptability 
to later applications. 

The DEDA was much smaller and less versatile than the DSKY. 
It was 5 .5 by 6 by 5 .19 inches and was located on the right side of the 
LEM control panel in front of the pilot, about waist height171 . Sixteen 
pushbutton keys were available: CLEAR, READOUT, ENTER, 
HOLD, PLUS, MINUS, and the digits 0-9. It had a single, nine­
window readout display. Three windows showed the address (in 
octal), one window the sign, and five, digits 172. This was similar to 
the readout in the Gemini spacecraft for its computer. 

Software for the AGS 

. Since hardware in the AGS evolved as in PGNCS, software also 
had to be "scrubbed" (reduced in size) in the AGS. Mirroring the 
memory problems of PGNCS, by 1966, 2 full years before the first ac­
tive mission using the LEM, only 20 words remained of the 4,000 in 
the AGS memory 173. Careful memory management became the focus 
of TRW and NASA. Tindall recalled that the changes all had to be 
made in the erasable portion, as the fixed portion was programmed 
early and remained set to save money. However, changing the eras­
able memory turned out to be very expensive and a real headache, the 
develofers fighting to free up storage literally one location at a 
time17 . Also, some software decisions had to be altered in light of 
possible disastrous effects. The restart program for the PGNCS has 
been described. In it, a restart clears all engine bums. The first ver­
sions of the AGS software also caused engine shutdown and an at-
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titude hold to go into effect when a restart occurred. This would be 
potentially dangerous if a restart began with the LEM close to the 
lunar surface. The solution was to give the crew responsibility to 
manually fire the engines during a restart if necessary 175. 

Software development for the AGS followed a tightly controlled 
schedule: 

1. 12.5 months before launch: NASA delivers the prelimi­
nary reference trajectory and mission requirements to 
TRW. 

2. 11 months: Program specification and AGS performance 
analysis is complete. 

3. 10.5 months: NASA conducts the Critical Design 
Review (CDR). 

4. 8 months: The final mission reference trajectory is 
delivered. 

5. 7 months: The equation test results, verification test 
plan, and preliminary program goes to NASA for ap­
proval. 

6. 6.5 months: The First Article Configuration Inspection 
(F ACI) conducted. 

7. 5 months: The verified program and documentation is 
delivered to NASA. 

8. 4.5 months: NASA conducts the Customer Acceptance 
Readiness Review (CARR). 

9. 3 months: The operational flight trajectory is delivered 
by NASA to the contractor. 

10. 2 months: The final Flight Readiness Review (FRR) is 
held. 

11. 1.5 months: The tape containing the final program is 
delivered 176. 

One method of software verification was quite unique. To simu­
late motion and thus provide more realistic inputs to the computer, 
planners used a walk-in van containing the hardware and software. 
Technicians drove the van around Houston with the programs running 
inside it177. 
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Use of the AGS 

The AGS was never used for an abort, but it did contribute to the 
final rendezvous and docking with the CM on the Apollo 11 mission, 
probably to avoid the problems encountered with the rendezvous radar 
during landing178. It did monitor PGNCS performance during all mis­
sions in which it flew. The only criticism of its performance was from 
astronaut John Young, who remarked that "one mistake in a rendez­
vous, and the whole thing quit" 179. Apparently, restarts occurred as 
part of the recovery from some operator errors. The AGS was actually 
like a parachute-absolutely necessary, but presumably never needed. 

LESSONS 

What did NASA learn from its experiences with the Apollo com­
puter system? At the management level, NASA learned to assign ex­
perienced personnel to a project early, rather than using the start of a 
project for training inexperienced personnel; many NASA managers 
of software and hardware were learning on the job while in key posi­
tions. Also, more participation by management in the early phases of 
software design is necessary so that costs can be more effectively es­
timated and controlled. 

From the standpoint of development, NASA learned that a more 
thorough, early effort at total systems engineering must be made so 
that specifications can be adequately set. NASA contractors in the 
Apollo program faced changing specifications long after final require­
ments should have been fixed. This was expensive and caused such 
problems as Raytheon's retooling, memory shortages, and design in­
sufficiencies. 

The realization that software is more difficult to develop than 
hardware is one of the most important lessons of the Apollo program. 
So the choice of memory should be software driven, and designers 
should develop software needed for manned spaceflight near the 
Manned Spacecraft Center. The arrangement with MIT reduced over­
all quality and efficiency due to lack of communication. Also, more 
modularization of the software was needed 180. 

The AGC system served well on the earth-orbital missions, the 
six lunar landing missions, the three Skylab missons, and the 
Apollo-Soyuz test project. Even though plans existed to expand the 
computer to 16K of erasable memory and 65K of fixed memory, in­
cluding making direct memory addressing possible for the erasable 
portion, no expansion occurred181 . The Apollo computer did fly on 
missions other than Apollo. An F-8 research aircraft used a lunar 
module computer as part of a "fly-by-wire" system, in which control 
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surf aces moved by servos at the direction of electronic signals instead 
of traditional cables and hydraulics. In that way, the Apollo system 
made a direct research contribution to the Shuttle, which is completely 
a fly-by-wire craft. The most important legacy of the AGC, however, 
was in the way NASA applied the lessons it was beginning to learn in 
developing ground software to the management of flight software. 



3 

The Skylab Computer System 
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Skylab, America's first orbital workshop, carried a highly successful 
computer system. For much of the operating life of the space station, 
the computer was not just the fourth crew member but the only crew 
member. It made a large contribution to saving the mission during the 
2 weeks after the troubled launch and later helped control Skylab 
during the last year before re-entry. The entire system functioned 
without error or failure for over 600 days of operation, even after a 4-
year and 30-day interruption. It is significant as the first spacebome 
computer system to have redundancy management software. The 
software development for the system followed strict engineering prin­
ciples, producing a fully verified and reliable real-time program. 

The record of the computer system stands in contrast to that of the 
workshop itself. NASA launched Skylab on May 14, 1973 on a Saturn 
V booster. The first two stages put the modified S-IVB third stage into 
orbit. The S-IVB contained the workshop, which included a solar tele­
scope mount and living and working quarters. The plan was to launch 
the first crew the next day aboard a Saturn 1B carrying an Apollo 
command and service module. However, shortly after achieving orbit, 
telemetry from the unmanned Skylab indicated that one of the two 
wings of solar panels was missing and the other had not deployed. 
The panels on the Apollo Telescope Mount (ATM) had opened 
properly but they were too small to supply power for the whole 
workshop. In addition, the gyros were drifting and the thermal shield 
was damaged. These failures caused concern that the interior of the 
space station would overheat and destroy the equipment. The damage 
was so serious that for the first 3 or 4 hours the ground controllers felt 
that NASA would be fortunate if the systems were to function for 1 
day1. However, by using the computer system that controlled the 
workshop's attitude, the ground controllers were able to keep the 
Skylab at angles to the sun such that the equipment would be exposed 
to tolerable temperatures in the laboratory in concert with generating 
adequate power from the remaining solar panels. At times these were 
conflicting requirements. This had to be done for 2 weeks while en­
gineers prepared repair materials for the crew to fix the workshop. 
Controller Steven Bales remembered that time as "the hardest 2 weeks 
I have ever spent," since a 24-hour watch had to be maintained on the 
attitude and temperature2. 

The computer system again served as "captain" during the entire 
Skylab reactivation. The workshop systems were shut down on 
February 9, 1974, after the last crew left. NASA expected that the 
Skylab would stay in orbit until the mid-1980s. By that time the Space 
Shuttle would be operational and, it was thought, could be used to 
bring up rockets to boost the laboratory into a higher orbit. However, 
unexpected solar activity in the mid-1970s resulted in an increase in 
the density of the atmosphere, so the Skylab's orbit decayed at a much 
faster rate than projected3. 
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Figure 3-1. Skylab in orbit. Note the foil sun shield above the center section and 
the missing large solar panel. The Apollo Telescope Mount is the section with the 
"windmill" solar panels. (NASA photo 74-H-98) 

By 1978, the predicted re-entry time was to be late that year or in 
early 1979. NASA decided to attempt to change the attitude of the 
workshop so that minimal drag would ensue. In this way, the orbit 
might be maintained until the Shuttle could rescue the space station. 
Engineers reactivated and reprogrammed the computer to maintain the 
proper attitude and, later, to control the re-entry when NASA aban­
doned the attempt to maintain orbit. They accomplished this over 4 
years after the computer was shut down. 

The need for the computer system that served Skylab so well was 
not apparent until the original "wet workshop" concept (the laboratory 
to be assembled in space inside of the empty propellant tanks of the 
last stage of the launch vehicle) had progressed through more sophis­
ticated designs to the eventual "dry workshop"4. In December 1968, 
NASA decided to acquire a dual computer system to help control at­
titude while in orbit5. Attitude control was crucial to the success of 
the solar experiments. In fact, the name of the computer reflects this: 
Apollo Telescope Mount Digital Computer (ATMDC). Two of these 
computers were a part of the Skylab Attitude and Pointing Control 
System (APCS), which consisted of a number of other components, 
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such as an interface unit, magnetic tape memory, control moment 
gyros, the thrustor attitude control system, sun sensors, a star tracker, 
and nine rate gyros6. 

Marshall Space Flight Center devised this complex system-a 
pioneering effort because it re~resents the first fully digital control 
system on a manned spacecraft . Its mission-critical status led to the 
use of extensive redundancy in its design, in both hardware and 
software. The computer system not only managed its own redun­
dancy, but all redundant hardware on the spacecraft8. The uniqueness 
and complexity of the control laws associated with the control mo­
ment gyro attitude system led one NASA engineer to refer to it as "a 
crazy animal"9. It was up to the Skylab computer system to tame it. 

HARDWARE 

The choice of a central processor for the Skylab computer system 
marked a break from NASA's previous practice. The Gemini and 
Apollo computer systems were custom-built processors. Apollo did 
have an immediate predecessor, but the number of changes necessary 
before flight negated most of its resemblance to the Polaris system. To 
the contrary, Skylab and, later, the Shuttle, used "off-the-shelf" IBM 
4Pi series processors, though they both needed the addition of a cus­
tomized 1/0 system, a simpler and necessarily idiosyncratic com­
ponent. By using existing computers, NASA avoided the serious 
problems associated with man-rating a new system encountered 
during the Apollo program. 

The 4Pi descended directly from the System 360 architecture 
IBM developed in the early 1960s. Some 4Pis were at work in aircraft 
by the latter part of that decade. The top-of-the-line 4Pi is the AP-101, 
eventually used in the F-15, B-52, and Shuttle. The version on board 
Skylab was the TC-1, which used a 16-bit word, in contrast to the 
AP-101 's 32 bits. A TC-1 processor, an interface controller, an 1/0 as­
sembly, and a power supply made up an ATMDC 10. Each flight com­
puter had a memory of 16,384 words 11 . This memory was a destruc­
tive readout core memory, which means that the bits were erased as 
they were read and that the memory location had to be refreshed with 
the contents of a buffer register, which saved a copy of the bits before 
they were passed on to the processor. The memory was in two 
modules of 8K words each 12. Addressing ranged from Oto 8K, with a 
hardware switch determining which module was being accessed13. 
The redundant computer system was composed of two processors at­
tached to a single Workshop Computer Interface Unit. The unit con­
sisted of two 1/0 sections (one for each computer), a common section, 
and a power supply 14. Only the 1/0 section connected to the active 
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computer was powered. The inactive computer and its 1/0 section of 
the interface unit were not powered. The common section contained a 
64-bit transfer register and timer associated with redundancy 
management15. The transfer register and timer were the only parts of 
Skylab that consisted of triple modular redundant (TMR) circuits16. 
Basically, TMR circuits sent signals in triplicate on separate channels 
and then voted. The single output from a TMR voter represented ei­
ther two or three identical inputs. 
· The final component of the computer subsystem was the Memory 

Load Unit. The original design did not contain one, but, like the 
Gemini Auxiliary Tape Memory, engineers later added it. Whereas 
the Gemini tape unit was useful in handling memory overloads, desig­
ners included the Skylab tape unit to further increase the reliability of 
the system. It carried a 16K software load and an 8K load that could 
be written into either module of either memory of the A TDCs. If up to 
three modules failed, the mission could continue with reduced 
capabilities with an 8K program loaded into the remaining module. 
This raised the total reliability of the system from a factor of 0.87 to 
0.9717. The tape load would take a maximum of 11 seconds18. 

NASA decided to add the Memory Load Unit in the summer of 
1971, when both IBM and Marshall realized that a Borg-Warner tape 
unit, like the two already used as telemetry recorders, could be 
upgraded for program storage. IBM imposed some manufacturing 
changes on the recorders (primarily piece part screening) to make the 
process more nearly match the care taken in constructing the 
computers 19. 

NASA awarded the contract for the computer system to IBM on 
March 5, 196920. By October, designers froze the choice of proces­
sors and their configuration, a decision heavily influenced by the con­
cern for redundancy and reliability21 . The first computer was 
delivered on December 23, 1969. IBM eventually built 10, the final 2 
being the flight versions, which went to NASA on February 11, 1972, 
over a year before launch. Two of the A TMDCs and an interface unit 
were turned over to IBM for use in testing both hardware and 
software, ensuring that the final verification would be on actual equip­
ment rather than simulators22. 

IBM took great pride in delivering on time without sacrificing 
reliability. In applying Saturn development techniques to the Skylab 
equipment, for examf1e, IBM required all piece parts to exceed ex­
pected stress levels2 , and prepared the ATMDC for thermal con­
ditions, the most dangerous stress to electronic components24. A num­
ber of design problems, including thermal and vibration difficulties, 
analog conversion inaccuracies, and interconnection failures, had to 
be overcome25 . To make up time lost handling these problems, IBM 
sometimes went to a 7-day, three-shift debugging cycle26. 
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Figure 3-2. The concept of Triple Modular Redundancy. 
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Figure 3-3. A block diagram of the Skylab Computer System with the dual 
A TMDCs, tape memory, and common section shown. (From IBM, Skylab Opera­
tion Assessment, ATMDC, 1974) 

Probably due to the care taken in manufacture, the computer sys­
tem had no failures. A planned ground-initiated switch-over from the 
primary to the secondary computer occurred after 630 hours of orbital 
operations. The second computer then ran the remainder of the 271-
day mission27. On the final day, the system did another switch-over 
and used the tape unit for the first time, primarily to prove that it 
would work. A transmission of software from the ground to the com­
puter was also practiced. IBM's reports of the performance of the 
hardware are quite self-congratulatory but, based on the actual record, 
justified. 
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SOFTWARE 

IBM wanted to do a careful job on the software for Skylab. In the 
late 1960s and early 1970s, the company internally pushed the 
development and implementation of software engineering techniques. 
IBM learned many lessons from the creation of the OS/360 operating 
system, and various government-related projects. Two IBM software 
management experts, Harlan Mills and Frederick Brooks, circulated 
these lessons both within IBM and to the computing public28. The 
small size ( 16K) of the Skylab software and correspondingly small 
group of programmers assigned to write it (never more than 75 
people, not all of whom were programmers, and only 5 or 6 for the 
reactivation software), meant that the difficulties in communication 
and configuration control associated with large projects were not as 
much of a factor. Also the IBM programmers were specialists. MIT 
assigned engineers to the programming of the Apollo computer, as­
suming that it was easier to teach an engineer to program than to teach 
a programmer the nuances of the system. This turned out to be a mis­
take, which MIT acknowledged29. Thus, the stage was set for IBM to 
produce a superb real-time program. However, the complexity of the 
control moment laws, the redundancy management needs, and the in­
evitable memory overrun kept the development from being simple. 

Requirements Definition and Design 

IBM and NASA jointly defined the requirements for the Skylab 
software. Marshall Space Flight Center delivered the detailed require­
ments for the control laws, navigation, and momentum management, 
leaving lesser items such as I/O handling to the contractor. IBM and 
NASA made a parallel effort to determine if the equations actually 
worked30. The result was the Program Requirements Document 
(PRD), issued July 1, 19703 1. 

The actual design, the Program Definition Document (PDD), was 
released later and served as the baseline for the software, which meant 
that the design could not be changed without formal review. The 
software resulting from these documents ranged from 9,000 words to 
nearly 20,000 words of memory. Since the memory size of the com­
puter was just over 16,000 words, a "scrub" was necessary, continuing 
the NASA tradition of exceeding the memory size of an already­
procured computer by the time the planners knew the final require­
ments. Managers had not yet learned that software needs should drive 
the hardware choices. Engineers changed the control moment gyro 
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logic to reduce core usage and made other cuts32. Memory became 
the prime consideration in allowing requirements changes33. 

Architecture and Coding 

Skylab gave IBM an opportunity to demonstrate how to do 
software development right. The company carefully separated the 
production process into strictly designed phases. Two different flight 
loads resulted: one full-function program that filled the 16K memory, 
and an 8K version as a backup that needed only one module for 
storage. These two programs needed slightly different architectures, or 
schemes for organizing the execution of functions, which made the 
job tougher. Also increasing complexity was the requirement for 
redundancy management. An advanced development environment 
helped keep the complexity under control. 

Production Phases 

IBM developed the software load for Skylab in four baselined 
phases. Originally, three were planned: Phase I, Phase II, and Final, 
but numerous changes made during Phase I required an intermediate 
stage Phase IA. Crews used the software resulting from Phase IA for 
training in the simulators in Houston34. 

The POD for Phase I was released on November 4, 1970, and 
coding began35. The Phase I program contained most of the major 
components of the eventual flight load, including discrete 1/0 and in­
terrupt processing, command system processing, initialization, redun­
dancy management, attitude reference determination, attitude control, 
momentum desaturation, maneuvering, navigation and timing, A TM 
experiment control, displays, telemetry, and algorithms for utilities36. 
IBM's programming team completed and released the Phase I 
program for verification on June 23, 1971. It consisted of 16,224 
words, filling about 99% of the computer's memory37. 

It was this situation that led to the added phase, which was chiefly 
a memory scrub. Not only was Phase I a fairly extensive program, 
three modules still had to be coded and many changes would likely 
occur in the nearly 20 months remaining before launch38. By the time 
IBM delivered Phase IA on February 9, 1972, it had incorporated 45 
waivers and 105 software change requests (SWCR) made after the 
thirteenth revision of the design39. This meant that nearly 40% of the 
original program was changed. Even with the attention to memory 
size, the new software amounted to 16,111 words, or 98.3% of the 
locations. 
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Phase II represented another extensive revision of the software. 
The baseline for it was Phase IA plus 49 approved change requests. 
By delivery on August 28, 1972, 102 additional changes had been in­
corporated and the design was up to revision 1940. Therefore, 
software engineers modified about 35% of the program. The memory 
usage rose to 99.7%, or 16,338 locations. The final version reduced 
this to 16,329 words. The difference between Phase II and the flight 
release was only 17 additional changes. IBM made the delivery March 
20, 1973, 2 months before the launch. 

Architecture: The 16K Program 

The ATMDC software divided into an executive and applications 
modules. The executive module handled the priority multitasking, in­
terrupt processing, supporting the interval timer and also basic 
timekeeping chores41 . Applications consisted of three major groups: 
time-dependent functions, asynchronous functions, and utilities. 
Time-dependent functions were executed in three cycles, with the pos­
sibility of higher priority jobs interrupting the currently running 
module. The cycles were differentiated by time: There was a "slow 
loop" each second, an "intermediate loop" executing five times each 
second, and the switch-over processor running each half second42. 
Designers grouped appropriate modules in a cycle. An exception to 
the cycle groupings, but nevertheless time dependent, was the 
output-write routine, which was run between intermediate loops in or­
der to take more efficient advantage of the system resources. The 
switch-over process aided in redundancy management, as explained 
below. Asynchronous functions could be called at any time, one of 
which was telemetry, which sent 24 strings of 50 bits per second. The 
other was the command system, which could receive signals from ei­
ther the ground or the Digital Address System (DAS, the crew 
interface) in the workshop. Those signals resulted in interrupts. Utility 
functions included such common algorithms as square root, sine, and 
cosine, and unique functions such as gimbal angle computations and 
quaternion multiplication43. 

Interrupt handling was quite straightforward. Each application 
module had a specific priority ranking. Tasks could be requested by 
several means, such as interrupts, discrete signals, elapsed time, or by 
the direct request of another program. Any current task could be inter­
rupted when a new task was requested. The priority of the new task 
was immediately entered into the priority level control tables. If the 
new task was of a higher priority than the current task, the computer 
did the new one first. When telemetry or the command system re­
quested a task, its priority was entered on the table, just like tasks 
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Figure 3-4. The real-time cycle of the Skylab 16K flight program. (From IBM, 
Skylab Operation Assessment, ATMDC, 1974) 
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called in the other ways44. The standard telemetry signal functioning 
as a Digital Command System (DCS) word consisted of 35 bits. 
Buried in it were an enable bit, an execute bit, and 12 information bits. 
The enable and execute bits caused an interrupt, making it possible for 
the data to be stored45. 

The 16K program had a computation cycle consisting of six 
levels: experiment input, Control Moment Gyro gimbal rates, 
Workshop Computer Interface Unit tests, and the command system 
processor; telemetry output; the switch-over timer (reset each second) 
and 64-bit transfer register (refreshed about once every 17 seconds); 
the intermediate loop (made up of Control Moment Gyro control); the 
slow loop ( containing timing, navigation, maneuver, momentum 
management, display, redundancy, self test, and experiment support 
functions); and the "wait" state (when all functions in a particular 
cycle finished, about 15% of cycle time in the flight release of the 
program, depending on the number and nature of interrupts46. 

The 8K Program 

The 8K program was strongly related to the 16K program in that 
the larger version served as the model for the smaller. Its design, 
released April 3, 1972, developed from the Phase IA version of the 
software. IBM delivered the 8K program on November 14, 1972 after 
10 weeks of verification activity. The functions of the short program 
were largely limited to attitude control and solar experiment activity 
and data handling47. It was 8,001 words in length. IBM reduced the 
number of levels in the computation cycle of the 8K program to four: 
Level I handled command processing and 1/0 to the Gyros, Level II 
did telemetry, Level III consisted of the time-dependent functions 
from both the original intermediate loop and slow loop, and Level IV 
was the wait state48. 

Redundancy Management 

All mission-critical systems in Skylab were redundant. The com­
puter pro?ram contained 1,366 words of redundancy management 
software4 . At less than 10% of the total memory, it was a bargain. 
Managing redundancy with stand-alone hardware and solely mechani­
cal switching would have added much more cost, weight, and com­
plexity to the workshop design, with the loss of a certain amount of 
reliability. 

The redundancy management software consisted of two parts: self 
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tests of the computer system and an error detection program for 
mission-critical hardware not in the computer system. Self tests of the 
computer were quite extensive: Logic tests might involve doing a 
Boolean OR operation on the contents of a register to see if a carry oc­
curred; operation tests required executing EXCHANGE and LOAD 
instructions; and arithmetic tests meant executing an ADD and check­
ing for planned answer50. IBM also designed tests for memory ad­
dressing and 1/051 _ 

The error detection program examined critical signs in several 
systems. If a failure was detected in attitude control hardware such as 
the Control Moment Gyros, rate gyros or acquisition sun sensors, then 
backups or reconfigurations were activated32. During the mission, 
one Control Gyro and several of the rate gyros failed. In fact, a "six­
pack" of replacement rate gyros had to be brought up by the second 
crew. 

Switch-over between the two computers was handled by the error 
detection program or automatically activated by the TMR timer cir­
cuits. If self tests indicated a computer hardware failure or that the 
software was not properly maintaining the workshop's attitude, 
switch-over would then be initiated. The timers were supposed to be 
reset about once each second during the computation cycle, after 
which they then counted down until reset. If two of the three reached 
zero, then switch-over occurred53. Besides automatic switch-over, the 
crew or the ground could initiate it, as actually happened in mid­
mission. So that the secondary computer would be properly activated, 
a 64-bit transfer register was kept loaded with relevant data. This 
register, like the timers, consisted of TMR circuits. Great care was 
taken to ensure that data loaded into the transfer register were uncon­
taminated. A write operation to the register was restricted in length to 
a period of 672 microseconds plus or minus 20%, which was just 
about how long it took to write 64 bits into a redundant circuit. This 
operation could only take place after 1.5 to 2.75 seconds had elapsed 
since the last write, so the computer would not accept transient signals 
as correct data and a new write could not interfere with an earlier 
write54. Besides this "time-out feature," the transfer register could 
only be refreshed after a successful execution of the error detection 
program55. This way, data could not be written to the register from a 
failed computer. 

The redundancy management software was a step toward the 
eventual Shuttle redundancy management scheme. Previously, IBM 
had used TMR hardware to ensure reliability. This system, with its 
watchdog timer, was software based and, in effect, saved space and 
weight. Two A TMDCs were smaller and required less power than a 
single Tiv1R computer of equal reliability. 



78 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE 

The Development Environment and Integration 

The Skylab software development was done in a programming 
environment that took advantage of useful software tools and proper 
integration techniques. Binary code for the computer was in 
hexadecimal (base 16) format, and loaded in that format56. Hand 
coding in hex is rather tedious, so IBM prepared an assembler to 
translate mnemonics into it. They also provided a relocatable loader 
for placing separately coded modules in contiguous memory loca­
tions. Macros, blocks of frequently used code, were kept in common 
libraries. Listings of ~rograms and the original source resided in an 
IBM System 360/75 . This environment was small compared with 
the later Software Production Facility for the Shuttle, but the concept 
of a good tool set, promoted by IBM's Mills and Brooks, was well 
realized. 

Integration of the Skylab software followed a top-down approach: 
The program was highly modular so as to keep individual functions 
separate for easy modification and also simple enough for a single 
programmer to handle. The executive and major subprocesses were 
coded and integrated first; then the remaining modules were added. 
The modules were grouped into three batches, so all the modules in a 
batch were added and tested, then the next batch would be added, and 
so on58. This helped in the integration process. 

Verification 

The software for Skylab was one of the most extensively verified 
systems of its era. Since it was a real-time program, verification was 
more difficult than a corresponding batch program because it is hard 
to replicate test inputs when interrupts can occur at any time; thus, a 
combination of simulators is needed to properly verify a real-time 
program. 

IBM used a number of different simulation configurations in the 
verification process. The AS-II simulator consisted of a System 
360/75 used for analysis of the Skylab while it was in orbit. It could 
evaluate the effects of changes to the flight program. The Sky lab 
Workshop Simulator (SWS) was an all-digital simulation used in 
developing the initial software, as well as verification. It ran at a 3.5/1 
ratio of execution time to real time. The SWS was so effective that it 
once correctly identified a deficiency in the requirements relating to 
the Control Moment Gyro system. The Skylab Hybrid Simulator 
(SHS) included some analog circuits for greater fidelity. One of the 
most effective simulators was a System 360/44 connected to an actual 
A TMDC; the program in the 44 could simulate six degrees of 
freedom59. 
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The verification process was scheduled for the final 10 weeks 
prior to the delivery of any software phase. The process included 
validation of the baseline program to the requirements, coding 
analysis, logic analysis, equation implementation tests, performance 
evaluations, and mission procedure validation. The AS-II did the logic 
analysis and was designed to trace all logic paths through the 
software. The 360/44 and A TMDC system did performance tests since 
it was near real time in operation60. The digital simulators could be 
stopped in order to insert program changes. Tracing was also 
possible61 . Combining simulators and software verification tools con­
tributed to a high level of confidence that was confirmed in actual per­
formance. 

USER INTERFACES 

NASA and IBM designed the computer system to operate 
autonomously. One crewman reported "not much interaction" with the 
system at all62, but the capability was present for significant activity if 
needed63. The crew could enter data and actually make changes in the 
software through a keyboard located in the DAS on the ATM Control 
and Display Console. 

The DAS had only 10 keys and a three-position switch. The keys 
were the digits 0-7 (all entries were in octal), a clear key, and an enter 
key. The switch could select either power bus one or two, or be off. 
Above the DAS was an "Orbit Phase" panel containing a digital 
readout of minutes and seconds to the next orbital benchmark. When 
the first keystroke of a five-digit command was made, the uplink DCS 
commands were inhibited, and the time remaining clock inputs were 
inhibited, so that the clock digits could be used for displaying the 
keystrokes. In that mode, five digits would be lit instead of four. The 
remaining four keystrokes were the data/command input64. The dis­
play of the keystrokes represented an echo. If the sequence was cor­
rect, the astronaut pressed the enter key, or else he would restart the 
input process. Pressing the clear key brought back the digital clock. 
The rather limited nature of this command system indicates that it was 
intended for sparing use. 

Besides the DAS, one other switch on the control panel related to 
the computer system. In the "Attitude Control" area of the panel was a 
three-position switch that controlled which computer was in actual 
use. it could be set for automatic (and usually was), in which case the 
redundancy management software would take care of matters. Alter­
nately, the crew could purposely select either the primary or secon­
dary computer. If either of these was selected, then automatic change­
over was inhibited65. The switch gave the crew protection from 
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Figure 3--5. Dr. Edward Gibson at the Apollo Telescope Mount Control console. 
The interface to the digital computer is at lower left, on the panel immediately 
above the coil of cable. (NASA photo 4-60352) 
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failure of the redundancy management software. Incidentally, the 
switch was not a common three-position toggle switch but, instead, re­
quired the crew to pull out and rotate the post. This protected the crew 
from accidental switching. 

THE REACTIVATION MISSION 

The Skylab Reactivation Mission represents one of the most in­
teresting examples of the autonomy and reliability of manned 
spacecraft computers. The original Skylab mission lasted 272 days 
with long unmanned periods. The reactivation mission, flown entirely 
under computer control, lasted 393 days. Therefore, the bulk of the ac­
tivated life of the space laboratory fully depended on the A TMDCs. 

When it was obvious that the Workshop was going to fall to the 
earth long before a rescue mission could be launched, NASA began 
studying methods of prolonging the orbital life of the spacecraft. Even 
though the atmosphere is very thin at the altitude Skylab was flying, 
the drag produced on the spacecraft was highly related to its attitude 
with respect to its direction of flight (velocity vector). During most of 
the manned mission periods Skylab flew in solar inertial (SI) mode, in 
which the lab was kept perpendicular to the sun to provide maximum 
exposure for the solar collectors. Momentum desaturation maneuvers 
were done on the dark side of the earth to compensate for bias 
momentum buildup resulting from noncyclic torques acting on the 
spacecraft. The SI mode was high drag, so engineers devised two new 
modes, end-on-velocity-vector (EOVV) and torque equilibrium at­
titude (TEA). EOVV pointed the narrow end of the lab in the direction 
of flight, minimizing the aerodynamic drag on the vehicle. TEA could 
control the re-entry, using the gravity gradient and gyroscopic torques 
to counterbalance the aerodynamic torque. Only in this way could the 
Workshop be controlled below 140 nautical miles altitude66. 

Use of the new modes required that they be coded and transmitted 
to the computers in orbit. First it was necessary to discover whether or 
not the computers still functioned. Since the ATMDC used destructive 
readout core memories, there was some concern that the software 
might have been destroyed during restart tests if the refreshment 
hardware had failed. On March 6, 1978, NASA engineers at the Ber­
muda tracking station ordered portions of Skylab to activate. On 
March 11, the ATMDC powered up for 5 minutes to obtain telemetry 
confirmation that it was still functioning. The software resumed the 
program cycle where it had left off 4 years and 30 days earlier. As far 
as the computer was concerned, it had suffered a temporary power 
transient67 ! 

When IBM began to make preparations to modify the software, it 
discovered that there was almost nothing with which to work. The 
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carefully constructed tools used in the original software effort were 
dispersed beyond recall, and, worse yet, the last of the source code for 
the flight programs had been deleted just weeks beforehand. This 
meant that changes to the software would have to be hand coded in 
hexadecimal, as the assembler could not be used-a risky venture in 
terms of ensuring accuracy. Eventually it became necessary to 
repunch the 2,516 cards of a listing of the most recent flight program, 
and IBM hired a subcontractor for the purpose68. 

Engineers could not test this software with the same high fidelity 
as during the original development. They abandoned plans for real 
time simulations because they could not find enough parts of any of 
the original simulators. Interpretive simulation could be performed 
because the tapes for that form of testing had been saved. However, 
the interpretive simulator ran 20 times slower than real time, so less 
testing was possible69_ 

IBM approached the modification using the same principles as in 
the original production. The baseline software for the reactivation was 
Flight Program 80, including change request 3091, which was already 
in the second computer. Software changes for reactivation were 
simply handled as routine change requests. They placed the EOVV 
software in memory previously occupied by experiment calibration 
and other functions useless in the new mission. TEA replaced the 
command and display software 70. 

When the software was ready for flight, NASA uplinked it to a 
reserve area of memory and then downlinked and manually verified it. 
If it passed the verification, engineers gave a command to activate it. 
The reprogramming was generally successful. The four people as­
signed to the software revision maintained IBM's record of quality 
throughout the reactivation mission 71 . 

CONCLUSIONS 

The Skylab program demonstrated that careful management of 
software development, including strict control of changes, extensive 
and preplanned verification, and the use of adequate development 
tools, results in quality software with high reliability. Attention to 
piece part quality in hardware development and the use of redundancy 
resulted in reliable computers. However, it must be stressed that part 
of the success of the software management and the hardware develop­
ment was due to the small size of both. Few programmers were in­
volved in initial program design and writing. This meant that com­
munications between programmers and teams were relatively min­
imal. The fact that IBM produced just 10 computers and really needed 
to ensure the success of just 2 of those helped in focusing the quality 
assurance effort expended on the hardware. 
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What happened after the manned Skylab program demonstrated 
the need for foresight and proper attention to storage of mission­
critical materials until any possibility of their use had gone away. The 
dispersal of the verification hardware is understandable, as it is expen­
sive to maintain. However, some provision should have been made 
for retaining mission-unique capabilities such as actual flight 
hardware. The destruction of the flight tapes and source code for the 
software by unknown parties was inexcusable. A single high-density 
disk pack could have held all relevant material. 

Skylab marked the beginning of redundant computer hardware on 
manned spacecraft. It was also the first project that developed 
software with awareness of proper engineering principles. The Shuttle 
continued both these concepts but on a much larger and more complex 
scale. 
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Computers are used more extensively on the Space Transportation 
System (STS) than on any previous aircraft or spacecraft. In conven­
tional aircraft, mechanical linkages and cables connect pilot conti:ols, 
sµch as the rudder pedals and stick, to hydraulic actuators at the con­
trol smfaces. However, the Shuttle contains a fully digital fly-by-wire 
avionics system. All connections are electrical and are routed through 
computers. To give the spacecraft more autonomy, system manage­
ment functions (fuel levels, life support, etc.), handled on the ground 
during previous flight programs, are monitored on board. Software 
can be adjusted to suit increasingly complex and varied payloads. 
Subsystems, like the main engines,that had no computer assistance be­
fore use them for performance improvement. And, as in Gemini and 
Apollo, guidance and navigation tasks are accomplished on the Shut­
tle with computers. All these functions, especially flight control, are 
critical to mission success; therefore, the computers performing the 
tasks must be made fail-safe by using redundancy. Meeting these re­
quirements has resulted in one of the most complex software systems 
ever produced and a computer network within the spacecraft with 
more powerful hardware than many ground-based computer centers in 
the mid- l 960s. 

The major differences between the Shuttle computer system and 
the systems used on Gemini and Apollo were the choice of an "off­
the-shelf' main computer instead of a custom-made machine and the 
pervasiveness of the system within the spacecraft, since the main 
computers are the heart of any true avionics system. Avionics 
(aviation plus electronics) grew in the 1950s and 1960s as electronic 
devices, especially digital devices, replaced mechanical or analog 
equipment in aircraft. These digital devices were combined into a 
coherent system, rather than isolated in function and location within 
the aircraft. Several modem military airplanes have applied this con­
cept to varying degrees. The FB-111, an Air Force tactical bomber, 
has a complex avionics system that Rockwell International built just 
before it was awarded the Shuttle contract1; the F-15 fighter used an 
~-1 computer in its system. A repackaged version of the F-15's 
computer became the AP-101 used in the shuttle2. However, in no 
aircraft has the Shuttle's avionics system been matched as yet. For in­
stance, its main computers have to interconnect with other computers 
in subsystems, such as the controllers on each main engine, whereas 
most aircraft systems are centered on a single set of machines. 

Since the Shuttle is completely dependent on the success of its 
avionics system, each component must be made failure proof. The 
method chosen to ensure this is absolute redundancy, often to a depth 
of four duplicate devices. Managing this level of redundancy became 
a large problem in itself. 

Another result of the pervasive avionics system is that the fre­
quency and sophistication of the crew interaction with the computers 
exceeds any previous manned space program. A large portion of the 
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Figure 4-1. The first launch of the Shuttle Challenger, one of a fleet of the most 
computationally intensive spacecraft ever built. (NASA photo) 
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software is directed at easing the necessary commanding of the com­
puters. In general, software development for the Shuttle has far out­
stripped any previous NASA ground or flight system in effort and 
cost. The combination of requirements forced the Agency to pioneer 
techniques in digital avionics, redundancy management, computer in­
terconnection, and real-time software development. 

EVOLUTION OF THE SHUTTLE COMPUTER SYSTEM 

Planning for the STS began in the late 1960s, before the first 
moon landing. Yet, the concept of a winged, reusable spacecraft went 
back at least to World War II, when the Germans designed a sub­
orbital bomber that would "skip" along the upper atmosphere, drop­
ping bombs at low points in its flight path. In America in the late 
1940's, Wernher von Braun, who transported Germany's rocket 
knowhow to the U.S. Army, proposed a new design that became 
familiar to millions in the pre-Sputnik era because Walt Disney 
Studios popularized it in a series of animated television programs 
about spaceflight. It consisted of a huge booster with dozens of 
upgraded V-2 engines in the first stage, many more in the second, and 
a single-engine third stage, topped with a Shuttle-like, delta-winged 
manned spacecraft. 

Because the only reusable part of the von Braun rocket was the 
final stage, other designers proposed in its place a one-piece shuttle 
consisting of a very large aerospacecraft that was intended to fly on 
turbojets or ramjets in the atmosphere before shifting to rocket power 
when the atmospheric oxygen ran out. Once it returned from orbit, it 
would fly again under jet power. However, the first version of the 
reusable spacecraft to actually begin development was the Air Force 
Dyna-Soar, which had a lifting body orbital vehicle atop a Titan III 
booster. That project died in the mid-1960s, just before NASA an­
nounced a compromise design of desirable features: the expensive 
components (engines, solid rocket shells, the orbiter) to be reusable; 
the relatively inexpensive component, the external fuel tank, to be ex­
pendable; the orbiter to glide to an unpowered landing3. 

The computer system inside the Shuttle vehicle underwent an 
evolution as well. NASA gained enough experience with on-board 
_computers during the Gemini and Apollo programs to have a fair idea 
of what it wanted in the Shuttle. Drawing on this experience, a group 
of experts on spaceborne computer systems from the Jet Propulsion 
Laboratory, the Draper Laboratory (renamed during its Apollo efforts) 
at MIT, and elsewhere collaborated on an internal NASA publication 
that was a guide to help the designer of embedded spacecraft 
computers4. Individuals contributed additional papers and memos. 
Preliminary design proposals by potential contractors also influenced 
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the eventual computer system. In one, Rockwell International teamed 
up with IBM to submit a system5. Previously, in 1967, the Manned 
Spacecraft Center contracted with IBM for a conceptual study of 
spacebome computers6 and two Huntsville IBM engineers did a 
shuttle-specific study in 19707. Coupled with IBM Gemini and Saturn 
experience, the Rockwell/IBM team was hard to beat for technical ex­
pertise. NASA also sought further advice from Draper, as it was still 
heavily involved in Apollo8. These varied contributions shaped the 
final form of the Shuttle's computer system. 

There were two aspects of the computer design problem: func­
tions and components. Previous manned programs used computers 
only for guidance, navigation, and attitude control, but a number of 
factors in spacecraft design caused the list of computable functions to 
increase. A 1967 study projected that post-Apollo computing needs 
would be shaped by more complex spacecraft equipment, longer 
operational periods, and increased crew sizes9. The study suggested 
three approaches to handling the increased computer requirements. 
The first assigned a small, special-purpose computer to each task, dis­
tributing the processes so that the failure of one computer would not 
threaten other spacecraft systems. The second approach proposed a 
central computer with time-sharing capability, thus extending the con­
cepts implemented in Gemini and Apollo. Finally, the study recom­
mended several processors with a common memory ( a combination of 
the features of the first two ideas). This last concept was so popular 
that by 1971 at least four multiprocessor systems were being 
developed for NASA's use 10. * The greater appeal of the multiproces­
sors, and the production of the Skylab dual computer system, replaced 
the idea of using simplex computer systems that could not be counted 
on to be 100% reliable on long-duration flights. 

On a more detailed level than the overall configuration, experts 
also realized that increased speed and capacity were needed to effec-
tively handle the greater number of assigned tasks 11 . One engineer 
suggested that a processor 50% to 100% more powerful than first in­
dicated be procured12. This would provide insurance against the 
capacity problems encountered in Gemini and Apollo and be cheaper 
than software modifications later. A further requirement for a new 
manned spacecraft computer was that it be capable of floating-point 
arithmetic. Previous computers were fixed-point designs, so scaling 
of the calculations had to be written into the software. Thirty percent 
of the Apollo software development effort was spent on scaling13. 

*These were: EXAM (Experimental Aerospace Multiprocessor) at Johnson 
Space Center, the Advanced Control, Guidance, and Navigation Computer at 
MIT, SUMC (Space Ultrareliable Modular Computer) at Marshall Space Flight 
Center, and PULPP (Parallel Ultra low Power Processor) at the Goddard Space 
Flight Center. 
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One holdover component from the Gemini, Apollo, and Skylab 
computers remained: core memory. Mostly replaced by semiconduc­
tor memories on IC chips, core memory was made up of doughnut­
shaped ferrite rings. In the mid-1960s, core memories were deter­
mined to be the best choice for manned flight for the indefinite future, 
because of their reliability and nonvolatility 14. Over 2,000 core 
memories flew in aircraft or spacecraft by 1978 15. The NASA design 
guide for spacecraft computers recommended use of core memory and 
that it be large enough to hold all programs necessary for a mission16. 
That way, in emergencies, there would be no delay waiting for 
programs to be loaded, as in Gemini 8, and the memory could be 
powered down when unneeded without losing data. 

By 1970, several concepts to be used in the Shuttle were chosen. 
One of these was the use of buses, which Johnson Space Center's 
Robert Gardiner considered for moving large amounts of data 17. In­
stead of having a separate discrete wire for every electronic connec­
tion, components would send messages on a small number of buses on 
a time-shared basis. Such buses were already in use in cabling from 
the launch center to rockets on the launch pads. Buses were also being 
considered for military and commercial aircraft, which were becom­
ing quite dependent on electronics. Additionally, there would be two 
redundant computer systems- though no decision had been made as 
to how the systems would communicate. In the LEM, the PGNCS had 
an active backup in the Abort Guidance System (AGS). This was not 
true redundancy in that the AGS contained a computer with less 
capacity than the AGC, and so could not complete a mission, just 
safely abort one. True redundancy, however, meant that each com­
puter system would be capable of doing all mission functions. 

Redundancy grew out of NASA's desire to be able to complete a 
mission even after a failure. In fact, early studies for the Shuttle predi­
cated the concept of "fail operational/fail operational/fail-safe." One 
failure and the flight can continue, but two failures and the flight must 
be aborted because the next failure reduces the redundancy to three 
machines, the minimum necessary for voting. In the 1970 computer 
arrangement, one special-purpose computer handled flight control 
functions (the fly-by-wire system), and another general-purpose com­
puter performed guidance, navigation, and data management func­
tions. These two computers had twins and the entire group of four was 
duplicated to provide the desired layers of redundancy18. 

More concrete proposals came in 1971. Draper presented a couple 
of plans, one fairly conservative, the other more ambitious. The less 
expensive version used two sets of two AGCs. These models of the 
AGC would contain 32K of erasable memory and magnetic tape mass 
memory instead of the core rope in the original 19. Redundancy would 
be provided by a full backup that would be automatically switched 
into action upon failure of the primary (an idea later abandoned since 
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a software fault could cause a premature switch-over)20. Draper's 
more expensive, but more robust, plan proposed a "layered collabora­
tive computer system," to provide "significant total, modest individual 
computing power"21 . A relatively large multiprocessor was at the 
heart of this system, with local processors at the subsystem level. This 
had the potential effect of insulating the central computer from sub­
system changes. 

Unlike Gemini and Apollo, NASA wanted an off-the-shelf com­
puter system for the Shuttle. If "space rating" a s:tstem involved a 
stricter set of requirements than a military standard 2, starting with a 
military-rated computer made the next step in the certification process 
a lot cheaper. Five systems were actively considered in the early 
1970s: The IBM 4Pi AP-1, the Autonetics D232, the Control Data 
Corporation Alpha, the Raytheon RAC-251, and the Honeywell 
HDC-701 23. The basic profile of the computer system evolved to the 
point where expectations included 32-bit word size for accurate cal­
culations, at least 64K of memory, and microprogramming 
capability24. Microprograms are called firmware and contain control 
programs otherwise realized as hardware. Firmware can be changed to 
match evolving requirements or circumstances. Thus, a computer 
could be adapted to a number of functions by revising its instruction 
set through microcoding. 

Despite the fact that Draper Laboratory favored the Autonetics 
machine, and a NASA engineer estimated that the load on the Shuttle 
computers would "be heavier than the 4Pi [could] support," the IBM 
machine was still chosen25 . The 4Pi AP-1 's advantages lay in its his­
tory and architecture. Already used in aircraft applications, it was also 
related to the 4Pi computers on Skylab, which were members of the 
same architectural family as the IBM System 360 mainframe series. 
Since the instruction set for the AP-1 and 360 were very similar, ex­
perienced 360 programmers would need little retraining. Additionally, 
a number of software development tools existed for the AP-1 on the 
360. As in the other spacecraft computers, no compilers or other 
program development tools would be carried on-board. All flight 
programs were developed and tested in ground-based systems, with 
the binary object code of the programs loaded into the flight com­
puter. Simulators and assemblers for the AP-1 ran on the 360, which 
could be used to produce code for the target machine. In both the 
Gemini and Apollo programs, such tools had to be developed from 
scratch and were expensive. 

One further aspect of the evolution of the Shuttle computer sys­
tems is that previous manned spacecraft computers were programmed 
using assembly language or something close to that level. Assembly 
language is very powerful because use of memory and registers can be 
strictly controlled. But it is expensive to develop assembly language 
programs since doing the original coding and verifying that the 
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programs work properly involve extra care. These programs are nei­
ther as readable nor as easily tested as programs written in FORTRAN 
or other higher-level computer languages. The delays and expense of 
the Apollo software development, along with the realization that the 
Shuttle software would be many times as complex, led NASA to en­
courage development of a language that would be optimal for real­
time computing. Estimates were that the software development cycle 
time for the Shuttle could be reduced 10% to 15% by using such a 
language 26. 

The result was HAL/S, a high-level language that supports vector 
arithmetic and schedules tasks according to programmer-defined 
priority levels.** No other early 1970s language adequately provided 
either capability. Intermetrics, Inc., a Cambridge firm, wrote the com­
piler for HAL. Ex-Draper Lab people who worked on the Apollo 
software formed the company in 196927. 

The proposal to use HAL met vigorous opposition from managers 
used to assembly language systems. Many employed the same ar­
gument mounted agai~st FORTRAN a decade earlier: The compiler 
would produce code significantly slower or with less efficiency than 
hand-coded assemblers. High-level languages are strictly for the con­
venience of programmers. Machines still need their instructions 
delivered at the binary level. Thus, high-level languages use compilers 
that translate the language to the point where the machine receives in­
structions in its own instruction set ( excepting certain recently 
developed LISP machines, in which LISP is the native code). Com­
pilers generally do not produce code as well as humans. They simply 
do it faster and more accurately. However, many engineers felt that 
optimization of flight code was more important than the gains of using 
a high-level language. To forestall possible criticism, Richard Parten, 
the first chief of Johnson's Spacecraft Software Division, ordered a 
series of benchmark tests. Parten had IBM pick its best assembly lan­
guage programmers to code a set of test programs. The same functions 
were also written in HAL and then raced against each other. The run­
ning times were sufficiently close to quiet objectors to high-level lan­
guages on spacecraft (roughly a 10% to 15% performance 
difference )28 . 

**The origins of the name of the language are unclear. Stanley Kubrick's clas­
sic film 2001 : A Space Odyssey ( 1968) was playing in theaters at about the time 
the language was being defined. A chief "character" in the film was a murderous 
computer named HAL. NASA officials deny any relationship between the names. 
John R. Garman of Johnson Space Center, one of the principals in Shuttle on­
board software development, said it may have come from a fellow involved in the 
early development whose name was Hal. Others suggest it is an acronym for 
Higher Avionics Language. For a full description of the language and sample 
programs, see Appendix II. 
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By 1973, work could begin on the software necessary for the 
shuttle, as hardware decisions were complete. Conceptually, the shut­
tle software and hardware came to be known as the Data Processing 
System (DPS). 

THE DPS HARDWARE CONFIGURATION 

The DPS hardware in the shuttle avionics system consists of four 
major components: general-purpose computers, the data bus network, 
the multifunction cathode ray tube display system, and the mass 
memory units. Each is a substantial improvement over similar sys­
tems in any previous spacecraft. Together, they are a model for future 
avionics developments. 

General-Purpose Computers 

NASA uses five general-purpose computers in the Shuttle. Each 
one is an IBM AP-101 central processing unit (CPU) coupled with a 
custom-built input/output processor (IOP). The AP-101 has the same 
type of registers and architecture used in the IBM System 360 and 
throughout the 4Pi series29. IBM announced the 4Pi in 1966, so by the 
early 1970s, when Shuttle procurement was complete, the machine 
had had extensive operational use30. The AP-101 version, which is an 
upgraded AP-1, has since been used in the B-52 and B-lB military 
aircraft and the F-8 digital fly-by-wire experimental aircraft. The 
central processor in each case is the same, but the IOP is adapted to 
the particular application. 

Although one of the reasons for choosing the AP-10 l was its 
familiar instruction set, some modifications were necessary for the 
Shuttle version. Since the execution of instructions is dependent on 
microcode, rather than hardware only, the instruction set could be 
changed somewhat. Microcode is a set of primitives that can be com­
bined to create new logic paths in the hardware. The AP-101 has room 
for up to 2,048 microinstructions, 48 bits in length31 . 
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Box 4-1: IBM AP-101 Central Processor and Memory Hardware 

Shuttle computers make extensive use of standard !Cs. The AP-IO 1 
is built using transistor-transistor logic (TIL) semiconductor circuits as 
the basic building block. The TIL gates are arranged in medium-scale 
integration (MSI) and large-scale integration (LSI) configurations32. The 
circuits are on boards that can be interchanged as units . 

The AP-101 uses a variety of word sizes . Instructions can be either 
16 or 32 bits in length. Fixed-point arithmetic, done using fractional 
numbers stored in two's complement form, also uses 16- and 32-bit 
lengths. Floating-point arithmetic is done with 32-, 40- and 64-bit 
words, although the latter are limited to addition and subtraction33 . In­
structions using floating-point take longer to execute than fixed-point 
arithmetic, and adding is still faster than multiplying; but average speed 
for the machine is 480,000 instructions per second, compared with 7,000 
instructions per second in the Gemini computer34. 

The CPU registers are in three groups. Two sets of eight 32-bit 
registers are available for fixed-point arithmetic . One set of eight 32-bit 
registers is for floating-point operations35 . Semiconductor memories are 
used in the registers instead of discrete components. As a result, the 
registers are faster than those used on Gemini and Apollo and, since they 
are available in large sets, can be used to store intermediate results of 
calculations without having to access core memory. Thus, processing is 
accelerated and achieves the performance noted above36. 

A program status word (PSW), 64 bits in length, is used to help 
control interrupts. The PSW contains information such as the next in­
struction address, current condition code, and any system masks for 
interrupts37. It has to be updated every instruction to stay current38 . 

Since the AP-101 allows 61 different interrupt conditions divided into 20 
priority levels, it is necessary to have an accurate indication of where a 
program left off when interrupted39. At any given time, several programs 
are likely to be in a suspended state. 

The processor has more than one level of addressing. The common 
16-bit address can only directly address 64K words , which was the 
original memory size of the AP-101 . The addressing is extended by 
replacing the highest order bit with 4 bits from the program status word 
that indicate which sector of memory to access40 . This is similar to the 
scheme used in the AGC when its memory had to be expanded. This 
configuration allows 131 ,072 full words (32-bit words) to be addressed. 
The architecture permits addressing up to 262,144 full words, so memory 
can be expanded without affecting the processor's design41 . 
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Box -1-1 (Continued) 

Due to packaging considerations, the core memory is located partly 
in the central processor and partly in the IOP (they are boxed separately). 
However, it is still considered as a single unit for addressing and access. 
The entire memory is shared, not just the portion located in the in­
dividual boxes. Originally, 40K of core were in the CPU and 24K in the 
IOP. The memory is organized into modules with 18-bit half words. 
These contain 16 bits of data, a parity bit, and a storage protect bit to 
prevent unintentional alteration of the data42. The original memory 
modules contained 8K half words, so 6 were needed in the !OP and 10 in 
the CPU to store 64K full words. Later memory expansion consisted of 
replacing the CPU memory modules with double-density modules, in 
which twice the cores are in the same size container as a single-density 
module43 . So by the first flight, the Shuttle computer memories were 
104K words or 106,496 full words of 32 bits. The memory access time is 
400 nanoseconds, quite fast for core. 

The eventual Shuttle instruction set contained 154 instructions 
defined within that 2K memory. However, the expected advantages of 
the flexibility of microcoding, which influenced the decision to select 
the AP- IO 1, were lessened by the fact that at least six of the new in-
structions either did not work properly or performed insufficiently44. 
One NASA manager said that the microcoding was bungled by "the 
ones and zeroes artists" (referring to the binary numbered nature of 
microprograms) who apparently tried to do things the tricky way45 . 

NASA tried to correct its tendency to underestimate memory size, 
but was disappointed again on the Shuttle program. One requirement 
for memory was that it be large enough to contain all the programs 
necessary for a mission. Therefore, memory estimates became a 
regular part of preliminary design studies. Most estimates in the 1969 
to 1971 period ranged around 28K words46. Rockwell International 
settled on 32K in its bid and won the contract partially because of that 
estimate47. NASA, trying to save itself from later difficulties, bought 
64K of memory for each computer, hoping that doubling the estimate 
would be enough ( despite memory increases in previous programs of 
several hundred percent)48. Unfortunately, the software grew to over 
700K, requiring not only more computer memory, but the addition of 
mass memory units to hold programs that would not fit into the ex­
tended core. Parten said after this, "I don't know how you ensure 
proper memory size ahead of time, unless you're incredibly lucky"49. 

From the standpoint of a spacecraft designer worried about power 
requirements, an interesting feature of the AP-101 memory is that 
only the module currently being accessed is at full power. If a 
memory module is used, it remains at full power for 20 microseconds. 
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If no further accesses are made in that interval, it automatically goes 
to medium power. If the entire computer is in standby mode, it goes to 
low power. An estimated 136 watts are saved by doing this 
switching50. 

The memory can be altered in flight. The ground can uplink 
bursts of 64 16-bit halfwords at a time, which can replace data already 
in the specified addresses. The crew can also change up to six 32-bit 
words simultaneously by using their displays and keyboards. 
However, those changes must be hand keyed in hexadecimal. 

The Shuttle's AP-101 contains one of the most extensive sets of 
self-testing hardware and software ever used in a flight computer. Its 
self-test hardware resides in the BITE, or built-in test equipment. 
When this is coupled with the self-test software, 95% of hardware 
failures can be detected by the machine itself51 , whereas the other 5% 
and potential software failures require the use of redundancy. 

As evidenced by the component description given here, the IBM 
AP-101 is a fairly common computer architecture, easily understand­
able and programmable by anyone familiar with IBM's large commer­
cial mainframes. The IOPS, bus system, and displays contain the 
characteristics that make the Shuttle DPS unique. 

The IOPs and the Bus System 

It is difficult to discuss the Shuttle's IOPs without also talking 
about the data bus network, because the former are designed to 
manage the latter. All subsystems on the spacecraft are connected 
redundantly to at least a pair of data buses. There are 24 of these 
buses, and the subsystems share them, using multiplexers to control 
the sharing. Eight of the 24 are "flight-critical data buses" that help fly 
the vehicle; 5 are used for intercomputer communication among the 
five general-purpose computers; 4 connect to the four display units; 2 
run to the twin mass memory units; 2 more are "launch data buses," 
and connect to the Launch Processing System; 2 are used for 
payloads, and the final pair for instrumentation52. Each bus is in­
dividually controlled by a microprogrammed processor, essentially a 
small special-purpose computer, called a bus control element (BCE). 
The BCE can access memory and execute independent programs53. A 
twenty-fifth computer, the Master Sequence Controller, is used to 
control I/O flow on the 24 BCEs54. Thus, each IOP contains 25 dedi­
cated computers. In addition, the IOP itself is basically a programm­
able processor with multiple functions. It shares main memory with 
the central processor. If a program affecting the IOP is initiated by the 
central processor, a direct memory access channel is opened to speed 
up reading core. That, however, creates contention for the memory 
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with the central processor and may have the effect of actually slowing 
down the system as a whole55. 

One reason an IOP is needed is that the Shuttle computers trans­
fer data internally in parallel along 18-bit buses. This means that one 
half word and its associated parity bit are moved from memory to the 
operation registers and back again all at once. However, data are 
transferred from orbiter subsystems to the IOP in serial form, one bit 
at a time. Of course, the serial data are at a high rate ( 1 megahertz), so 
transfer speed is not a concern. The conversion of serial data to paral­
lel data is the function of the Multiplexer Interface Adapters in the 
IOP56. The Shuttle DPS also has 16 multiplexer/demultiplexers that 
convert parallel data to serial for output to the buses57. 

Input and output to each computer is ultimately controlled in two 
modes: command and listen. In command mode (CM), signals sent 
from the host processor to subsystems connected to a bus controlled 
by a commanding BCE will actually effect the commands. In listen 
mode, the subsystems will ignore the command signals. In both cases 
input to the computer from any bus is listened to, but the computer's 
orders are obeyed only by the systems on the buses for which it is the 
commander. This moding capability means that a single computer can 
be assigned a set of buses different from another computer, thus 
spreading out the responsibilities and protecting against failure. It also 
means that each computer receives all input data all the time, so that it 
can take over from a failed computer immediately. This is especially 
important to the backup flight system. The set of controlled buses is 
called a "string." A typical string for a single computer might be a pair 
of flight critical buses, one intercomputer bus (always), a display bus, 
and a bus from the mass memory unit (MMU), payload, launch, and 
instrumentation group. The strings can be reconfigured by the crew in 
flight, which is done periodically as missions proceed through various 
phases. 

Display Electronics 

The Shuttle's display system, built by the Norden Division of 
United Technologies Corporation, is the most complex ever used on a 
flying machine and contains computers of its own. For the first time in 
a spacecraft, cathode ray tubes (CRTs) are used as the primary display 
medium, although a wealth of warning lights that supplement the dis­
plays still dot the cockpit. The CRTs hold 26 lines of 51 characters on 
a 5- by 7-inch screen. That screen size is fairly common on portable 
computers. However, the number of characters per line is smaller (51 
vs. the more common 80) and the number of lines larger (26 vs. the 
usual 24). The net effect is that the individual characters appear 
slightly larger on the Shuttle's screens, necessary because although 
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the user of a portable computer is usually about 16 inches from the 
screen, on the Shuttle the distance between user and screen is well 
over 2 feet. Information on the Shuttle's screens appears green on 
black, and characters can be selectively highlighted. Three of these 
screens are mounted in the forward cockpit between the pilots. A 
fourth is aft at the mission specialist station. Keyboards, built by 
Ebonex, are used for crew input. Two are between the pilots, with a 
third adjacent to the mission specialist's CRT. 

Displays placed on the CRTs are controlled by a special-purpose 
computer with a 16-bit word size and 8K of memory. This computer 
provides display control and can create circles, lines, intensity 
changes (highlighting), and flashing messages. The display software is 
stored on the MMUs until the computer is powered up. The CRT and 
its associated processor is referred to as the display electronics unit 
(DEU)58. 

Mass Memory Unit: A Late Addition 

The final component of the Shuttle 's DPS hardware is the mass 
memory unit (MMU). Originally acquired only to provide initial load­
ing of the orbiter's computers, the MMV, built by Odetics, Inc., has 
been used extensively to help resolve the memory growth problem. 
Two of these units are installed on the orbiter, each capable of con­
taining 8 million 16-bit words, enough for three times the Shuttle 
software. The tape can be addressed in 512 word blocks, and the crew 
can alter its contents in flight using a special display59. The MMV 
stores all the Primary Avionics Software System and all the software 
for the Backup Flight System, the DEUs, and the engine controllers. 
Thus, the Shuttle continues the same computer/mass memory con­
figuration as the Gemini spacecraft. 

This complex network of computer hardware on the orbiter has 
many possible points of failure. Also, the 700K of flight software may 
contain undiscovered bugs that could emerge at critical mission times, 
and self-testing might not be sufficient to protect the spacecraft from 
such failures. Other schemes for preventing a fatal failure need to be 
developed if the Shuttle is to fly with the confidence of its crew, pas­
sengers, and potential paying customers. Exactly what those schemes 
would be has occupied many researchers for several years. 
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COMPUTER SYNCHRONIZATION 

AND REDUNDANCY MANAGEMENT 

One key goal shaping the design of the Shuttle was "autonomy." 
Multiple missions might be in space at the same time, and large crews, 
many with nonpilot passengers, were to travel in space in craft much 
more self-sufficient than ever before. These circumstances, the desire 
for swift turnaround time between launches, and the need to sustain 
mission success through several levels of component failure meant 
that the Shuttle had to incorporate a large measure of fault tolerance in 
its design. As a result, NASA could do what would have been un­
thinkable 20 years earlier: put men on the Shuttle's first test flight. 
The key factor in enabling NASA to take such a risk was the redun­
dancy built into the orbiter60. 

Fault tolerance on the Shuttle is achieved through a combination 
of redundancy and backup. Its five general-purpose computers have 
reliability through redundancy, rather than the expensive quality con­
trol employed in the Apollo program61 . Four of the computers, each 
loaded with identical software, operate in what is termed the 
"redundant set" during critical mission phases such as ascent and de­
scent. The fifth, since it only contains software to accomplish a "no 
frills" ascent and descent, is a backup. The four actuators that drive 
the hydraulics at each of the aerodynamic surf aces are also redundant, 
as are the pairs of computers that control each of the three main en­
gmes. 

Management of redundancy raised several difficult questions. 
How are failures detected and certified? Should the system be static or 
dynamic? Should the computers run separately without communica­
tion and be used to replace the primary computer one by one as 
failures occur? Could the computers, if running together, stay in step? 
Should redundancy management of the actuators be at the computer or 
subsystem level? Fortunately, NASA experience on other aircraft and 
spacecraft programs could provide data for making the final decisions. 

Redundant Precursors 

Several systems that incorporated redundancy preceded the Shut­
tle. The computer used in the Saturn booster instrument unit that con­
tained the rocket's guidance system used triple modular redundant 
(TMR) circuits, which means that there was one computer with redun­
dant components. Disadvantages to using such circuits in larger com-
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puters are that they are expensive to produce, and an event such as the 
explosion on Apollo 13 could damage enough of the computer that it 
ceases to function. By spreading redundancy among several simplex 
circuit computers scattered in various parts of the spacecraft, the ef­
fects of such catastrophic failures are minimized62. 

Skylab's two computers each could perform all the functions re­
quired on its mission. If one failed, the other would automatically take 
over, but both computers were not up and running simultaneously. 
The computer taking over would have to find out where the other had 
left off by using the contents of the 64-bit transfer register located in 
the common section built with TMR circuits. The Skylab computers 
were able to have such a relatively leisurely switch-over system be­
cause they were not responsible for navigation or high-frequency 
flight control functions. If there were a failure, it would be possible 
for the Skylab to drift in its attitude without serious danger; the Shut­
tle would have no such margin of safety. 

Figure 4-3. The F-8 aircraft that proved the redundant set configuration planned 
for the Shuttle would work. (NASA photo ECN-6988) 

The need for the redundant computers on the Shuttle to process 
information simultaneously, while still staying closely synchronized 
for rapid switch-over, seriously challenged the designers of the sys­
tem. Such a close synchronization between computers had not been 
done before, and its feasibility would have to be proven before NASA 
could make a full commitment to a particular design. Most of the 



102 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE 

necessary confidence resulted from a digital fly-by-wire testing 
program NASA started at the Dryden Flight Research Center in the 
early 1970s63. The first computer used in the F-8 "Crusader" aircraft 
chosen for the program was a surplus AGC in simplex, with an 
electronic analog backup. Later, the project engineers wanted a duplex 
system using a more advanced computer. Johnson Space Center 
avionics people noted the similarities between the digital fly-by-wire 
program and the Shuttle. Dr. Kenneth Cox of JSC suggested that 
Dryden go with a triplex system to move beyond simple one-for-one 
redundancy. By coordinating procurement, NASA outfitted both the 
F-8 aircraft and the Shuttle with AP-101 processors. Draper 
Laboratory produced software for the F-8, and its flight tests proved 
the feasibility of computers operating in synchronization, as it suf­
fered several single point computer failures but successfully flew on 
without loss of control. This flight program did much to convince 
NASA of the viability of the synchronization and redundancy 
management schemes developed for the Shuttle. 

How Many Computers'? 

One key question in redundancy planning is how many computers 
are required to achieve the level of safety desired. Using the concept 
of fail operational/fail operational/fail-safe, five computers are 
needed. If one fails, normal operations are still maintained. Two 
failures result in a fail-safe situation, since the three remaining prevent 
the feared standoff possible in dual computer systems ( one is wrong, 
but which?). Due to cost considerations of both equipment and time, 
NASA decided to lower the requirement to fail operational/fail-safe, 
which allowed the number of computers to be reduced to four. Since 
five were already procured and designed into the system, the fifth 
computer evolved into a backup system, providing reduced but ade­
quate functions for both ascent and descent in a single memory load. 
NASA's decision to use four computers has a basis in reliability 
projections done for fly-by-wire aircraft. Triplex computer system 
failures were expected to cause loss of aircraft three times in a million 
flights, whereas quadruple computer system failures would cause loss 
of aircraft only four times in a thousand million flights64. 

At first the backup flight system computer was not considered to 
be a permanent fixture. When safety level requirements were lowered, 
some IBM and NASA people expected the fifth computer to be 
removed after the Approach and Landing Test phase of the Shuttle 
program and certainly after the flight test phase (STS- l through 4 )65 . 
However, the utility of the backup system as insurance against a 
generic software error in the primary system outweighed considera­
tions of the savings in weight, power, and complexity to be made by 
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eliminating it66. In fact, as the first Shuttle flights approached, Arnold 
Aldrich, Director of the Shuttle Office at Johnson Space Center, cir­
culated a memo arguing for a sixth computer to be carried along as a 
spare67 ! He pointed out that since 90% of avionics component 
failures were expected to be computer failures and that since a min­
imum of three computers and the backup should exist for a nominal 
re-entry, aborts would then have to take place after one failure. By 
carrying a spare computer preloaded with the entry software, the 
primary system could be brought back to full strength. The sixth com­
puter was indeed carried on the first few flights. In contrast with this 
"suspenders and belt" approach, John R. Garman of the Johnson 
Space Center Spacecraft Software Division said that "we probably did 
more damage to the system as a whole by putting in the backup"68. 
He felt that the institution of the backup took much of the pressure off 
the developers of the primary system. No longer was their software 
solely responsible for survival of the crew. Also, integrating the 
priority-interrupt-driven operating system of the primary computers 
with the time-slice sys_tem of the backup caused compromises to be 
made in the primary. 

Synchronization 

Computer synchronization proved to be the most difficult task in 
producing the Shuttle's avionics. Synchronizing redundant computers 
and comparing their current states is the best way to decide if a failure 
has occurred. There are two types of synchronization used by the 
Shuttle's computers in determining which of them has failed: one for 
the redundant set of computers established for ascent to orbit and de­
scent from orbit, and one for synchronizing a common set while in or­
bit. It took several years in the early 1970s to discover a way to ac­
complish these two synchronizations . 

. The essence of Shuttle redundancy is that each computer in the 
redundant set could do all the functions necessary at a particular mis­
sion phase. For true redundancy to take place, all computers must lis­
ten to all traffic on all buses, even though they might be commanding 
just a few. That way they know about all the data generated in the cur­
rent phase. They must also be processing that data at the same time 
the other computers do. If there is a failure, then the failed computer 
could drop out of the set without any functional degradation whatever. 
At the start, the Shuttle's designers thought it would be possible to run 
the redundant computers separately and then just compare answers 
periodically to make sure that the data and calculations matched69. As 
it turned out, small differences in the oscillators that acted as clocks 
within the computers caused the computers to get out of step fairly 
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quickly. The Spacecraft Software Division formed a committee, 
headed by Garman, made up of representatives from Johnson Space 
Center, Rockwell lp.temational, Draper Laboratory and IBM Corpora­
tion, to study the problem caused by oscillator drift70. Draper's people 
made the suggestion that the computers be synchronized at input and 
output points 71 . This concept was later expanded to also place 
synchronization points at process changes, when the system makes a 
transition from one software module to another. The decision to put in 
the synchronization points II settled everyone's mind II on the issue 72. 

Intercomputer communication is what makes the Shuttle's 
avionics system uniquely advanced over other forms of parallel com­
puting. The software required for redundancy management uses just 
3K of memory and around 5 % or 6% of each central processor's 
resources, which is a good trade for the results obtained78. An increas­
ing need for redundancy and fault tolerance in non-avionics systems 
such as banks, using automatic tellers and nationwide computer net­
works, proves the usefulness of this system. But this type of 
synchronization is so little known or understood by people outside the 
Shuttle program that carryover applications will be delayed. 

One reason why the redundancy management software was able 
to be kept to a minimum is that NASA decided to move voting to the 
actuators, rather than to do it before commands are sent on buses. 
Each actuator is quadruple redundant. If a single computer fails, it 
continues to send commands to an actuator until the crew takes it out 
of the redundant set. Since the Shuttle's other three computers are 
sending apparently correct commands to their actuators, the failed 
computer's commands are physically out-voted79. Theoretically, the 
only serious possibility is that three computers would fail simul­
taneously, thus negating the effects of the voting. If that occurs, and if 
the proper warnings are given, the crew can then engage the backup 
system simply by pressing a button located on each of the forward 
rotational hand controllers. 

Does the redundant set synchronization work? As described, the 
F-8 version, with redundancy management identical to the Shuttle, 
survived several in-flight computer failures without mishap. On the 
first Shuttle Approach and Landing Test flight, a computer failed just 
as the Enterprise was released from the Boeing 747 carrier; yet the 
landing was still successful. That incident did a lot to convince the 
astronaut pilots of the viability of the concept. 

Synchronization and redundancy together were the methods 
chosen to ensure the reliability of the Shuttle avionics hardware. With 
the key hardware problems solved, NASA turned to the task of 
specifying the most complex flight software ever conceived. 
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Box 4-2: Redundant Set Synchronization: Key to Reliability 

Synchronization of the redundant set works like this: When the 
software accepts an input, delivers an output, or branches to a new 
process, it sends a 3-bit discrete signal on the intercomputer communica­
tion (ICC) buses, then waits up to 4 milliseconds for similar discretes 
from the other computers to arrive. The discretes are coded for certain 
messages. For example, 010 means an I/O is complete without error, but 
011 means that an I/O is complete with error 73 . This allows more infor­
mation other than just "here I am" to be sent. If another computer either 
sends the wrong synchronization code, or is late the computer detecting 
either of these conditions concludes that the delinquent computer has 
failed, and refuses from then on to listen to it or acknowledge its 
presence. Under normal circumstances, all three good computers should 
have detected the single computer's error. The bad computer is an­
nounced to the crew with warning lights, audio signals, and CRT mes­
sages. The crew must purposely kill the power to the failed computer, as 
there is no provision for automatic powerdown. This prevents a generic 
software failure causing all the computers to be automatically shut off. 

This form of synchronization creates a tightly coupled group of 
computers constantly certifying that they are at the same place in the 
software. To certify that they are achieving the same solutions, a 
"sumword" is used. While computers are in a redundant set, a sumword 
is exchanged 6.25 times every second on the ICC buses74. A sumword 
typically consists of a 64 bits of data, usually the least significant bits of 
the last outputs to the solid rocket boosters, orbital maneuvering engines, 
main engines, body flap, speed brake, rudder, elevons, throttle, the sys­
tem discretes, and the reaction control system 75 . If there are three 
straight miscomparisons of a sumword, the detecting computers declare 
the computer involved to be failed76 . 

Both the 3-bit synchronization code and sumword comparison are 
characteristics of the redundant set operations. During noncritical mis­
sion phases such as on-orbit, the computers are reconfigured. Two might 
be left in the redundant set to handle guidance and navigation functions, 
such as maintaining the state vector. A third would run the systems 
management software that controls life support, power, and the payload. 
The fourth would be loaded with the descent software and powered 
down, or "freeze dried," to be instantly ready to descend in an emergency 
and to protect against a failure of the two MMUs. The fifth contains the 
backup flight system. This configuration of computers is not tightly 
coupled, as in the redundant set. All active computers, however, do con­
tinue the 6.25/second exchange of sumwords, called the common set 
synchronization 77 . 
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DEVELOPING SOFTWARE FOR THE SPACE SHUTTLE 

During 1973 and 197 4 the first requirements began to be 
specified for what has become one of the most interesting software 
systems ever designed. It was obvious from the very beginning that 
developing the Shuttle's software would be a complicated job. Even 
though NASA engineers estimated the size of the flight software to be 
smaller than that on Apollo, the ubiquitous functions of the Shuttle 
computers meant that no one group of engineers and no one company 
could do the software on its own. This increased the size of the task 
because of the communication necessary between the working groups. 
It also increased the complexity of a spacecraft already made complex 
by flight requirements and redundancy. Besides these realities, no one 
could foresee the final form that the software for this pioneering 
vehicle would take, even after years of development work had 
elapsed, since there continued to be both minor and major changes. 
NASA and its contractors made over 2,000 requirements changes be-
tween 1975 and the first flight in 198180. As a result, about $200 mil­
lion was spent on software, as opposed to an initial estimate of $20 
million. Even so, NASA lessened the difficulties by making several 
early decisions that were crucial for the program's success. NASA 
separated the software contract from the hardware contract, closely 
managed the contractors and their methods, chose a high-level lan­
guage, and maintained conceptual integrity. 

NASA awarded IBM Corporation the first independent Shuttle 
software contract on March 10, 1973. IBM and Rockwell Inter­
national had worked together during the period of competition for the 
orbiter contract81 . Rockwell bid on the entire aerospacecraft, intend­
ing to subcontract the computer hardware and software to IBM. But to 
Rockwell's dismay, NASA decided to separate the software contract 
from the orbiter contract. As a result, Rockwell still subcontracted 
with IBM for the computers, but IBM had a separate software contract 
monitored closely by the Spacecraft Software Division of the Johnson 
Space Center. There are several reasons why this division of labor oc­
curred. Since software does not weigh anything in and of itself, it is 
used to overcome hardware problems that would require extra systems 
and components (such as a mechanical control system)82. Thus 
software is in many ways the most critical component of the Shuttle, 
as it ties the other components together. Its importance to the overall 
program alone justified a separate contract, since it made the contrac­
tor directly accountable to NASA. Moreover, during the operations 
phase, software underwent the most changes, the hardware being es­
sentially fixed83. As time went on, Rockwell's responsibilities as 
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prime hardware contractor were phased out, and the shuttles were 
turned over to an operations group. In late 1983, Lockheed Corpora­
tion, not Rockwell, won the competition for the operations contract. 
By keeping the software contract separate, NASA could develop the 
code on a continuing basis. There is a considerable difference between 
changing maintenance mechanics on an existing hardware system and 
changing software companies on a not-yet-perfect system because to 
date the relationships between components in software are much har­
der to define than those in hardware. Personnel experienced with a 
specific software system are the best people to maintain it. Lastly, 
Christopher Kraft of Johnson Space Center and George Low of NASA 
Headquarters, both highly influential in the manned spacecraft 
program during the early 1970's, felt that Johnson had the software 
management expertise to handle the contract directly84. 

One of the lessons learned from monitoring Draper Laboratory in 
the Apollo era was that by having the software development at a 
remote site (like Cambridge), the synergism of informally exchanged 
ideas is lost; sometimes it took 3 to 4 weeks for new concepts to filter 
over85. IBM had a building and several hundred personnel near 
Johnson because of its Mission Control Center contracts. When IBM 
won the Shuttle contract, it simply increased its local force. 

The closeness of IBM to Johnson Space Center also facilitated the 
ability of NASA to manage the project. The first chief of the Shuttle's 
software, Richard Parten, observed that the experience of NASA 
managers made a significant contribution to the success of the pro­
gramming effort86. Although IBM was a giant in the data processing 
industry, a pioneer in real-time systems, and capable of putting very 
bright people on a project, the company had little direct experience 
with avionics software. As a consequence, Rockwell had to supply a 
lot of information relating to flight control. Conversely, even though 
Rockwell projects used computers, software development on the scale 
needed for the Shuttle was outside its experience. NASA Shuttle 
managers provided the initial requirements for the software and 
facilitated the exchange of information between the principal contrac­
tors. This situation was similar to that during the 1960s when NASA 
had the best rendezvous calculations people in the world and had to 
contribute that expertise to IBM during the Gemini software develop­
ment. Furthermore, the lessons of Apollo inspired the NASA 
managers to push IBM for quality at every point87. 

The choice of a high-level language for doing the majority of the 
coding was important because, as Parten noted, with all the changes, 
"we'd still be tryinf to get the thing off the ground if we'd used as­
sembly language"8 . Programs written in high-level languages are far 
easier to modify. Most of the operating system software, which is 
rarely changed, is in assembler, but all applications software and some 
of the interfaces and redundancy management code is in HAL/S89. 
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Although the decision to program in a high-level language meant that 
a large amount of support software and development tools had to be 
written, the high-level language nonetheless proved advantageous, 
especia_lly since it has specific statements created for real-time pro­
grammmg. 

Defining the Shuttle Software 

In the end, the success of the Shuttle's software development was 
due to the conceptual integrity established by using rigorously main­
tained requirements documents. The requirements phase is the begin­
ning of the software life cycle, when the actual functions, goals, and 
user interfaces of the eventual software are determined in full detail. If 
a team of a thousand workers was asked to set software requirements, 
chaos would resutt90. On the other hand, if few do the requirements 
but many can alter them later, then chaos would reign again. The 
strategy of using a few minds to create the software architecture and 
interfaces and then ensuring that their ideas and theirs alone are im­
plemented, is termed "maintaining conceptual integrity," which is well 
explained in Frederick C. Brooks' The Mythical Man-Month9 1. As for 
other possible solutions, Parten says, "the only right answer is the one 
you pick and make to work"92. 

Shuttle requirements documents were arranged in three Levels: 
A, B, and C, the first two written by Johnson Space Center engineers. 
John R. Garman prepared the Level A document, which is comprised 
of a comprehensive description of the operating system, applications 
programs, keyboards, displays, and other components of the software 
system and its interfaces. William Sullivan wrote the guidance, 
navigation and control requirements, and John Aaron, the system 
management and payload specifications of Level B. They were as-
sisted by James Broadfoot and Robert Emun93. Level B requirements 
are different in that they are more detailed in terms of what functions 
are executed when and what parameters are needed94. The Level Bs 
also define what information is to be kept in COMPOOLS, which are 
HAL/S structures for maintaining common data accessed by different 
tasks95. The Level C requirements were more of a design document, 
forming a set with Level B requirements, since each end item at Level 
C must be traceable to a Level B requirement96. Rockwell Inter­
national was responsible for the development of the Level C require­
ments as, technically, this is where the contractors take over from the 
customer, NASA, in developing the software. 

Early in the program, however, Draper Laboratory had significant 
influence on the software and hardware systems for the Shuttle. 
Draper was retained as a consultant by NASA and contributed two 
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key items to the software development process. The first was a docu­
ment that "taught" NASA and other contractors how to write require­
ments for software, how to develop test flans, and how to use func­
tional flow diagrams, among other tools9 . It seems ironic that Draper 
was instructing NASA and IBM on such things considering its dif­
ficulties in the mid- l 960s with the development of the Apollo flight 
software. It was likely those difficult experiences that helped motivate 
the MIT engineers to seriously study software techniques and to be­
come, within a very short time, one of the leading centers of software 
engineering theory. The Draper tutorial included the concept of highly 
modular software, software that could be "plugged into" the main cir­
cuits of the Shuttle. This concept, an application of the idea of inter­
changeable parts to software, is used in many software systems today, 
one example being the UNIX*** operating system developed at Bell 
Laboratories in the 1970s, under which single function software tools 
can be combined to perform a large variety of functions. 

Draper's second contribution was the actual writing of some early 
Level C requirements as a model98. This version of the Level C 
documents contained the same components as in the later versions 
delivered by Rockwell to IBM for coding. Rockwell's editions, 
however, were much more detailed and complete, reflecting their 
practical, rather than theoretical, purpose and have been an irritation 
for IBM. IBM and NASA managers suspect that Rockwell, miffed 
when the software contract was taken away from them, may have 
delivered incredibly precise and detailed specifications to the software 
contractor. These include descriptions of flight events for each major 
portion of the software, a structure chart of tasks to be done by the 
software during that major segment, a functional data flowchart, and, 
for each module, its name, calculations, and operations to be per­
formed, and input and output lists of parameters, the latter already 
named and accompanied by a short definition, source, precision, and 
what units each are in. This is why one NASA manager said that "you 
can't see the forest for the trees" in Level C, oriented as it is to the 
production of individual modules99. One IBM engineer claimed that 
Rockwell went "way too far" in the Level C documents, that they told 
IBM too much about how to do things rather than just what to do100. 
He further claimed that the early portion of the Shuttle development 
was "underengineered" and that Rockwell and Draper included some 
requirements that were not passed on by NASA. Parten, though, said 
that all requirements documents were subject to regular review by 
joint teams from NASA and Rockwell 101. 

The impression one gains from documents and interviews is that 
both Rockwell and IBM fell victim to the "not invented here" 

***UNIX is a trademark of AT&T. 
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syndrome: If we didn't do it, it wasn't done right. For example, Rock­
well delivered the ascent requirements, and IBM coded them to the 
letter, thereby exceeding the available memory by two and a third 
times and demonstrating that the requirements for ascent were exces­
sive. Rockwell, in return, argued for 2 years about the nature of the 
operating system, calling for a strict time-sliced system, which al­
locates predefined periods of time for the execution of each task and 
then suspends tasks unfinished in that time period and moves on to the 
next one. The system thus cycles through all scheduled tasks in a 
fixed period of time, working on each in tum. Rockwell's original 
proposal was for a 40-millisecond cycle with synchronization points 
at the end of each 102. IBM, at NASA's urging, countered with a 
priority-interrupt-driven system similar to the one on Apollo. Rock­
well, experienced with time-slice systems, fought this from 1973 to 
1975, convinced it would never work103_ 

The requirements specifications for the Shuttle eventually con­
tained in their three levels what is in both the specification and design 
stage of the software life cycle. In this sense, they represent a fairly 
complete picture of the software at an early date. This level of detail at 
least permitted NASA and its contractors to have a starting point in 
the development process. IBM constantly points to the number of 
changes and alterations as a continuing problem, partially ameliorated 
by implementing the most mature requirements first 104. Without the 
attempt to provide detail at an early date, IBM would not have had 
any mature requirements when the time came to code. Even now, re­
quirements are being changed to reflect the actual software, so they 
continue to be in a process of maturation. But early development of 
specifications became the means by which NASA could enforce con­
ceptual integrity in the shuttle software. 

Architecture of the Primary Avionics Software System 

The Primary Avionics Software System, or PASS, is the software 
that runs in all the Shuttle's four primary computers. PASS is divided 
into two parts: system software and applications software. The sys­
tem software is the Flight Computer Operating System (FCOS), the 
user interface programming, and the system control programs, 
whereas the applications software is divided into guidance, navigation 
and control, orbiter systems management, payload and checkout 
programs. Further divisions are explained in Box 4-3. 

The most critical part of the system software is the FCOS. NASA, 
Rockwell, and IBM solved most of the grand conceptual problems, 
such as the nature of the operating system and the redundancy 
management scheme, by 1975. The first task was to convert the FCOS 
from the proposed 40-millisecond loop operating system to a priority-
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Box 4-3: Structure of PASS Applications Software 

The PASS guidance and navigation software is divided into major 
functions, dictated by mission phases, the most obvious of which are 
preflight, ascent, on-orbit, and descent. The requirements state that these 
major functions be called OPS, or operational sequences. (e.g., OPS-1 is 
ascent; OPS-3, descent.) Within the OPS are major modes. In OPS-1, the 
first-stage bum, second-stage bum, first orbital insertion bum, second or­
bital insertion bum, and the initial on-orbit coast are major modes; tran­
sition between major modes is automatic. Since the total mission 
software exceeds the capacity of the memory, OPS transitions are nor­
mally initiated by the crew and require the OPS to be loaded from the 
.M:MU. This caused considerable management concern over the preser­
vation of data, such as the state vector, needed in more than one OPS 105. 
NASA's solution is to keep common data in a major function base, 
which resides in memory continuously and is not overlaid by new OPS 
being read into the computers. 

Within each OPS, there are special functions (SPECs) and display 
functions (DISPs ). These are available to the crew as a supplement to the 
functions being performed by the current OPS. For example, the descent 
software incorporates a SPEC display showing the horizontal situation as 
a supplement to the OPS display showing the vertical situation. This 
SPEC is obviously not available in the on-orbit OPS. A DISP for the 
on-orbit OPS may show fuel cell output levels, fuel reserves in the or­
bital maneuvering system, and other such information. SPECs usually 
contain items that can be selected by the crew for execution. DISPs are 
just what their name means, displays and not action items. Since SPECs 
and DISPs have lower priority than OPS, when a big OPS is in memory 
they have to be kept on the tape and rolled in when requested 106. The 
actual format of the SPECs, DISPs, OPS displays, and the software that 
interprets crew entries on the keyboard is in the user interface portion of 
the system software. 

driven system 107. Priority interrupt systems are superior to time-slice 
systems because they degrade gracefully when overloaded 1 °8. In a 
time-slice system, if the tasks scheduled in the current cycle get 
bogged down by excessive I/O operations, they tend to slow down the 
total time of execution of processes. IBM's version of the FCOS ac­
tually has cycles, but they are similar to the ones in the Skylab system 
described in the previous chapter. The minor cycle is the high­
frequency cycle; tasks within it are scheduled every 40 milliseconds. 
Typical tasks in this cycle are those related to active flight control in 
the atmosphere. The major cycle is 960 milliseconds, and many 
monitoring and system management tasks are scheduled at that 
frequency 109. If a process is still running when its time to restart 



114COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE 

OUIIII 
FLIQR 

I.OHl'IITU 
\OflllAAI 

•NOT AVAILABL E 55 1,2 

»~~s a--------. 
-- ---- - --

- lllll( 

Figure 4--6. A block diagram of the Shuttle flight computer software architecture. 
(From NASA, Data Processing System Workbook) 

comes up due to excessive 1/0 or because it was interrupted, it cancels 
its next cycle and finishes up 110. If a higher priority process is called 
when another process is running, then the current process is inter­
rupted and a program status word (PSW) containing such items as the 
address of the next instruction to be executed is stored until the inter­
ruption is satisfied. The last instruction of an interrupt is to restore the 
old PSW as the current PSW so that the interrupted process can 
continue 111 . The ability to cancel processes and to interrupt them 
asynchronously provides flexibility that a strict time-slice system does 
not. 

A key requirement of the FCOS is to handle the real-time state­
ments in the HAL/S language. The most important of these are 
SCHEDULE, which establishes and controls the frequency of execu­
tion of processes; TERMINATE and CANCEL, which are the op­
posite of SCHEDULE; and WAIT, which conditionally suspends 
execution 112. The method of implementing these statements 1s con-
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trolled by a separate interface control document113. SCHEDULE is 
generally programmed at the beginning of each operational sequence 
to set up which tasks are to be done in that software segment and how 
often they are to be done. The syntax of SCHEDULE permits the 
programmer to assign a frequency and priority to each task. TER­
MINATE and CANCEL are used at the end of software phases or to 
stop an unneeded process while others continue. For example, after 
the solid rocket boosters burn out and separate, tasks monitoring them 
can cease while tasks monitoring the main engines continue to run. 
WAIT, although handy, is avoided by IBM because of the possibility 
of the software being "hung up" while waiting for the 1/0 or other 
condition required to continue the process114. This is called a race 
condition or "deadly embrace" and is the bane of all shared resource 
computer operating systems. 

The FCOS and displays occupy 35K of memory at all times 115. 
Add the major function base and other resident items, and about 60K 
of the 106K of core remains available for the applications programs. 
Of the required applications programs, ascent and descent proved the 
most troublesome. Fully 75% of the software effort went into those 
two programs116. After the first attempts at preparing the ascent 
software resulted in a 140K load, serious code reduction began. By 
1978, IBM reduced the size of the ascent program to 116K, but NASA 
Headquarters demanded it be further knocked down to 80K 117. The 
lowest it ever got was 98,840 words (including the system software), 
but its size has since crept back up to nearly the full capacity of the 
memory. IBM accomplished the reduction by moving functions that 
could wait until later operational sequences 118. The actual figures for 
the test flight series programs are in Table 4-1 119. The total size of the 
flight test software was 500,000 words of code. Producing it and 
modifying it for later missions required the development of a com­
plete production facility. 
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TABLE 4-1: Sizes of Software Loads in PASS 

NAME 

Preflight initialization 

Preflight checkout 

Ascent and abort 

On-orbit 

On-orbit checkout 

On-orbit system management 

Entry 

Mass memory utility 

Note: Payload and rendezvous software was added later during the operations 

phase. 

Implementing PASS 

KWORDS 

72.4 

81.4 

105.2 

83.1 

80.3 

84.1 

101.1 

70.1 

NASA planned that PASS would be a continuing development 
process. After the first flight programs were produced, new functions 
needed to be added and adapted to changing payload and mission re­
quirements. For instance, over 50% of PASS modules chanf:ed during 
the first 12 flights in response to requested enhancements 20. To do 
this work, NASA established a Software Development Laboratory at 
Johnson Space Center in 1972 to prepare for the implementation of 
the Shuttle programs and to make the software tools needed for ef­
ficient coding and maintenance. The Laboratory evolved into the 
Software Production Facility(SPF) in which the software development 
is carried on in the operations era. Both the facilities were equipped 
and managed by NASA but used largely by contractors. 

The concept of a facility dedicated to the production of onboard 
software surfaced in a Rand Corporation memo in early 1970121 . The 
memo summarized a study of software requirements for Air Force 
space missions during the decade of the 1970s. One reason for a 
government-owned and operated software factory was that it would be 
easier to establish and maintain security. Most modules developed for 
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the Shuttle, such as the general flight control software and memory 
displays, would be unclassified. However, Department of Defense 
(DoD) payloads require system management and payload manage­
ment software, plus occasional special maneuvering modules. These 
were expected to be classified. Also, if the software maintenance con­
tract moved from the original prime contractor to some different 
operations contractor, it would be considerably simpler to accomplish 
the transfer if the software library and development computers were 
government owned and on government property. Lastly, having such 
close control over existing software and new development would 
eliminate some of the problems in communication, verification, and 
maintenance encountered in the three previous manned programs. 

Developing the SPF turned out to be as large a task as developing 
the flight software itself. During the mid-1970s, IBM had as many 
people doing software for the development lab as they had working on 
PASS122. The ultimate purpose of the facility is to provide a program­
ming team with sufficient tools to prepare a software load for a flight. 
This software load is what is put on to the MMU tape that is flown on 
the spacecraft. In the operations era of the 1980s, over 1,000 compiled 
modules are available. These are fully tested, and often previously 
used, versions of tasks such as main engine throttling, memory 
modification, and screen displays that rarely change from flight to 
flight. New, mission-specific modules for payloads or rendezvous 
maneuvers are developed and tested using the SPF's programming 
tools, which themselves represent more than a million lines of 
code 123. The selection of existing modules and the new modules are 
then combined into a flight load that is subject to further testing. 
NASA achieved the goal of having such an efficient software produc­
tion system through an 8-year development process when the SPF was 
still the Laboratory. 

In 1972, NASA studied what sort of equipment would be required 
for the facility to function properly. Large mainframe computers com­
patible with the AP-101 instruction set were a must. Five IBM 360/75 
computers, released from Apollo support functions, were available 124. 

These were the development machines until January of 1982125. 
Another requirement was for actual flight equipment on which to test 
developed modules. Three AP-101 computers with associated display 
electronics units connected to the 360s with a flight equipment inter­
face device (FEID) especially developed for the purpose. Other 
needed components, such as a 6-degree-of-freedom flight simulator, 
were implemented in software126. The resulting group of equipment is 
capable of testing the flight software by interpreting instructions, 
simulating functions, and running it in the actual flight hardware 127. 

In the late 1970s, NASA realized that more powerful computers 
were needed as the transition was made from development to opera­
tions. The 360s filled up, so NASA considered the Shuttle Mission 
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Simulator(SMS), the Shuttle Avionics Instrumentation Lab (SAIL), 
and the Shuttle Data Processing Center's computers as supplementary 
development sites, but this idea was rejected because they were all too 
busy doing their primary functions 128. In 1981, the Facility added two 
new IBM 3033N computers, each with 16 million bytes of primary 
memory. The SPF then consisted of those mainframes, the three 
AP-101 computers and the interface devices for each, 20 magnetic 
tape drives, six line printers, 66 million bytes of drum memory, 23.4 
billion bytes of disk memory, and 105 terminals129. NASA ac­
complished rehosting the development software to the 3033s from the 
360s during the last quarter of 1981. Even this very large computer 
center was not enough. Plans at the time projected on-line primary 
memory to grow to 100 million bytes 130, disk storage to 160 billion 
bytes131 , and two more interface units, display units, and AP-l0ls to 
handle the growing DOD business132. Additionally, terminals con­
nected directly to the SPF are in Cambridge, Massachusetts, and at 
Goddard Space Flight Center, Marshall Space Flight Center, Kennedy 
Space Center, and Rockwell International in Downey, California 133. 

Future plans for the SPF included incorporating backup system 
software development, then done at Rockwell, and introducing more 
automation. NASA managers who experienced both Apollo and the 
Shuttle realize that the operations software preparation is not enough 
to keep the brightest minds sufficiently occupied. Only a new project 
can do that. Therefore, the challenge facing NASA is to automate the 
SPF, use more existing modules, and free people to work on other 
tasks. Unfortunately, the Shuttle software still has bugs, some of 
which are no fault of the flight software developers, but rather because 
all the tools used in the SPF are not yet mature. One example is the 
compiler for HAL/S. Just days before the STS-7 flight, in June, 1983, 
an IBM employee discovered that the latest release of the compiler 
had a bug in it. A quick check revealed that over 200 flight modules 
had been modified and recompiled using it. All of those had to be 
checked for errors before the flight could go. Such problems will con­
tirnie until the basic flight modules and development tools are no 
longer constantly subject to change. In the meantime, the accuracy of 
the Shuttle software is dependent on the stringent testing program 
conducted by IBM and NASA before each flight. 

Verification and Change Management of the Shuttle Software 

IBM established a separate line organization for the verification 
of the Shuttle software. IBM's overall Shuttle manager has two 
managers reporting to him, one for design and development, and one 
for verification and field operations. The verification group has just 
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less than half the members of the development group and uses 35% of 
the software budget134. There are no managerial or personnel ties to 
the development group, so the test team can adopt an "adversary 
relationship" with the development team. The verifiers simply as­
sume that the software is untested when received 135. In addition, the 
test team can also attempt to prove that the requirements documents 
are wrong in cases where the software becomes unworkable. This en­
ables them to act as the "conscience" of the entire project136. 

IBM began planning for the software verification while the re­
quirements were being completed. By starting verification activity as 
the software took shape, the test group could plan its strategy and 
begin to write its own books. The verification documentation consists 
of test specifications and test procedures including the actual inputs to 
be used and the outputs expected, even to the detail of showing the 
content of the CRT screens at various points in the test137. The 
software for the first flight had to survive 1,020 of these tests138. Fu­
ture flight loads could reuse many of the test cases, but the preparation 
of new ones is a continuing activity to adjust to changes in the 
software and payloads, each of which must be handled in an orderly 
manner. 

Suggestions for changes to improve the system are unusually wel­
come. Anyone, astronaut, flight trainer, IBM programmer, or NASA 
manager, can submit a change request139. NASA and IBM were 
processing such requests at the rate of 20 per week in 1981 140. Even 
as late as 1983 IBM kept 30 to 40 people on requirements analysis, or 
the evaluation of requests for enhancements141. NASA has a cor­
responding change evaluation board. Early in the program, it was 
chaired by Howard W. Tindall, the Apollo software manager, who by 
then was head of the Data Systems and Analysis Directorate. This 
turned out to be a mistake, as he had conflicting interests142_ The 
change control board moved to the Shuttle program office. Due to the 
careful review of changes, it takes an average of 2 years for a new re-
quirement to get implemented, tested, and into the field143. Generally, 
requests for extra functions that would push out current software due 
to memory restrictions are turned down144. 
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Box 4-4: How IBM Verifies the Shuttle Flight Software 

The Shuttle software verification process actually begins before the 
test group gets the software, in the sense that the development organiza­
tion conducts internal code reviews and unit tests of individual modules 
and then integration tests of groups of modules as they are assembled 
into a software load. There are two levels of code inspection, or 
"eyeballing" the software looking for logic errors. One level of inspec­
tion is by the coders themselves and their peer reviewers. The second 
level is done by the outside verification team. This activity resulted in 
over 50% of the discrepancy reports (failures of the software to meet the 
specification) filed against the software, a percentage similar to the 
Apollo experience and reinforcing the value of the idea 145 . When the 
software is assembled, it is subject to the First Article Configuration In­
spection (F ACI), where it is reviewed as a complete unit for the first 
time. It then passes to the outside verification group. 

Because of the nature of the software as it is delivered, the verifica­
tion team concentrates on proving that it meets the customer's require­
ments and that it functions at an acceptable level of performance. Consis­
tent with the concept that the software is assumed untested, the verifica­
tion group can go into as much detail as time and cost allow. Primarily, 
the test group concentrates on single software loads, such as ascent, on­
orbit, and so forth 146. To facilitate this, it is divided into teams that spe­
cialize in the operating system and detail, or functional verification; 
teams that work on guidance, navigation, and control; and teams that cer­
tify system performance. These groups have access to the software in the 
SPF, which thus doubles as a site for both development and testing. 
Using tools available in the SPF. the verification teams can use the real 
flight computers for their tests (the preferred method). The testers can 
freeze the execution of software on those machines in order to check in­
termediate results, alter memory, and even get a log of what commands 
resulted in response to what inputs 147. 

After the verification group has passed the software, it is given an 
official Configuration Inspection and turned over to NASA. At that point 
NASA assumes configuration control, and any changes must be ap­
proved through Agency channels. Even though NASA then has the 
software, IBM is not finished with it 148 . 
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Box 4--1 (Continued) 

The software is usually installed in the SAIL for prelaunch, ascent, 
and abort simulations, the Flight Simulation Lab (FSL) in Downey for 
orbit, de-orbit, and entry simulations, and the SMS for crew training. Al­
though these installations are not part of the preplanned verification 
process, the discrepancies noted by the users of the software in the 
roughly 6 months before launch help complete the testing in a real en­
vironment. Due to the nature of real-time computer systems, however, 
the software can never be fully certified, and both IBM and NASA are 
aware of this 149. There are simply too many interfaces and too many op­
portunities for asynchronous input and output. 

Discrepancy reports cause changes in software to make it match 
the requirements. Early in the program, the software found its way 
into the simulators after less verification because simulators depend 
on software just to be turned on. At that time, the majority of the dis­
crepancy reports were from the field installations. Later, the majority 
turned up in the SPF150. All discrepancy reports are formally disposed 
of, either by appropriate fixes to the software, or by waiver. Richard 
Parten said, "Sometimes it is better to put in an 'OPS Note' or waiver 
than to fix (the software). We are dependent on smart pilots" 151 . If the 
discrepancy is noted too close to a flight, if it requires too much ex­
pense to fix, it can be waived if there is no immediate danger to crew 
safety. Each Flight Data File carried on board lists the most important 
current exceptions of which the crew must be aware. By STS-7 in 
June of 1983, over 200 pages of such exceptions and their descriptions 
existed 152. Some will never be fixed, but the majority were addressed 
during the Shuttle launch hiatus following the 5 lL accident in January 
1986. 

So, despite the well-planned and well-manned verification effort, 
software bugs exist. Part of the reason is the complexity of the real­
time system, and part is because, as one IBM manager said, "we 
didn't do it up front enough," the "it" being thinking through the 
program logic and verification schemes153. Aware that effort ex­
pended at the early part of a project on quality would be much cheaper 
and simpler than trying to put quality in toward the end, IBM and 
NASA tried to do much more at the beginning of the Shuttle software 
development than in any previous effort, but it still was not enough to 
ensure perfection. 
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Box 4-5: The Nature of the Backup Flight System 

The Backup Flight System consists of a single computer and a 
software load that contains sufficient functions to handle ascent to orbit, 
selected aborts during ascent, and descent from orbit to a landing site. In 
the interest of avoiding a generic software failure, NASA kept its 
development separate from PASS. An engineering directorate, not the 
on-board software division, managed the software contract for the 
backup, won by Rockwell 154. 

The major functional difference between PASS and the backup is 
that the latter uses a time-slice operating system rather than the 
asynchronous priority-driven system of PASS 155 . This is consistent with 
Rockwell's opinion on how that system was to be designed. Ironically, 
since the backup must listen in on PASS operations so as to be ready for 
instant takeover, PASS had to be modified to make it more 
synchronous 156. Sixty engineers were still working on the Backup Flight 
System software as late as 1983 157. 

USING THE SHUTTLE DPS 

With the level of complexity present in the hardware and software 
just described, it is not surprising that the crew interfaces to those 
components are also complex. The complexity is caused not so much 
by the design of the interfaces but by the limited amount of memory 
available for graphics displays, automatic reconfiguring of the com­
puters, and other utilities to make the system more cooperative and 
simpler for the users. There is some difference between the way the 
users of the system perceive the DPS and the way the designers, both 
NASA and IBM, perceive it. Some astronauts and trainers are openly 
critkal. John Young, the Chief Astronaut in the early 1980s, com­
plained, "What we have in the Shuttle is a disaster. We are not making 
computers do what we want" 158. Flight trainer Frank Hughes also 
remarked that "the PASS doesn't do anything for us" 159, noting that 
such practical items as the time from loss of ground-station signals 
and acquisition of new stations is not part of the primary software. 
Both said, "We end up working for the computer, rather than the com­
puter working for us." This comment is something reminiscent of 
Apollo days, when the number of keystrokes needed to fly a mission 
was a concern. John Aaron, one of NASA's designers of PASS inter­
faces and later chief of spacecraft software, said that the Apollo ex­
perience influenced Shuttle designers to avoid excessive pilot inter­
action with the computers. Even so, he found the "crew 
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Figure 4-7. The forward flight deck of a Shuttle, with the three CRT screens and 
twin keyboards visible in the center. (NASA photo S80-35133) 

interfaces ... more confusing and complex than I thought they would 
be" 160. One statistic that supports his perception is that the 13,000 
keystrokes used in a week-long lunar mission are matched by a Shut­
tle crew in a 58-hour flight161 . 

Another aspect of the "working for the computer" problem is that 
steps normally done by computers using preprogrammed functions are 
done manually on the Shuttle. The reconfiguration of PASS from the 
ascent redundant set to the on-orbit groupings has to be done by the 
crew, a process taking several minutes and needing to be reversed be­
fore descent. Aaron acknowledges that the computer interfaces are too 
close to machine level, but points out that management "would not 
buy" simple automatic reconfiguration schemes. Even if they had, 
there is no computer memory to store such utilities. 

Tied to the computer memory problem is the fact that many func-



124 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE 

tions have to be displayed together on a screen because of the fact that 
such displays are "memory hungry." As a result, many screens are so 
crowded that reading them quickly is difficult, the process being fur­
ther affected by the blandness and primitive nature of any graphics 
available. Astronaut Vance Brand claimed that after initial confusion, 
several hours with simulators makes things easier to find; he makes a 
point of checking his entries on the input line before pressing the ex-
ecute key 162. Young does that as well, but for additional reasons: The 
keyboard buffer is so small that entering data too quickly causes some 
to be lost, and he wants to check whether he is accessing the right 
screen display with the proper keyboard. This latter concern arises 
because there are only two keyboards for the three forward CRTs. 
Since both keyboards can be assigned to the same screen, two CRTs 
may not be currently set up for input. Even if the two keyboards are 
assigned to different screens, one CRT is left without capability for 
immediate crew input. Astronaut Henry Hartsfield termed this situa­
tion "prone to error" 163_ 

Since flying the Sbuttle is in many ways flying the Shuttle com­
puters (they provide the active flight control, guidance and navigation, 
systems management, and payload functions), the astronauts are inter­
ested in making suggestions for improving the computer system. Most 
revolve around more automation, more user friendliness, more color, 
better graphics, and more functions, such as adding a return-to­
launch-site (RTLS) abort with two engines out in addition to the 
present version with only one engine out164. Each of these enhance­
ments is tied to increasing memory. IBM proposed a new version of 
the Shuttle computers with 256K of memory and software com­
patibility with the existing system. Johnson Space Center began test­
ing these AP-lOlF computers in 1985, with the first operational use 
projected for the resumption of Shuttle missions in 1988. 

In the meantime, the astronauts themselves pioneered efforts to 
use small computers to add functions and back up the primary sys­
tems. Early flights used a Hewlett-Packard HP-41 C programmable 
calt:ulator to determine ground-station availability, as well as carry a 
limited version of the calculations for time-to-retrofire. Beginning 
with STS-9 in December, 1983, a Grid Systems Compass portable 
microcomputer with graphics capabilities was carried to display 
ground stations and to provide functions impractical on the primary 
computers. Mission Specialist Terry Hart, responsible for program­
ming the HP-41 Cs, said that placing the mission documentation on the 
computer was also being considered.165 

THE SPACE SHUTTLE MAIN ENGINE CONTROLLERS 

Among the many special-purpose computers on the Shuttle, the 
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Box 4-6: Using the Shuttle's Keyboards 

The Shuttle's keyboards are different from those found on Gemini 
and Apollo because they are hexadecimal, or base 16, rather than 
decimal, so that memory locations can be altered by hex entries from the 
keyboard. A single hex digit represents 4 bits, so just four digits can fill a 
half-word memory location. The other keys perform specialized func­
tions. The most often used are 

• ITEM: This selects a specific function displayed on a CRT. For 
example, if the astronaut wishes to perform a function numbered 
32 on the screen, he or she presses ITEM, 3, 2, EXEC. 

• OPS: This, plus a four-digit number, selects the operational se­
quence and major mode desired by the crew. For instance, to 
choose the first major mode of the ascent software, OPS, 1, 1, 0, 
1, and PRO is entered. 

• SPEC: This key, plus appropriate digits and PRO, selects a 
specialist function or display function screen. Each OPS has as­
sociated with it a number of primary screens that reflect what is 
happening in the software. The ascent program has a vertical 
path graphic, for instance. Additionally, special functions can be 
called from SPEC displays that are overlaid on the primary 
screens when called. On-orbit, and several other OPS, have a 
"GPC Memory" display that can be used to read or write to in­
dividual memory locations. It cannot be called from either the 
ascent or descent OPS. Display function screens are just that: 
used to show various data such as fuel cell levels, but with no 
crew functions. To return to the primary screen that was on the 
CRT before the SPEC or DISP call, the RESUME key is used. 

• CLEAR: Each time this key is depressed, one character is 
deleted from the input line on the CRT accessed. This enables an 
astronaut to erase an error if it is caught before EXEC or PRO is 
depressed. 

• '+' : This sign can be used as a delimiter around numeric data or 
between a series of function selections. 

main engine controllers stand out as a clear "first" in space technol­
ogy. The Shuttle's three main liquid-propellant engines are the most 
complex and "hottest" rockets ever built. The complexity is tied to the 
mission requirements, which state that they be throttleable, a common 
characteristic of internal combustion engines and turbojets, but rare in 
the rocket business. They run "hotter" than any other rocket engine 
because at any given moment they are closer to destroying themselves 
than their predecessors. Previous engines were overbuilt in the sense 
that they were designed to bum at full thrust through their entire 
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Figure -'-8. Keyboard layout of the Shuttle computer system. (From NASA, Data 
Processing System Workbook) 

lifetime of a few minutes with no chance that the continuous explo­
sion of fuel and oxidizer would get out of control. To ensure this, en­
gineers designed combustion chambers and cooling systems better 
than optimum, with the result that the engines weighed more than 
less-protected designs, thus reducing performance. Engineers also set 
fluid mixtures and flow rates by mechanical means at preset levels, 
and levels could not be changed to gain greater performance. The 
Shuttle engines can adjust flow levels, can sense how close to explod­
ing they are, and can respond in such a way as to maintain maximum 
performance at all times. Neither the throttleability or the perfor­
mance enhancements could be accomplished without a digital com­
puter as a control device. 

In 1972, NASA chose Rocketdyne as the engine contractor, with 
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Figure 4-9. A typical display of the Primary Avionics Software System. (From 
NASA, Data Processing System Workbook) 

Marshall Space Flight Center responsible for monitoring the design, 
production, and testing of the engines. Rocketdyne conducted a 
preliminary study of the engine control problem and recommended 
that a distributed approach be used for the solution 166. By placing 
controllers at the engines themselves, complex interfaces between the 
engine and vehicle could be avoided. Also, the high data rates needed 
for active control are best handled with a dedicated computer. Both 
Marshall and Rocketdyne agreed that a digital computer controller 
was better than an analog controller for three reasons. First, software 
allows for greater flexibility. Inasmuch as the control concepts for the 
engines were far from settled in 1972, NASA considered the ease of 
modifying software versus hardware a very important advantage167. 
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Second, the digital system could respond faster. And third, the failure 
detection function could be simpler168. Basically, the computer has 
only two functions: to control the engine and to do self tests. 

The concept of fail operational/fail-safe is preserved with the en­
gine controllers because each engine has a dual redundant computer 
attached to it. Failure of the first computer does not impede opera­
tional capability, as the second takes over instantly. Failure of the 
second computer causes a graceful shutdown of the affected 
engine169. Loss of an engine does not cause any immediate danger to 
a Shuttle crew, as demonstrated in a 1985 mission that lost an engine 
and still achieved orbit. If engine loss occurs early in a flight, the mis­
sion can be aborted through a RTLS maneuver that causes the 
spacecraft essentially to turn around and fly back to a runway near the 
launch pad. Slightly later aborts may lead to a landing in Europe for 
Kennedy Space Center launches. If the engine fails near orbit it may 
be possible to achieve an orbit and then modify it using the orbital 
maneuvering system engines. 

Controller Software and Redundancy Management 

As with the main computers on the Shuttle, software is an impor­
tant part of the engine controller system. NASA managers adopted a 
strict software engineering approach to the controller code. Marshall's 
Walter Mitchell said, "We try to treat the software exactly like the 
hardware" 170. In fact, the controller software is more closely married 
to engine hardware than in other systems under computer control. The 
controllers operate as a real-time system with a fixed cyclic execution 
schedule. Each major cycle has four 5-millisecond minor cycles for a 
total of 20 milliseconds. This is a high frequency, necessitated by the 
requirement to control a rapidly changing engine environment. Each 
major cycle starts and ends with a self test. It proceeds through engine 
control tasks, input sensor data reads, engine limit monitoring tasks, 
output, another round of input sensor data, a check of internal voltage, 
and then the second self test 171 . Some free time is built into the cycle 
to avoid overruns into the next cycle. So that the controller will not 
waste processing time handling data requests from the primary 
avionics system, direct memory access of engine component data can 
be made by the primary 172. 

As with the primary computers in the Shuttle, the memory of the 
controller cannot hold all the software originally designed for it. A set 
of preflight checkout programs have to be stored on the MMU and 
rolled in during the countdown. At T-30 hours, the engines are ac­
tivated and the flight software load is read from the mass memory 173. 
Even this way, fewer than 500 words of the 16K are unused 174. 
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Figure 4-10. A Shuttle Main Engine Controller mounted in an engmeenng 
simulator at the Marshall Space Flight Center. (NASA photo) 

Although redundant, the controllers are not synchronized like the 
primary computers. Marshall Space Flight Center studied active 
synchronization, but the additional hardware and software overhead 
seemed too expensive 175. The present system of redundancy manage­
ment most closely resembles that used by the Skylab computers. Since 
Marshall also had responsibility for those computers and was making 
the decision about the controllers at the same time Skylab was operat­
ing, some influence from the A TMDC experience is possible. Two 
watchdog timers are used to flag failures. One is incremented by the 
real-time clock and the other, by a clock in the output electronics. 
Each has to be reset by the software. If the timers run out, the software 
or critical hardware of the computer responsible for resetting them is 
assumed failed and the Channel B computer takes over at that point. 
The timeout is set at 18 milliseconds, so the engine involved is 
"uncontrolled" by a failed computer for less than a major cycle before 
the redundant computer takes over 176_ 
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Box 4-7: Shuttle Engine Controller Hardware 

The computer chosen for the engine controllers is the Honeywell 
HDC-601. The Air Force was using it in 1972 when the choice was 
made, so operational experience existed. Additionally, the machine was 
software compatible with the DDP 516, a ground-based Honeywell min­
icomputer, so a development environment was available . Honeywell 
built parts of the controller in St. Petersburg, Florida and shipped those 
to the main plant in Minneapolis for final assembly; within a couple of 
years, all the construction tasks moved to St. Petersburg. By mid-1983, 
Honeywell completed 29 of the computers 177. 

The HDC-601 uses a 16-bit instruction word. It can do an add in 2 
microseconds, a multiply in 9. Eighty-seven instructions are available to 
programmers, and all software is coded in assembly language 178. The 
memory is 2-mil plated wire, which has been used widely in the military 
and is known for its ruggedness. It functions much like a core memory in 
that data are stored as a one or zero by changing the polarity in a seg­
ment of the wire. Each machine has 16K of 17 bits, the seventeenth bit 
used to provide even parity 179. Plated wire has the advantage of having 
nondestructive readout capability. 

The controllers are arranged with power, central processor, and in­
terfaces as independent components, but the 1/0 devices are cross 
strapped. This provides a reliability increase of 15 to 20 times, as 
modular failures can be isolated. The computers and associated 
electronics are referred to as Channel A and Channel B. With the cross 
strapping, if Channel A's output electronics failed, than Channel B's 
could be used by Channel A's computer180. 

Packaging is a serious consideration with engine controllers, since 
they are physically attached to a running rocket engine, hardly the benign 
environment found in most computer rooms. The use of late 1960s tech­
nology, which creates computers with larger numbers of discrete com­
ponents and fewer !Cs, means that the engine builders are penalized in 
designing appropriate packages l8 l. Rocketdyne bolted early versions of 
the controller directly to the engine, resulting in forces of 22g rattling the 
omputer and causing failures. The simple addition of a rubber gasket 
reduced the g forces to about 3 or 4. Within the outer box, the circuit 
cards are held in place by foam wedges to further reduce vibration 
effects 182. 

THE FUTURE OF THE SHUTTLE'S COMPUTERS 

The computers in the Shuttle were candidates for change due to 
the rapid progress of technology coupled with the long life of each 
Shuttle vehicle. First to be replaced were the engine controllers. By 
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Figure .i--t t. A Shuttle main engine in a ground test. The Controller can be seen 
mounted on the left side of the combustion chamber. (NASA photo 885338) 
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the early 1980s, Marshall Space Flight Center began studying a Block 
II controller design because it was becoming impossible to find parts 
and programmers for the late 1960s components of the Block I 183. 
The revised computer uses a Motorola 68000 32-bit microprocessor. 
When selected, it was clearly the state of the art. Instead of plated 
wire, a CMOS-type semiconductor random-access memory is used. 
Finally, the software is written in the high-level programming lan­
guage, C. Such a computer reflects the current design and components 
of a ground-based, powerful digital control system. The C language is 
also known as an excellent tool for software systems development. In 
fact, the UNIX operating system is coded in it. 

Aside from the processor change, the Block II's memory was in­
creased to 64K words. Therefore, the entire controller software, in­
cluding preflight routines, can be loaded at one time. Semiconductor 
memories have the advantages of high speed, lower power consump­
tion, and higher density than core, but lack core memory's ability to 
retain data when power is shut off. Reliability of the memory in the 
Block II computer was assured by replicating the 64K and providing a 
three-tier power supplyl84. Both Channel A and Channel B have two 
sets of 64K memories, each loaded with identical software. Failure in 
one causes a switch-over to the other. This protects against hardware 
failures in the memory chips. The three tiers of power protect against 
losing memory. The first level of power is the standard 115-volt 
primary supply. If it fails, a pair of 28-volt backup supplies, one for 
each channel, is available from other components of the system. Last, 
a battery backup, standard on most earth-based computer systems, can 
preserve memory but not run the processor. 

The significance of the evolution to Block II engine controllers is 
that they represent the first use of semiconductor memories and 
microprocessors in a life-critical component of a manned spacecraft. 
Honeywell scheduled delivery of a breadboard version suitable for 
testing in mid-1985. The new controller is physically the same length 
and width, so it fits the old mounting. The depth is expected to be 
somewhat less. When the first of these computers flies on a Shuttle, 
NASA will have skipped from 1968 computer technology to 1982 
technology in one leap. 

IBM's new version of the AP-101 (the F) incorporates some of 
the same advantages gained by the new technology of the engine con­
trollers. Increasing the memory to 256K words means that the ascent, 
on-orbit, and descent software can be fitted into the memory all at 
once. (This is not likely to happen, however, because of the pressing 
need to improve the crew interfaces and expand existing functions.) 
Higher component density allows the CPU and IOP to be fitted into 
one box roughly the size and weight of either of their predecessors. 
Execution speed is now accelerated to nearly l million operations per 
second, twice the original value. In essence, NASA has finally ac­
quired the power and capability it wanted in 1972, before the software 
requirements showed the inadequacy of the original AP-101. 
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As in the engine controllers, the memory in the AP-10 lF is made 
of semiconductors. Power can be applied to the memory even when 
the central processor is shut down so as to keep the stored programs 
from disappearing. A commercially available error detection and cor­
recting chip is included to constantly scan the memory and correct 
single bit errors. These precautions help eliminate the disadvantage of 
volatility while still preserving the size, power, and weight advantages 
of using semiconductors over core memories 185. 

CONCLUSION 

The DPS on the Shuttle orbiter reflects the state of software en­
gineering in the 1970s. Even though the software was admittedly the 
key component of the spacecraft, NASA chose the hardware before 
the first software requirement was written. This is typical of practice 
in 1972, but less so now. NASA managers knew that time and money 
spent on detailed software requirements specification and the cor­
responding development of a test and verification program would save 
millions of dollars and much effort later. The establishment of a dedi­
cated facility for development was an innovative idea and helped keep 
costs down by centralization and standardization. A combination of 
complete requirements, an aggressive test plan, a decent development 
facility, and the experience of NASA, Rockwell, Draper, and IBM en­
gineers in real-time systems was enough to create a successful Shuttle 
DPS. 

Even as the system took shape, NASA managers looked to the fu­
ture of manned spacecraft software. Increased automation of code and 
test case generation, automated change insertion and verification, and 
perhaps automated requirements development are all considered fu­
ture necessities if development costs are to be kept down and 
reliability increased. In the 1980s, a new opportunity for software 
development and hardware selection presents itself with NASA's 
long-awaited Space Station. NASA has another chance to adopt up­
dated software engineering techniques and, perhaps, to develop 
others. Success in space is increasingly tied to success in the software 
factory. 
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power and complexity, paralleling the development of computers for 
manned spacecraft. Unlike the manned programs, however, JPL spon­
sored fundamental research into spacecraft computing, which was 
then translated into concepts that guided the development of flight 
systems. The result was a series of innovative and flexible on-board 
computers. 



Part Two: Computers 

On Board Unmanned Spacecraft 

Unmanned spacecraft computers differ from manned spacecraft com­
puters in that they are designed to work much longer and use much 
less spacecraft resources. A typical manned mission lasts a week or 
less; the exception was Skylab, whose computers operated for 9 
months straight and again later during its reactivation mission. Un­
manned missions in earth orbit or to the outer planets can last a 
decade or longer. Manned spacecraft usually carry large auxiliary 
power units based on fuel cell technology, as power requirements for 
life support, experiments, and computers are high. Spacecraft in earth 
orbit are often dependent on solar cell arrays, which are by nature 
low-power generators. Interplanetary probes use either solar cells or 
small radioisotope generators. Clearly, these circumstances cause dif­
ferent requirements for computers. 

Of the two types of unmanned spacecraft, one is designed for 
earth orbit operations and the other flies to the moon, planets, or deep 
space. Earth orbiters usually need no navigation after achieving orbit; 
space probes, however, are critically dependent on proper guidance. 
Earth orbiters can be commanded nearly instantaneously from the 
ground during the roughly 10% of the time they are "visible" to 
ground stations. Interplanetary probes need to be autonomous, at least 
capable of independent routine operation, due to speed of light delays 
in communication and longer periods out of earth control. Multiple 
missions and simple geography prevent interplanetary probes from be­
ing in constant contact with the three Deep Space Network stations. 
Therefore, the basis of fault handling on an interplanetary probe is 
failure detection and repair, whereas earth orbiters concentrate on 
"safing" the spacecraft until the ground stations can help out. For 
these reasons, computers became more sophisticated on spacecraft 
designed to leave the gravity pull of the earth. 

Moreover, the different computers have distinct origins. Many 
near earth spacecraft used a variant of a single machine developed at 
the Goddard Space Flight Center, whereas the Jet Propulsion 
Laboratory (JPL) of the California Institute of Technology, a long 
time NASA contractor, has dominated computer construction for deep 
space flight, designing and building an evolving series of computers 
for the Agency's interplanetary probes. These two lines of develop­
ment represent the most fruitful of NASA's forays into computer 
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research. Computers on manned spacecraft were generally developed 
from other computers (Apollo from Polaris; 4Pi from the System 
360). Computers in ground operations were adapted from commercial 
machines. However, computers on unmanned spacecraft were custom 
designed. In these cases, NASA was not only a contract monitor but 
was actively involved in development. 

The making of the first NASA Standard Spacecraft Computer, 
which has controlled a number of earth-orbiting missions, has been 
described elsewhere* As can be inferred by its name, NASA designed 
this computer to fly on multiple, varying missions, which it has done 
to good effect. For example, both the Solar Maximum Mission and the 
Hubble Space telescope used the computer. Goddard Space Flight 
Center led development of the device over a IO-year period from the 
late 1960s to the late 1970s. 

Figure B: The NASA Standard Spacecraft Computer I in its packaging. (NASA 
photo) 

In contrast, machines built at JPL have had a longer and more re­
lated history. Although some reuse has occurred, the various space 
probes built at JPL carried mission-unique computers of increasing 

*see Raymond G. Hartenstein, Ann C. Merwarth, William N. Stewart, Thomas 
D. Taylor, and Charles E. Trevathan, "Development and Application of NASA's 
First Standard Spacecraft Computer," Commun. ACM, 27(9), 902-913 
( September 1984.) 

ORIGINAL PAGE IS 
OF. POOR QUALITX 



5 

From Sequencers to Computers: 

Exploring the Moon 

and the Inner Planets 



140 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE 

One organization more than any other has dominated the exploration 
of deep space: the Jet Propulsion Laboratory (JPL) of the California 
Institute of Technology. JPL was responsible for the Ranger and Sur­
veyor series of lunar exploration spacecraft, the Mariner and Viking 
Orbiter explorers of Mercury, Venus, and Mars, and the Voyager and 
Galileo probes of the outer planets. As a result, the evolution of on­
board computers for deep space operations took place at JPL. 

JPL's chief contribution to computing on unmanned spacecraft 
was in leading progress from hard-wired sequencers to programmable 
sequencers to digital computers. The Pioneer spacecraft developed 
mostly at NASA's Ames Research Center and the Lunar Orbiters used 
to map the moon in the 1960s did not carry on-board computers. Like 
their earth-orbiting cousins and the first JPL probes, they used se­
quencing devices to activate and command experiments. Later the 
Mariner spacecraft acquired more autonomy and flexibility by using 
machines that stored command sequences in changeable software. 
Finally, sophisticated spacecraft flew with special-purpose digital 
computers. 

Unique in its relationship to NASA, JPL is not solely a govern­
ment installation in the same way as, for example, the Johnson or 
Marshall Space Flight Centers. JPL 's personnel receive their pay­
checks from Cal Tech, yet almost every piece of equipment on the site 
has a NASA property tag, since, for over a quarter of a century, Cal 
Tech has administered contracts that have paid for all research and 
development of the many spacecraft originated at JPL. 

Another way in which JPL is unique is its products. Whereas 
thousands of earth-orbiting satellites have been launched, less than a 
dozen each of Rangers, Surveyors, and Mariners were constructed, 
and just two Vikings and Voyagers and one Galileo were sent into 
space. Not only were few spacecraft built, but the interplanetary 
launches were separated by years and had to be on strict deadlines due 
to the realities of celestial mechanics. This created a completely dif­
ferent development environment than that at other NASA centers. The 
emphasis on basic research at JPL has perhaps been stronger than at 
any other NASA installation. This orientation and its application in 
spacecraft forms a special part of the story of JPL. 

JPL 's computer development activities were shaped by its or­
ganizational structures. When a project is started at the Laboratory, an 
office is established to house the project manager, key systems 
managers, and staff. Offices have come and gone with the projects 
themselves. The Ranger office, for example, has been closed for 
nearly 20 years, whereas the Voyager office is likely to be open for as 
long as that. Most personnel are housed in divisions and sections relat­
ing to specific discipline or system functions, as, in 1984, the 
"Technical Divisions" contained sections on "Guidance and Control" 
and "Spacecraft Data Systems." When a project office needs a com­
ponent or service, it "subcontracts" it to the appropriate technical sec-
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tions. For instance, Spacecraft Data Systems supplies on-board com­
puters, whereas the Navigation Systems Section does the trajectory 
calculations needed for a specific mission. In this way, specialists can 
be kept busy on a series of projects over a period of years without 
depending on a specific project for their jobs. Competition between 
sections to develop related components can also exist, as on the 
Voyager project, when the attitude control staff wanted to make their 
own computer for their system while the data systems people claimed 
sole domain over computer development. Within this setting, JPL has 
produced high quality on-board computers that have demonstrated 
outstanding reliability*. 

FIXED SEQUENCERS: "COMPUTERS" ON 

RANGER, SURVEYOR AND THE EARLY MARINERS 

Whether the final mission destination is as close as the moon or 
as far as Neptune, probe spaceflights consist of the same milestones 
and activities: launch, mid-course maneuver, cruise, and encounter. 
Spacecraft are launched in a stowed position dictated by the geometry 
of the booster vehicle. Most space probes look like multiarmed Hindu 
gods in flight due to the need to expose solar panels, point antennas, 
and deploy imaging equipment, but they must be folded to fit into the 
nose fairing of a rocket. During the launch period the spacecraft is in­
jected into its transfer orbit to intercept the target, deploys its various 
appendages into their proper positions, and orients itself. A decision 
was made early at JPL to build spacecraft that would be stablized in 
three axes during flight1. Spacecraft would be oriented by using the 
sun, earth, and/or a star as a reference. If kept from tumbling they 
would always be pointed in a specific direction. A key advantage of 
this plan is that a directional antenna could be used for earth-space 
communications, reducing power requirements. Imaging equipment 
could also be more stable than on a spin-stabilized spacecraft such as 
a Pioneer. A disadvantage of three-axis stabilization is that a fairly 
sophisticated attitude control system must be carried, including a sen­
sor system to find the sun and a guide star. Part of the launch phase, 
then, is spent scanning the sky for Canopus, Vega, or whatever star 
has been chosen for aligning the spacecraft. 

The mid-course maneuver phase often comes only a day or two 
after initial transfer orbit insertion in order to correct relatively large 

*JPL's roots and its role in NASA receive excellent treatment in Clayton 
Koppes' The Jet Propulsion Lab and the American Space Program, Yale Univer­
sity Press, 1982. 
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injection errors. Consisting of a timed bum of the spacecraft's propul­
sion system in each of three axes, it serves a number of purposes. 
Early launches could not depend upon the launch vehicle to establish 
an adequate flight path. Later, as booster guidance improved, probes 
were purposely aimed to miss the target so as to avoid contaminating 
planetary atmospheres with earthly bacteria hitching a ride on a 
spacecraft if the spacecraft ceased to function during launch and could 
not change its path to miss the planet. Therefore, the mid-course burn 
took place to correct the path of a "live" spacecraft. On long-duration 
missions with several targets, such as the Voyager probe to Jupiter, 
Saturn, Uranus, and Neptune, this maneuver might be repeated before 
and after each encounter. Engine firings are made before encounter to 
improve the accuracy of the trajectory to achieve a better gravity as­
sist from the target planet to the new trajectory and reduce the size of 
the postencounter maneuvers. 

Less is done on the spacecraft during the cruise period than in any 
other mission phase. However, recent larger and more complicated 
spacecraft have particle and fields experiments that run constantly and 
engineering calibrations that need periodic attention. If the spacecraft 
attitude is disturbed, reorientation may be necessary. This period of 
relative quiet ends when the encounter sequences begin as the 
spacecraft nears its target. Instruments must be turned on, calibrated 
and aimed. Imaging instrument pointing must be programmed and 
controlled. Data must be recorded and transmitted to earth. Of course, 
these activities are repeated during multiple encounter missions. 

Initiating the functions done in each phase requires on-board con­
trol. This was unnecessary for Ranger missions to the moon, which 
were simple impact flights with televised imaging during the last 
minutes. Because maximum speed-of-light delay in radio signals to 
the moon is less than a second, near-real-time commanding could be 
done. Ground commands could fire engines, point the spacecraft, and 
turn on cameras. Ranger flights used a voice/manual commanding 
system for this. Desired instructions were developed and formatted at 
JPL and then delivered by telephone to the Deep Space Network sta­
tion currently in contact with the spacecraft. An operator would 
thumb-wheel the octal codes into a panel called the 
"Read-Write-Verify Console," sending them to the spacecraft after 
verification2. Such care was not always enough. On Ranger III, a 
guidance error caused the spacecraft to miss the moon by 23,000 
miles. Although JPL flight controllers were able to get images during 
the flyby, a documentation discrepancy between the command set 
developed during the ground testing of the spacecraft and the flight set 
caused Ranger to point the wrong way, returning images of open 
space3. 

Ranger carried a "Central Computer and Sequencer" to back up 
the direct command system. Activated before lift-off, it counted the 
hours, minutes, and seconds until a specified mission event was to oc-
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cur and then executed a set of commands that performed the required 
functions. If the uplink radio channel failed, the mission would 
proceed according to a prepared plan. This assumed optimum perfor­
mance, turning on the cameras regardless of where the spacecraft 
might be actually pointing. Still, it provided a bit of insurance for the 
ffilSSIOn. 

At the same time that the Rangers were being built, JPL designed 
and flew the first Mariners. Mariner's initial mission was a Venus 
flyby launched in 1962. In the case of this spacecraft and its later 
brethren, the Central Computer and Sequencer was the prime source 
of commands, at least for cruise and encounter portions of the 
mission4. The time delay for commands to travel to Venus and Mars 
defeats real-time control from the ground. For Mariner II, at launch 
time minus 15 minutes, the clock was set so that the encounter se­
quence would begin at 12 hours from the closest approach to Venus. 
The sequencer's clock, a very accurate oscillator similar to computer 
clocks today, started at launch time minus 3 minutes5. Direct com­
manding capability was maintained. When the star tracker got con­
fused and locked onto the wrong target, ground controllers could 
reinitiate a search6. Direct command could also be used for mid­
course maneuvers. As a complement to direct command, 
"quantitative" commands could be sent to the sequencer for later use 7. 
For instance, times such as "51 seconds of minus roll" and "795 
seconds of minus pitch" or bum times could be inserted into the 
memory for later execution8. Mariners could abandon direct command 
and go to automatic command if a radio failure was detected. On the 
Mariner Mars 1964 spacecraft the sequencer contained a cyclic com­
mand that checked for such a failure at 66 2/3 hour intervals, effecting 
an auto switch-over9. 

The Mariner II spacecraft to Venus (1962), Mariner IV to Mars 
(1964), and Mariner V to Venus (1967) carried the same Central 
Computer and Sequencer. Just one flew on each mission, due to space 
and weight restrictions, even though the machine weighed in at 11.5 
pounds10. However, with the direct command capability intact, each 
had essentially the same level of redundancy as the Gemini and 
Apollo spacecraft, with their single-processor on-board computer sys­
tems and ground control computers. Plans for Mariner Mars 1969 
called for a larger spacecraft and a more ambitious mission: two 
picture-taking flybys of different portions of the "red planet". JPL 's 
Neil H. Herman, who had headed development of the Sequencer, saw 
an opportunity to improve the device for the upcoming flights 11 . One 
aim was to give the new spacecraft more flexibility. If the first flyby 
turned up something special, it would be very useful if the second 
spacecraft could be reprogrammed in flight to take advantage of les­
sons learned on the initial pass 12. This actually happened during the 
missions when reprogramming was accomplished for Mariner VII' s 
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August 5, 1969 flyby in response to Mariner Vi's July 31 passage13. 
Another reason for more on board autonomy is that command sessions 
for the Mariners lasted as long as 8 hours! Mariner's command rate 
was 1 bit per second, so long sequences were expensive both in per­
sonnel time and Deep Space Network time 14. The availability of more 
space and weight plus the desire for flexibility and greater autonomy 
caused JPL to change the Sequencer to make it more of a computer 
and less of what it really was, a fixed-program counter. 

Figure 5-1. Mariner Mars 1971 carried a programmable sequencer with an ex­
panded memory. (JPL photo P12035 ) 

PROGRAMMABLE SEQUENCERS: 

MARINERS TO MARS, VENUS, AND MERCURY 

Mariner Mars 1969 carried a 26-pound, programmable Central 
Computer and Sequencer designed by Herman and his team at JPL 
and built by Motorola 15. The machine originated in studies done in 
1964-1965 for a Mars orbiter and lander called "Voyager" and 
Mariner Mars 1966, neither of which flew 16. The major difference be­
tween the fixed sequencers and the programmable sequencer is that it 
had a memory of 128 words that could be altered in flight. Although 
this device had far greater flexibility and capabilities than the fixed se­
quencers, one of the older sequencers traveled on the spacecraft as a 
backup. During critical maneuvers, the two sequencers would run in 
parallel, a disagreement causing an abort of the maneuver. The Se­
quencer commanded all spacecraft systems, including the Attitude and 
Pointing System and Flight Data System, each of which evolved to in­
clude their own computers by the time JPL designed the outer planets 
Voyager in the 1970s. 
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Original requirements for Mariner Mars 1969 called for 20 words 
of memory, making the 128-word version more than enough. Yet the 
memory was quickly exceeded, necessitating the use of "creative" 
programming techniques for the duration of the mission. Fortunately, 
the Sequencer was reprogrammable in flight. Memory locations used 
for terminated mission phases could be given to tasks scheduled for 
later. Edward Greenberg of JPL, who did most of the programming, 
replaced the launch and mid-course bum routines with new code after 
they had been executed 17. 

Despite the autonomy and flexibility gained by using the 
programmable Central Computer and Sequencer, the two Mariner 
Mars 1969 missions were the "most commanded" to that date. 
Mariner VI received 946 radio commands, Mariner VII got 957; either 
number exceeded the total number of commands sent to all the three 
previous successful missions combined18. One of the reasons for this 
was the memory restrictions; another could be that the engineers on 
the project downplayed the full capabilities of the Sequencer, not 
realizing what was possible19. However, the full capabilities of the 
device were more than exercised on the last Mariner missions. 

Box 5-1: Programmable Central Computer 

and Sequencer Architecture and Software 

The new Central Computer and Sequencer had no accumulator or 
central registers common to standard computers. Each memory location 
could be used as a register, and all operations began at a location, acted 
on the contents of another location, and ended in a third memory 
location20 . Memory consisted of 22-bit words stored in magnetic core, 
with destructive serial readout21 . Three types of words could be stored. 
An instruction word used the first 4 bits for one of the 16 operation 
codes, the next 9 for the address of the memory location to be acted on, 
and the last 9 for the address of where to go afterward22 . Instruction DHJ 
meant "decrement hours and jump," so the computer would subtract one 
from the time portion of the event word stored in the location specified 
by the first address in the instruction and then jump to the location 
specified by the second address. An event word contained a 13-bit time, 
scaled to hours, minutes, or seconds, and a 9-bit address of where to go 
to start the event being timed when the time part zeroed23 . For instance, 
if the event word was timing the mid-course correction bum, when the 
time portion reached zero, a branch would occur to the specified address, 
the first address of the mid-course maneuver subroutine. The last type of 
word was a data word, containing 22 bits of data. 
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Box 5-1 (Continued) 

An instruction set of 16 operation codes contained mostly counting­
type instructions: five scaled decrementing instructions (countdown 
hours, minutes, seconds, variables), and an incrementing instruction 
(count and jump). There was an ADD and a SUBtract, each requiring 27 
milliseconds of machine time, by far the slowest instructions. Program­
mers used those very rarely, as the other instructions were better suited 
to sequencing. Subtraction was in one's complement form. 

The sequencer executed the software by making a scan of the first 
seven instructions each hour24. Those instructions constituted the entire 
executive! They contained sufficient decrement and branching instruc­
tions to check if anything needed to be done during that hour of flight. 
As an example, the exec might contain a counter that kept track of the 
time to an imaging session. The resulting routine might look like this: 25 

l. Count 123 hours from start. 

2. Count 45 minutes. 

3. Activate camera and start frame count. 

4. At 29th frame, start sending images. 

5. At 32nd frame, rotate filter wheel to blue. 

6. At 93rd frame, stop scan and stow platform. 

7. Resume cruise mode counting. 

After resuming cruise mode, the spacecraft clock would activate a 
scan at hour intervals again. Mission control could interrupt a scan, or a 
quiet time, and cause a jump to a specified subroutine20. (The entire 
Mariner Mars 1969 flight program is reproduced in Appendix IV.) 

A memory location could be changed by issuing two consecutive 
commands from earth stations. JPL called these commands CC-1 and 
CC-2. CC-1 sent the address and the least significant 7 bits of the new 
word, and it caused an interrupt in the receiving Sequencer. CC-2 
relayed the most significant 15 bits and released the scan inhibit27 . A 
related command, CC-3, caused the Central Computer and Sequencer to 
read out the contents of a specified memory location, 1 bit per second28 . 
Input was even slower, requiring an average of 2 minutes per word, com­
pared with a ground-loading time of all 128 words in less than a 
minute29. 

EXPANDED MEMORY AND EXPANDED FUNCTIONS 

The new sequencer had a 9-bit address field, providing a 512 ad­
dress limit. Expanding the memory to 512 words did not require a 
change in the logic. So JPL added the extra memory for the Mariner 
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Mars 1971 orbiter missions. Still, the old fixed sequencer remained in 
charge of the Mars orbit insertion bum. After the spacecraft es­
tablished orbits, however, the ground control center used the new se­
quencer to control the imaging of Mars and its moons. The expanded 
memory proved sufficient. Preflight estimates for Mariner VIII 
specified 150 words of memory and 225 words for for Mariner IX, yet 
both grew to over 400 words in flight30. 

The mission that used the sequencer to its limits was Mariner 
Venus Mercury 1973, or Mariner X. Mission profile called for the 
spacecraft to tum its imaging equipment on the earth as it flew toward 
deep space, do some studies of the moon in flyby, and then research in 
the area of Venus during a gravity assist maneuver that would send it 
toward Mercury, where JPL planned three separate encounters with 
the innermost planet. 

Figure 5-2. Mariner Venus/Mercury 1973 made the most use out of the 
programmable sequencers. (JPL photo 251-l 35AC) 
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Due to the more complex mission requirements, the design team 
wanted a bigger and better sequencer, but cost constraints killed any 
chance of building a new machine31 . Adrian Hooke of JPL, one of the 
project's managers, decided to use planned memory updates at regular 
intervals. He also instituted a "suspenders and belt" approach to 
reliability. The sequencer would not only carry a detailed program for 
the next mission phase but also a constantly updated bare minimum 
program to complete the mission if the spacecraft lost contact with the 
ground. If a command was not received for a certain time, then the se­
quencer would follow whatever commands were in the backup 
program. Thus, software moved ahead in leap frog fashion. During the 
earth-moon phase the Venus backup was loaded, during the Venus 
encounter the backup Mercury encounter sequence was on board, and 
so on32. Software development was assigned to three programmers. 
Ronald Spriestersbach of JPL wrote the near-earth and post-Mercury 
sequences, George Elliot of the Boeing Company did the Venus en­
counter, and Larry Koga of JPL wrote all three Mercury encounters33. 

During the 1969 missions, most changes and subroutines were 
hand-coded and used once. By 1971, the COMGEN ground computer 
program that produced memory loads for the Sequencer could develop 
blocks of commands that functioned much like subroutines in a stan­
dard computer program or macros in an assembly language 
program34. In 1973, COMGEN resided in an IBM 360/75 computer 
that generated the commands and sent them via the NASA com­
munications net to the appropriate Deep Space Network station for 
transmission. By this time, each station had a command computer, 
thus ending the voice/manual era35. Another improvement to the Se­
quencer was that engineers could do memory checks by comparing a 
sumword stored in location 512 to the result of summing the first 511 
locations. If a miscompare occurred, then a location-by-location check 
for error could be made36. 

The improvements both in the Sequencer and in programming 
and ground control techniques were not enough to ensure its use 
beyond the Mariner series of spacecraft. In spite of the success of the 
long and complicated mission of Mariner X, JPL's Hooke complained 
that memory limits were too costly due to excessive need for op­
timization and constant relocation of subroutines37. Besides, the se­
quencers, regardless of their full name, were not computers. 
Spacecraft needed to do on-board computations, to have more room 
for software (and, thus, increased flexibility), and to use the central 
computer for other functions such as spacecraft health and safety 
monitoring done on other manned and unmanned spacecraft. Some 
missions intrinsically needed computers, as, for example, the Viking 
Mars orbiters and landers and the Voyager outer planet probes. The 
computer eventually designed, built, and used for the Viking Orbiter 
had its roots in the programmable sequencer, but it also owed some 
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concepts, at least in comparison, to a computer built in the research 
side of JPL and aimed at the long-duration, complex missions of the 
future. The story of that computer research project adds a necessary 
perspective for understanding the direction JPL's on-board computer 
development took in the 1970s. 

THE STAR COMPUTER 

Researching the Reliability Problem 

In 1961 a Lithuanian-born computer scientist named Algirdas 
Avizienis, employed at UCLA, began research on a highly fault­
tolerant computer system for use on long-duration space missions. 
The nonprogrammable version of the Central Computer and Sequen­
cer would soon make its first flight on Mariner Venus 1962. Even at 
that early date, JPL expected to use computers on board the "Grand 
Tour" spacecraft planned for the 1970s. A favorable alignment of the 
outer planets would make possible a mission that could fly by Jupiter, 
Saturn, Uranus, and Neptune, thus having encounters with all the gas 
giants in one sweep. Such a mission would have to last for years, with 
the spacecraft operating autonomously for long periods of time. In­
convenient speed-of-light communications delays in the exploration 
of the inner planets would become crippling in an outer planets mis­
sion, requiring a spacecraft to carry its own "brain," because the earth­
bound brains of its makers would be hours away in an emergency. 

Avizienis' chief interest was in computer reliability. Computer 
failures occurred much more frequently then than in today's world of 
ICs. A computer entrusted with the successful completion of a deep 
space mission could not afford to fail before or during its long­
awaited encounter, so JPL and Avizienis' interests came together at 
just the right time. During the period from 1961 to 1965, the 
Laboratory sponsored his search for a more fault-tolerant computer. In 
1965 the reliability scheme was settled and construction of a prototype 
began. The breadboard version first ran a prof ram in March of 1969, 
after a 2-year effort at software development 8. Avizienis named the 
computer ST AR, for self testing and repair, and the name gives a clue 
to the architecture. JPL's Flight Computers and Sequencers Section of 
the Guidance and Navigation Division paid for the work. Avizienis 
was responsible for the concept; David A. Rennels, later a colleague 
at UCLA, for the hardware; John A. Rohr, for the software. F.P. 
Mathur did the reliability calculations, and the MIT Instrumentation 
Laboratory developed the read-only memory, which was basically a 
core rope type of memory39. 
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Avizienis used selective redundancy to achieve reliability. On the 
Space Shuttle, the on-board computers are complete redundant ver­
sions of each other and are considered multiple computers. In the 
ST AR, the computer is considered a single entity with its separate 
components replicated. Thus, each subsystem of ST AR had several 
duplicate versions of itself in the computer as spares. The key advan­
tage is that the spares were unpowered as long as the primary com­
ponent ran successfully. Only when there was a failure would the 
spare come to life, and then power to the failed component would be 
cut off. Thus, the total power consumption of the ST AR equaled, but 
did not exceed, that of a similar computer without the spares, making 
it attractive to power-conscious spacecraft designers40. In the 1960s, 
all spacecraft computers were simplex systems. The only ultrareliable 
system was the Launch Vehicle Digital Computer used on the Saturn 
IB and Saturn V boosters. Its reliability was achieved by using triple 
modular redundant (TMR) circuits such as those in the Common Sec­
tion of the Skylab computer system. Avizienis evaluated TMR cir­
cuitry and found that the number of independent failures a TMR sys­
tem could tolerate before failing was much smaller than a component­
redundant computer such as ST AR could tolerate41 . Also, reliability 
theoretically increased through dormancy42. Mean-time-between­
failure (MTBF) figures for a component begin when the component is 
turned on; thus, a subsystem with a MTBF-of 1,000 hours, backed up 
with two identical spares, yields a MTBF of 3,000 hours. That was the 
theory behind ST AR. 

Avizienis reasoned that failures were either caused by transient 
conditions or permanent component failures. In order to check for 
transient faults, ST AR would repeat the program segment in which a 
fault was first detected. If the fault repeated itself, the affected com­
ponent would be turned off and its spare activated, with the program 
segment repeated again. All fault detection was by hardware tech­
niques, with error-correcting codes included in the software43. Poten­
tially, STAR could be an "automatic repairman" for the entire 
spacecraft, if other spacecraft systems used the same concepts44. 

Applications for STAR 

In 1969, JPL began designing a Thermoelectric Outer Planet 
Spacecraft, or TOPS. In previous inner planet probes, the flight paths 
were close enough to the sun to enable the spacecraft to use solar cells 
for power generation. Outer planet missions ranged so far from the 
sun that solar cells would be inadequate. TOPS would carry 
radioisotope thermoelectric generators to provide electrical power. 
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Figure 5-3. The STAR computer configuration. (From Avizienis, "Design 
Methods for Fault-Tolerant Navigation Computers," JPL TR-32-1409) 
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Box 5-2: ST AR Architecture and Software 

ST AR was a fixed-point machine with a 32-bit word. Using 
separated components for redundancy meant that they had to be con­
nected on a bus, which had 4-bit bytes as the basic transfer block45 There 
were 16K words of read-only memory, which Avizienis said consisted of 
a "braid" of transformers and wires46. Since MIT built the device, the 
description almost certainly indicates that it was a core rope similar to 
that used in the Apollo Guidance Computer (AGC). The basic version 
used two copies of 4K of random-access memory, with up to 12 units 
attachable. Avizienis forsaw that the memory would have to be 
reprogrammed in flight on a mission like Grand Tour, so provision was 
made for that function47 . 

Use of a large word size was not to increase arithmetic power as 
much as to provide space for error-checking codes. A ST AR address 
consisted of a 16-bit field for the address and a 4-bit check field. The 
address would be multiplied by 15 (yielding 20 bits), and then stored or 
transmitted along the bus during an operation. At the receiving end, the 
address would be evaluated according to the following equation: 

C(a) == 15-151a 

where 151a is the modulo residue of a. Numeric data were handled 
similarly; the 28-bit operands multiplied by 15 to get a 32-bit word. If 
the result of the check operation was zero residue, the data or address 
was correct. If not, ST AR issued a fault signal48 . 

STAR had three control signals. One was the common I-megahertz 
CLOCK signal. RESET indicated a return to a standard initial state. 
SYNC signaled the beginning of a new 10-step instruction cycle49. If a 
fault was detected, the computer would return to the last SYNC point 
and begin executing instructions from there . If the 10 instructions after 
the SYNC were executed successfully, ST AR sent a new SYNC signal. 

ST AR' s read/write memory units were different in that they would 
recognize either their hard-wired name or an assigned name50. In this 
way, if a memory unit and its backup copy failed, another memory unit 
could be assigned its name, loaded with the appropriate data, and then 
act like the original memory unit, thus avoiding the necessity of chang­
ing all the addresses in the software. When an instruction appeared on 
the memory in (MI) bus, the memory unit that had that address put its 
contents on the memory out (MO) bus, and the Arithmetic Processor or 
other component loaded it in for processing51 . 
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Box 5-2 (Continued) 

The heart of the ST AR was the Testing and Repair Processor, or 
TARP. Whereas the other components of STAR had either one or two 
unpowered spares, the TARP had three active versions and two inactive 
spares. Functions of the TARP were to maintain the rollback points to 
which the software returned after a failure detection, to diagnose failures, 
and to check itself. Each time an error check was made, TARP' s three 
units would vote. If all three or two of three indicated a failure, then the 
TARP issued an unconditional transfer to the rollback point. In the case 
of a 2-to-1 vote, the dissenting unit was considered failed, and was shut 
off as a spare was activated52. Another TARP disagreement caused the 
last spare to be activated. On the third TARP failure, one of the 
previously shut down units would be reactivated, so that there were al­
ways three T ARPs in action at any given time. Avizienis thought that 
since most failures would be transients, it would be safe to reactivate a 
unit. After all, if it disagreed again, it would be shut down. 

John A. Rohr' s software group did not begin work until 1967. An 
assembler, loader, and simulator were developed on a UNIVAC 1108 
mainframe computer owned by JPL53 . Software was all done in as­
sembler, with a rich set of 180 single address instructions54. The as­
sembler did allow some types of higher level statements, mostly for 
arithmetic. For instance, COMP Y=Y + 1 was directly compiled into the 
several machine instructions necessary for execution55. In this way, 
some of the tedium associated with assembly language programming 
was avoided. A floating-point subroutine to extend the calculating power 
of the machine was planned, but there is no evidence it was ever 
implemented56. It would have had to have been done in software. The 
ST ARlet, a limited breadboard version, ran its first program on March 
24, 196957. The full system, save the timing processor, was on the bread­
board by April 197058. 

STAR was considered as the on-board computer for TOPS59. A 
control computer subsystem for the TOPS would use STAR technol­
ogy, the full 32-bit word, but just 4K of read-only memory and 8K of 
the read/write memory60. The chief physical obstacle to using ST AR 
on a spacecraft was size. The breadboard version filled l 00 cubic feet. 
A vizienis wanted to reduce it to 2 cubic feet and 50 watts61 . By 1971, 
the requirements reduced to 1 cubic foot, 40 pounds weight, and 40 
watts power62. Even though progress was made in this area, ST AR 
never flew on a spacecraft. Components built to ST AR specifications 
found their way into the NASA Standard Spacecraft Computer 1 
(NSSC-1), used in earth orbital operations, but the concept of selec­
tive redundancy was not incorporated into flight computers to the ex­
tent desired by Avizienis. 

ST AR did not find its way to the outer planets for two reasons. 
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One was budget cuts63 . Even though the Voyagers were launched in 
the late 1970s, the original TOPS program and the Grand Tour were 
canceled due to budget constraints. The fact that Voyager 2 is essen­
tially executing the Grand Tour is a bonus. On-board computers used 
on Voyager developed from a different line. So, even though 
Avizienis designed a Super-ST AR with a rnicroprogrammable proces­
sor using large-scale integration technology, which seemed certain to 
fulfill the requirements of size, power, and weight, he never sold it to 
JPL 64. A second reason ST AR never flew was that engineers were 
concerned that the ST AR' s TARP and its failure switches were a 
weak point. The concept of a TARP, as with TMR, is always limited 
by the question of "who tests the tester?"65. The actual switches 
entrusted with powering down a failed component and charging up 
another are the weakest link in the system. At one point, JPL sub­
contracted to the Stanford Research Institute for work on a magnetic 
switch, but apparently the results were not satisfying66. 

The ST AR research program was not a waste even though the 
computer itself did not. fly. It contributed to the development of new, 
reliable electronic components, such as those used on NSSC-1. It also 
provided a constrast to the development track being taken on the 
Mariner and Viking Orbiter spacecraft. One engineer involved in 
Viking Orbiter computer development said that STAR-type hardware 
was considered but deemed too complex. He thought that a two 
machine system running in parallel would be simpler and as reliable 
for a Mars orbiter/lander67. Even though the technology of computers 
was not ready for STAR, it remains an innovative design and one of 
the few computer research projects funded by NASA. The principles 
developed remained valid for possible future applications that JPL 
was about to begin. 

By far the most direct and far-reaching contribution of the ST AR 
program to the future of JPL projects was John Rohr's work on the 
assembler/linker/loader for the software. It was the basis for the com­
mand sequence translators used through the present. Though exten­
sively reworked and redesigned, the fundamental concepts were es­
tablished by Rohr during the ST AR development68 . 

VIKING COMPUTER SYSTEMS 

Viking missions to Mars were among the most complex ever ex­
ecuted by an unmanned spacecraft. Two probes were launched in 
1975, with landings planned for the Bicentennial Summer of 1976. 
The project was controlled by the NASA Langley Space Flight Cen­
ter, making it unique among deep space projects. Major work began in 
1970, with a planned 1973 landing put off until 1976 because of 
budget cuts69. 
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Figure 5--4. The Viking Orbiter and Lander each carried dual redundant computer 
systems. The Lander is in the elliptical shroud. (JPL photo 293-9157) 

The Viking mission profile was a combined orbiter/lander. NASA 
had successfully orbited Mars with two Mariners in 1971. The Viking 
Orbiters were to conduct much the same science and imaging experi­
ments as their smaller predecessors. But the Lander was a dramatic 
addition: it would be the first spacecraft to land on a planet that had a 
chance of harboring life as we could understand it. JPL got the con­
tract to develop the Orbiter as a result of its Mariner experience. Be­
cause JPL maintained the Deep Space Network and an existing con­
trol center, it also got the mission support contract. The surprise for 
JPL was that the Martin Marietta Corporation's Denver division 
received the contract for the Lander. JPL had built the only U.S. un­
manned landers, the Surveyor moon probes. Despite that experience 
and the difficulty of coordinating work on the Orbiter, Lander, and 
mission support in sites ranging from California to Denver to Vir­
ginia, Martin Marietta was chosen.** 

Both the Orbiter and Lander carried dual redundant computer sys-

**Edward and Linda Ezell make the point in their book On Mars (NASA 
SP-4212) that part of the reasoning for choosing Martin Marietta was that the 
project management team at Langley felt that JPL would be overtaxed handling 
responsibilities for two spacecraft. Also, the difficulty of integrating the Lander 
components was greater, and a large aerospace contractor such as Martin had 
more extensive experience with such activity. 
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terns. JPL had evolved past the programmable sequencer stage and 
flew a device called the Command Computer Subsystem (CCS) on the 
Orbiter. The Lander carried the Guidance, Control, and Sequencing 
Computer (GCSC). On both systems JPL and Martin demonstrated 
exceptional competence in software engineering in the areas of 
documentation and configuration control. JPL was essentially pro­
gramming its first flight computer. The standards and practices used 
during the Viking project surpassed all but the Shuttle on-board 
software in quality. Somehow JPL avoided the trial and error learning 
process Johnson Space Center went through with the Gemini and 
Apollo flight software. On the other hand, Martin Marietta typically 
used good software development practice. Along with other defense 
contractors such as Boeing Military Airplane Company and TRW 
Corporation, it was among the leading producers of software in the 
world. Whereas commercial computer companies such as IBM, 
Honeywell and Digital Equipment have generally written systems 
software for their own products, large-scale applications software has 
been the domain of vendors supplying the military services with com­
mmand and control systems and embedded software in weapons. Mar­
tin Marietta is such a vendor and subscribed to military contract 
specifications that required the use of strict software engineering prin­
ciples. That experience carried over to Viking, prompting an innova­
tive method of developing the flight program that holds promise for 
future space systems. 

Viking Orbiter CCS 

The Viking CCS made it possible to increase the results of the 
Orbiter mission many times over the Mariners of 1971. According to 
one designer, the 512-word Central Computer and Sequencer would 
have returned less than a hundredth of the data received from the 
Orbiters 70. JPL considered several designs for the Viking computer, 
finally settling on the eventual Command Computer because of its 
simplicity. It had the least number of parts and was similar to prior 
systems in concept 71 . 

Viking's CCS was the first JPL command device to be fully 
redundant. Mariner missions that retained the original hard-wired se­
quencer to back up the programmable sequencer were redundant in 
the same way the Apollo lunar excursion module (LEM) had com­
puter redundancy: two different systems could accomplish some, but 
not all, of the other's functions. The dual redundancy of the Viking 
subsystem was more like Skylab's computer system, with two power 
supplies, two processors, two output units, two discrete command buf­
fers, and two coded command buffers. Interrupts and level inputs to 
the system were split and thus delivered identically to both processors. 
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Processors and output units were cross strapped so that in case of 
failures they could be reassigned. The hardware requirements docu­
ment generated by JPL called this type of redundancy "single fault 
tolerance," in that each component had a backup, making possible ex-
tensive redistribution of functions 72. In practice, the two sets of com­
puters were useful because, at times, there was too much for one com­
puter to do 73 . Although the designated secondary processor and 
memory were rarely on line, certain operating modes called for dual 
processing. Requirements specified three operating modes: individual, 
where each computer could be working on different events; parallel, 
where each computer worked on the same event; and tandem, where 
each computer worked on the same event and the output units were 
voted in a manner similar to that used on the Mariners when the two 
sequencers were in action together74. 

In general, the design of the processor was exceedingly simple, 
yet fairly powerful, as indicated by the use of direct addressing, a min­
imal set of registers, and a reasonably rich set of 64 instructions. The 
key is that the design placed relatively light demands on spacecraft 
resources while replacing both the programmable sequencer and the 
command decoder used in the Mariners. The fact that the processor 
was later adopted by the Voyager project as its Command Computer 
and modified for use as the attitude control computer is not only a 
statement of JPL's frugality but also a testament to the versatility of 
the design. 

Software Development Practices for the 

Viking Command Computer Subsystem 

By the time Viking was under development, JPL had over a 
decade of ground software experience, with resulting institutional 
development standards. Most space-related software done at JPL in 
the 1960s was for the Deep Space Network and the large computers in 
the mission support area. Viking was the first flight software project, 
so it was remarkable that effective software standards were in effect 
from the beginning. 

JPL 's project organization assigned each subsystem a Cognizant 
Engineer responsible for the overall development of the component. 
For the CCS, Wayne H. Kohl was the "Cog Engineer." Samuel 
G. Deese and T. K. Sorenson also signed the hardware and software 
requirements documents and were heavily involved in the develop­
ment of the computer. Significantly, JPL also assigned a Cognizant 
Software Engineer, R.A. Proud. JPL 's project management apparently 
believed that software could be engineered, like hardware. Both 
hardware and software had requirements documents that set forth the 
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Figure 5-5. A block diagram of the Viking Orbiter Command Computer Subsys­
tem hardware. This basic dual computer configuration was used for both Viking 
computers and all three Voyager computer systems. (From Kohl , Viking Orbiter 
Computer Command Subsystem Hardware) 

functional specifications for the Command Computer and its software 
load75. These were followed by detailed design documents. 

Design documents generated for the Vi!ang software and avail­
able to programmers were based on a software design description. 
That volume contained an overview to the mission and the software 
architecture, and, for each routine, detailed process descriptions, 
entry/exit points to other routines, variables and their descriptions, 
constants, and other relevant notes. A flowchart followed each 
routine's narrative description. Appendices to the document included 
a hardware description and a reference guide to the instruction set. 
Programmers were expected to use the design description as a manual. 
Volume two of the document contained the assembly listings of the 
resulting flight routines. By opening both volumes to the same 
routine, it was possible to easily follow the logic of the programs by 
reading both the narrative and the comments on the listing. 
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Box 5-3: CCS Hardware 

The Command Computer's central processor contained the 
registers, data path control and instruction interpreter76. The machine 
was serial in operation, thus reducing complexity, weight, and power re­
quirements. It had 18-bit words and used the least significant 6 bits for 
operation codes and the most significant 12 for addresses, as numbered 
from right to left. This permitted 64 instructions and 4K of direct ad­
dressing, both of which were fully utilized. Data were stored in signed 
two's complement form, yielding an integer range from -131,072 to 
+ 131,071. Average instruction cycle time came to 88 microseconds. 
Thirteen registers were in the Command Computer, mostly obvious types 
such as an 18-bit accumulator, 12-bit program counter, 12-bit link 
register that pointed to the next address to be read, and a 4-bit condition 
code register that stored the overflow, minus, odd parity, and nonzero 
flags 77 . 

Timekeeping on the Orbiter was in three units. The clock issued in­
terrupt pulses every hour, second, and 10 milliseconds 78 , similar to the 
sequencer clocks used in Mariner, save that the IO-millisecond pulse 
provided finer timing. Pulses entered an interrupt processor that collected 
and interpreted them before transmission to the central processor. The 
interrupt processor had 32 interrupt levels, and constantly scanned for 
the highest priority task being requested79. Thus, the Command Com­
puter had the same interrupt-driven concept used in the Apollo and Shut­
tle manned spacecraft computers and the NSSC-1 , but it was ac­
complished in hardware rather than software. 

Viking's Command Computer used 4K of plated-wire memory80, 
divided into four equal parts . The first three could be set as either read 
only, write protected, or read/write, but the last lK was always 
read/write81 . On Viking the first 2K was specified as read only, and the 
program instructions stored there . The second 2K was read/write, and the 
data resided in that segment. 

Software development was guided by the "Viking 1975 Orbiter 
CCS and Support Equipment Software Development and Control 
Plan," which set the standards for production of the flight software 
and software for ground support and testing equipment. The Cog­
nizant Software Engineer, Cog Engineer, Subsystem representative to 
the Systems Engineer, and all software design team members 
reviewed each routine as it was designed and coded82. Coding was 
assisted by the Orbiter Sequence Translator Program, or OSTRAN. 
Code produced by the programmers was verified by running it in both 
the CCS Breadboard and the CCS Programming System. The former 
was a complete hardware version of the Subsystem, and the latter a 
software simulation. The Commmand Computer Subsystem Tech-
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Figure 5---6. Different types of packaging used in the Viking computer system. 
Note the discrete components in the leftmost device . (}PL photo 360-276-AC) 

nical Manager, hardware Cog Engineer, and Cog Software Engineer 
each compared the performance of the routines on these devices83 . 

Testing and system integration was done from the bottom up. 
Programmers tested individual routines through all options at ex­
pected times, all expected branches, and all expected interaction with 
other routines, and then through selected failures84. As with any real­
time system, it was impossible to test for all possible failures. After 
this unit testing, the programmers integrated the routines with related 
code and ran it on either the breadboard or the flight hardware. 

As with the most successful software development projects, JPL 
exercised strict configuration control. Even though the memory was 
eight times larger than that on the programmable sequencers, so many 
functions were transferred from hardware to software that memory 
was constrained from the beginning. Viking Orbiter Data Manage­
ment Office handled changes to the documents. The Configuration 
Control Board, consisting of the Subsystem Technical Manager, the 
CCS Support Equipment Tech Manager, the hardware Cognizant En­
gineer, and the CCS Software Engineer, decided on software changes 
or what to do about discrepancies between the design and code or 
perf ormance85. 
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Box 5-4: CCS Software Structure 

The Viking Command Computer software structure appears dif­
ferent from others described in this volume because of the apparent lack 
of an operating system or executive program. The funct ional block 
diagram used in the CCS requirements document (reproduced here) 
shows that all inputs, either interrupts, or "level" inputs, enter a software 
block that contains conditioning routines. The TRAP routine maintains 
32 memory locations that correspond to the 32 levels of the interrupt 
processor. Each location contains an instruction to be executed or an ad­
dress to branch to if the appropriate interrupt occurs 86. 

After clearing the input conditioning block, signals are either routed 
to the command decoding software or to the generation software. The 
command decoder does just what its title implies: examines the bit 
streams of commands routed to it for specific orders and then routes 
them to either the event generator, the output unit driver, or the telemetry 
processor. 

The event generator block contains the most complex software in 
the system. Its chief routine is the Master Table Driver. Software re­
quirements documents specified that the Master Table Driver handle all 
time sequenced events, maintaining up to 20 tables at once87. Thus, it 
was the replacement for the programmable sequencer carried on previous 
missions. Implementation of the Master Table Driver was the T ARMEX 
routine: Timing and Region Management Executive containing many of 
the common executive functions centralized in other machines. TAR­
MEX is referred to as a "time-sharing executive" in the software 
documentation, but that is perhaps too ambitious a title88 . It did regularly 
scan through the event tables and maintain the time countdowns for a 
number of mission events. At 454 statements, it was one of the largest 
routines on the spacecraft. Functionally, it acted like any other sequencer 
JPL built, the difference being that it was implemented in software and 
thus highly flexible , which contributed to its success on the Viking mis­
sion and later on Voyager. 

Other routines in the event generator were used less comprehen­
sively than T ARMEX. The Data Acquisition and Playback Routine con­
trolled science instruments, imaging, and data storage until broadcast to 
earth. The accelerometer control routine was needed because for the first 
time an unmanned spacecraft would have active control over engine 
bums, rather than depending on precalculated timed firings. In the past, 
the maneuver and insertion firings were made based on calculations done 
before the flight and implemented as timed sequences in the Central 
Computer and Sequencer. 
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Box 5-" (Continued) 

Viking carried accelerometers and a computer, making it possible 
for the spacecraft to fire its engines and calculate when to tum them off 
in real time based on velocity figures uplinked in advance from naviga­
tion computers. A Launch/Hold/Reset routine handled spacecraft func­
tions as a fixed sequence during the prelaunch, launch, and early cruise 
phases of the mission, with the capability to reset its timers if holds oc­
curred in the countdown89. This was a more robust version of the se­
quences carried for the first phase of previous missions. An Error 
Recovery routine included a programmable version of the 66 2/3-hour 
command loss sequence implemented in Mariner missions. The com­
puter could be programmed to check for commands at varying times. 
During cruise, the command loss routine could be set to check just once 
a week or more, and changed to check at much closer intervals near 
encounter90. Deep Space Network resources were thus less tied up 
during relatively dormant periods of the mission, as commands did not 
need to be sent just for the reason of keeping the command loss sequence 
from starting. 

Remaining software blocks were the output driver, which trans­
ferred output signals to the appropriate output unit for distribution to the 
command buffer and eventually the affected systems, and the telemetry 
processor. The telemetry routine took over some of the functions 
previously done by the hard-wired Flight Data System. The Flight Data 
System on Viking had its own dual lK memories of 8-bit words. Com­
mand Computer software helped manage that memory and prepare data 
streams for transmission. The Checksum routine was similar to that used 
in the Central Computer and Sequencer, except that a range of addresses 
could be specified, instead of the entire memory being summed. 

Viking Orbiter software had to be written in an assembler, which 
fortunately had relocatable addresses, simplifying the maintenance task. 
The 64 instructions were mostly common to other computers, but there 
was no multiply or divide. There were two sets of loads, stores, incre­
ments, and subroutine calls: one used during independent operation and 
one aimed at dual operation, so that the two memories could be kept 
equivalent91 . Even though many interrupts were available, most routines 
as coded had all but the internal error and counting interrupts disabled92. 
Many routines were free to run out without being interrupted, in contrast 
to the highly interrupted Apollo and shuttle software . Programmers 
avoided the memory and processing time overhead required to preserve 
the current accumulator and register contents during an interrupt. 
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Figure 5-7. A circuit board with integrated circuits used in the Viking Orbiter 
computers. (JPL photo 360-371-AC) 

Figure 5-8. One of the Viking Orbiter plated wire memories in a vibration test 
device. (JPL photo 360-276-AC) 
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Instituting concepts of full documentation, configuration control, 
and engineering principles, such as modularization in software 
development, made it possible to have a successful flight program at 
launch and to remain successful throughout a long mission. Some of 
the people involved in Viking left the project before the Orbiters 
reached Mars, either to other projects, or to leave the Laboratory. 
With the materials and techniques available to maintain the computer 
software, it was possible to bring new people into the project and have 
them make necessary updates and upgrades to the flight program. This 
capability is as important to a long-term mission as the reliability of 
the hardware. JPL's concern for Grand-Tour-length reliability in 
hardware, exemplified by ST AR, also extended to software. Without 
such an attitude the later Voyager would be much more difficult to 
maintain as an active project. 

The Viking Lander GCSC 

Martin Marietta's Denver division developed the computer sys­
tem for the Viking Lander in an innovative way. To this point the 
stories of the development of various on-board computer systems 
have a similar theme: Project managers determine the expected 
specifications of the system, choose the hardware, and develop the 
software. By the 1980s, the danger of this approach became evident to 
computer and software engineers and to some of their customers. 
Choosing the hardware first and then developing the software for an 
embedded computer system runs the risk of the eventual software ex­
ceeding the hardware's capabilities or capacity. If the hardware is 
chosen before the full requirements of the mission are known, which 
was often the case, then the software is written in such a way as to 
compensate, thus exceeding the memory size because the compensat­
ing programs were not in the original software estimate. If the 
hardware turns out to be more powerful than needed, the software is 
expanded to take advantage of the additional capability, so it pushes 
the hardware to its limits. Either way, the development of the com­
puter system and its software becomes more complex, expensive, and 
late. The Gemini, Apollo, Shuttle, NSSC-1, Mariner X, and Galileo 
projects all suffered because of insufficiencies in computing power or 
memory, largely because of poor specifications. 

Martin Marietta did a number of military projects that repeated 
the same mistakes that the space program had made in regard to on­
board computers. In 1970, when the company received the Viking 
Lander contract, it determined to follow a different course of develop­
ment by adopting a policy of "software first"93. This was one of the 
earliest attempts to break the paradigm of specification/ hard ware 
selection/ software development/ reaction to changed requirements, a 
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cycle that crippled many projects. The decision turned out to be highly 
successful. The Air Force studied the results and disseminated the 
technique. Thus, it contributed to a shift in attitude which, though only 
barely established 15 years later, is still a turning point in the history 
of computing. 

"Software first" techniques make it possible to compensate for the 
severest deficiency of most projects, incomplete or incorrect require­
ments specification. Hardware decisions and software sizing are based 
on the requirements document developed early in the program. Users 
of the eventual product must be careful in contributing to this docu­
ment. In the Apollo program, NASA gave MIT a broad statement of 
requirements, basically to develop a guidance system capable of 
navigating a spacecraft to the moon and back. Painful lessons learned 
as a result of the Apollo project included a greater appreciation for 
more detailed specifications. As a result, the requirements for the 
Shuttle were among the most outstanding written to that time. Still, 
memory estimates were far off, stretching the computer system to its 
limit. In contrast, the Viking Lander software developed contem­
porary to the Shuttle kept to its original boundaries, staying within the 
hardware capabilities of its computer. Both Shuttle and Viking had 
extremely high change traffic, and both project management teams an­
ticipated many changes; but the software first philosophy handled 
change differently. Martin Marietta recognized that it is easier to 
change software independently of hardware than to react to revised 
specifications. More importantly, it recognized that if it is necessary to 
change hardware requirements, it is easier to change before it is 
purchased than afterwards. If the software is developed first, the 
hardware can be bought to fit it. Martin Marietta completed the flight 
software for the Lander 1 year before the hardware was delivered, 
which was only 2 months before the launch94! The company ac­
complished this feat because detailed timing and sizing experiments 
gave confidence in the eventual hardware selection95 . 

To implement the concept of software first, Martin developed a 
Viking Controls Mock-up Unit (VCMU) using two Standard Com­
puter Corporation IC-7000 computers. IC-7000s had a two-section 
CPU. The Viking team microprogrammed one processor as an 
emulator of the proposed GCSC on the Lander; the other processor 
acted as a simulator of the other spacecraft systems96. This system 
could be linked to an IBM 360/75 used at JPL for mission control, 
thus providing simulations of flight operations97. 

Differences between an emulator and a simulator are rather fine 
but very important in this case. A simulator imitates a computer using 
software that functions interpretively. For example, a simulator run­
ning a program written in the machine language of the target com­
puter executes a set of instructions in its own machine language that 
has the same effect. The problem with this method is that it has vari-
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able results. Even though most simulations are done on computers 
more powerful than the target machine, performance is far less, and a 
real-time simulation is virtually impossible. Even such simple in­
structions as an ADD, which can usually be simulated using a single 
instruction, run much slower because of the software overhead in­
volved in maintaining pseudoregisters and fake memory. Programs 
that run in a minute on the target machine might take as long as an 
hour on a simulator. 

An emulator runs the target machine's program in near real time. 
In fact, its performance on some instructions is likely to exceed that of 
the target due to the performance difference between the emulator and 
the actual hardware, but other instructions run slower, creating some­
thing of a balance. Microprogramming makes it possible to achieve 
these results. Older computers had the control unit that handles the 
flow of signals in the computer permanently hard-wired during 
manufacture; therefore, the way a particular computer executed in­
structions was fixed throughout its operating life. As early as 1950, 
Maurice Wilkes of Cambridge University suggested representing the 
control paths in the form of special software. He called these control 
programs "microprograms" and their instructions "microinstructions" 
to differentiate them from higher level programs and code98. Such 
"microcode" could not be implemented in the 1950s because suitably 
cheap and permanent memory was not available. The IC-7000 was a 
microprogrammable machine, so its microcode could be changed by 
Martin Marietta to make the processor execute instructions like 
another computer. Martin started with a reasonable set of instructions 
and tried to write the software. If a problem or change arose that 
would be better handled by hardware or a new instruction or two, the 
microprograms for the new operation codes were installed99. In this 
way, the hardware evolved along with the software, and when a fully 
functioning software load was complete, the hardware requirements 
were also complete. 

Ironically, other constraints eventually thwarted Martin's plan for 
the computer hardware. Developers working on other subsystems of 
the Lander had trouble delivering hardware that could accomplish all 
the mission goals without increasing its weight. So when the time 
came to purchase the computer, the weight gains by the other systems 
had to be compensated for by the only system without hardware. 
Therefore, the computer that flew on Viking was actually the "third 
best" of those available, its chief deficiency being a poor instruction 
set, but it weighed less than the first choice100. Martin changed the 
software affected by the less powerful computer. Even though the op­
timum computer did not fly, the principle of software first was 
demonstrated. Additionally, Martin introduced the concept of using 
off-the-shelf equipment for unmanned spacecraft projects. Despite 
the care taken to anticipate problems, some of the most common 
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development difficulties occurred. In an environment created to an­
ticipate change, the lack of detailed software requirements and a large 
number of change requests still caused serious problems 101 . At one 
point, testing came to a standstill, which turned out to be fortunate in 
that the Systems Engineering Director began to take software 
seriously and to treat it like hardware, a lesson painfully repeated on 
project after project102. And again, memory sizing, though controlled, 
posed difficulties. Martin completed the prototyping for the Lander 
software in July 1971. Its actual size at that point was 13K. Martin 
engineers specified 18K, anticipating inevitable growth to accom­
modate new requirements and set up a control group to ensure that the 
memory stayed under that size. Twice during development the 
software exceeded memory limits, first in March-May 1973, when it 
topped off at 18.5K, and then in June 1974, when it hit 19K. Both 
times the flight program was reduced to the correct level 103. These 
overruns are minimal compared to those of the Apollo and Shuttle 
programs. 

Eventually the soft_ware for the Lander reached 20,000 words and 
required 1,609 man-months to produce (the reason more than 18,000 
words are shown here is that some routines used after landing overlaid 
landing software). Over 200,000 instructions of emulator and 
simulator software were produced, requiring just 494 man-months 1°4. 

Differences in the proportion of development time to instructions 
are because the Lander software was hand-coded, whereas the 
simulators could be written with the aid of assemblers and higher 
level language compilers. Langley Research Center project managers 
determined that the flight software would be verified by an independ­
ent organization, so TRW Corporation was contracted to provide such 
services on site at Langley 105. Such completely independent verifica­
tion is somewhat more useful than an "independent" quality assurance 
group within a company, as it has a more adversary relationship. 
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Box 5-5: Viking Lander Computer Characteristics 

The GCSC consisted of two Honeywell HOC 402 processors, each 
with 18K of 2-mil plated-wire memory. These processors had the 
capability of eight levels of interrupt and an average 4.34-microsecond 
instruction cycle time 106. Original plans for the Viking Lander specified 
a single computer for the landing phase and another for on-surface 
operations, but when the project was delayed this changed to a dual 
redundant system similar to the Orbiter CCS 107 . Honeywell's computer 
had a 24-bit word size, with 47 instructions, and used two's complement 
representation for data. Compared to the NSSC-1 and Viking Orbiter 
computer, it is slightly faster than the former and much faster than the 
latter, with better numerical precision than both. 

Lander software structure reflected common short-cycle real-time 
control concepts such as those used in the Space Shuttle Main Engine 
Controllers. During descent, the software executed a 20-millisecond 
control loop, cycling through a set of routines 1°8. Martin claims that the 
executive was a "virtual machine" facility, in that each process "thought" 
that it had its own machine and was not sharing resources with other 
processes 109. Galileo Command and Data System software developers 
used the same terminology, but on that spacecraft the virtual machines 
resided on several microprocessors and were more truly "virtual." 
Martin's system is more like the cyclic time-sharing executive found in 
the Shuttle Backup Flight System. 

One problem Lander software developers had was that no adequate 
assembler was ever written for the computer, perhaps because of the 
changing nature of the instruction set1 lO _ Patches had to be hand-coded 
in octal, with many jumps to unused memory space because of the lack 
of an assembler with relocatable addressing. A programmer trying to 
trace a routine thus had to contend with having to go back and forth on 
the memory map to follow the logic. JPL's Viking programmers could 
keep their routines in contiguous memory locations by reassembling the 
code after changes. The assembler would automatically move the data 
around to accommodate the modifications. 

Lessons learned in the Viking Lander computer system develop­
ment program influenced Martin Marietta's future work. After the 
VCMU outlived its usefulness, the organization and equipment were 
renamed EMULAB to reflect what takes place inside it. The Air Force 
requested that Martin study its software development practices during 
its participation in the space project, resulting in a report entitled 
Viking Software Data 1 ll and issued by the Rome Air Development 
Center at Griffith Air Force Base, New York. This report and the ex­
perience gained influenced the continuing shift from "hardware first" 
to "software first" among some contractors in the late 1970s and early 
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1980s. As microprocessors become military- and space-rated, it will 
become easier to adopt such a sequence because readily available 
microcomputers can be adapted to specialized functions. Users are 
also becoming more likely than before to adopt microprogramming to 
tailor instruction sets, as in the shuttle general-purpose computers and 
the Galileo attitude control computer. 

ON TO THE OUTER PLANETS 

Experience and the appreciation of the flexibility of computer 
processors are the legacy of the computer systems development for 
the inner planet probes. Consistent and detailed documentation, 
simple, reliable, and reusable hardware designs, and the practice of 
many missions contributed to the later and continuing success of 
Voyager. Just as management experience gained during Apollo ap­
plied to the shuttle, JPL 's success with Viking made the concurrent 
development of Voyager and Galileo easier. People like Samuel 
Deese, who gained practical experience in the 1960s, led subsystem 
management in the 1970s. Viking's Wayne Kohl went on to Galileo 
after the Mars landings in a position similar to the one he held on the 
former project. Both Voyager and Galileo are better projects because 
of the continuity of techniques and personnel. 
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Distributed Computing 

On Board Voyager and Galileo 
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Voyager and Galileo are two outer planetary spacecraft that carry ex­
tensive computing capability. In spectacular encounters with Jupiter 
and Saturn, Voyagers 1 and 2 returned science data and imaging that 
far exceeded results of previous planetary flybys. Uranus was the suc­
cessful 1986 objective of Voyager 2, nearly 10 years after launch. 
Galileo is designed for a Jupiter orbiter and probe mission.* Both 
types of spacecraft carry multiple computer systems, distributing 
functions among several machines, rather than using one central com­
puter system as on the Viking Orbiter and Lander. 

Distributed computing on large unmanned spacecraft developed 
conceptually from several sources. In 1967, Marshall Space Flight 
Center commissioned a study by General Electric Corporation's Mis­
sile and Space Division in Philadelphia as part of preparation for a 
huge "Voyager" Mars lander to be launched on a Saturn V booster in 
the early 1970s. Marshall asked GE to compare the advantages of a 
central computer configuration versus separate computers for different 
subsystems. General Electric used a highly mathematical approach to 
develop power, size, and weight comparisons of the different 
proposals in light of "reliability considerations. Computer physical 
limits were set as high as 100 pounds and 300 watts due to the large 
size of the booster. This would allow computers such as the IBM 4Pi 
series, Autonetics D26J, and IBM's Saturn Launch Vehicle Digital 
Computer (L VDC) to be considered. Planners expected that the func­
tions that later showed up on advanced Mariners-such as ac­
celerometers, programmable sequencers with 512 words of memory, 
and telemetry registers-would be part of the proposed computer's 
capabilities and responsibilities. However, GE found that economies 
gained by a central system were outweighed by reliability advantages 
intrinsic to a distributed system 1. 

Another approach came from Edward Greenberg, a Jet Propulsion 
Laboratory (JPL) engineer who programmed for the Mariner VI and 
VII Central Computer and Sequencer and contributed to the Viking 
Command Computer Subsystem (CCS) design. In December, 1972, 
he proposed that the Viking computer be standardized as a multimis­
sion processor2. His intent was to reuse hardware and software 
development tools such as assemblers and simulators. Since one 
Viking computer could never handle all the functions needed on 
Voyager, several computers, each with a limited domain of functions, 
were needed. 

Aside from the GE study and Greenberg's proposal, JPL 

*Originally set for launch in the early 1980s, the mission slipped to May of 
1986, but the grounding of the Shuttle fleet and cancellation of the Shuttle Cen­
taur upper stage program in early 1986 led to an indefinite postponement and 
probably a change of launch vehicle. 
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developed an additional argument for distributed computing. Edward 
H. Kopf, Jr., a JPL engineer specializing in attitude control, pointed 
out that different sections of the Laboratory needed computers to per­
form their assignments on Voyager and Galileo. Each group wanted 
its "own" computer, so that it would not be constantly competing for 
resources with other groups3. Therefore, a distributed system would 
help keep the peace. 

The attractions of distributing computing, reliability, potential 
reusability, and separation of tasks, proved true in the development of 
the Voyager and Galileo spacecraft. Each has a functionally dis­
tributed set of computers. Voyager makes use of two of the Viking 
machines and a third, custom-built, computer. Each concentrates on 
processing different functions, such as attitude control, data format­
ting, and commanding. Galileo has dual processors for attitude con­
trol and six in a network for command and data handling. Both 
spacecraft were designed for long-duration, autonomous flight, a goal 
difficult to attain without the use of distribution. 

Figure 6-1. The Voyager spacecraft with the radioisotope generators on the left 
boom and the scan platform on the right boom. (JPL photo P l0727B) 

VOYAGER-THE FL YING COMPUTER CENTER 

After the cancellation of the Thermoelectric Outer Planet 
Spacecraft (TOPS) project as such, JPL proposed, and NASA funded, 
a project called Mariner-Jupiter-Saturn 1977. It was given the name 
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Voyager in the mid-1970s. Although TOPS' original mission was to 
conduct the Grand Tour of the four gas giant planets, Voyager was 
limited to flybys of the innermost two, Jupiter and Saturn. However, 
favorable gravity assists and hardware longevity made it possible to 
plan for a Uranus flyby by the Voyager 2 spacecraft and, potentially, a 
Neptune encounter. After visiting Jupiter and Saturn, Voyager 1 is to 
travel out of the plane of the planetary orbits and leave the solar sys­
tem. 

Voyager employs three dual-redundant computer systems per 
spacecraft. The first, the CCS, is nearly identical to that flown on 
Viking, performing sequencing and spacecraft health functions along 
with new ones necessitated by the addition of the other computers. 
Telemetry data formatting and transmission handled by the Flight 
Data System are done on Voyager with the help of a custom-built 
computer. Attitude control and articulation of the scan platform are 
accomplished with the third computer system. One concept from the 
STAR computer proposed for the TOPS, applicable to Voyager, is 
dormancy. JPL's project staff believed that equipment would last 
longer if unpowered . Although both CCSs are always powered, 
rarely are both Flight Data Systems running, and both attitude control 
computers are never turned on at the same time. Full bit-for-bit redun­
dancy is not maintained in the dual memories. For example, 
"expended" algorithms, such as the deployment sequence executed 
shortly after separation from the booster, need not be maintained5. 
Both memories are accessed by the single active processor in each 
system. The Flight Data System keeps a copy of its instructions in 
both memories, but intermediate data and variables can be stored in 
either memory. This seemingly casual attitude toward memory 
duplication tightens up considerably near encounter periods, which is 
one time that both CCS processors are in tandem mode. 

Since there are three computer systems on Voyager, JPL had to 
establish another layer of organizational control over its flight 
hardware and software development. Whereas Viking was assigned a 
single Cognizant Software Engineer, Voyager had three, managed by 
a Spacecraft Software Engineer. H. Kent Frewing of JPL assumed this 
position in early 1974 and sent out a series of organizing memos 
during the first half of that year.** Frewing' s February 20, 197 4 note 
set out his duties and a project time line through the summer 1977 
launch dates6. Manpower estimates for software development ranged 
from one programmer in 1974 and 1977, with a peak of four full-time 
programmers in late 1975. The small group allowed most work to be 

**He was replaced in early 1976 by Christopher P. Jones , who designed the 
integrated fault protection algorithms used on the mission, but Frewing laid the 
groundwork for management of the software. 
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done informally, easing communication. To provide some structure, 
Frewing established a Mariner-Jupiter-Saturn 1977 On-Board 
Software Design Team consisting of himself, Donald R. Johnson, the 
Flight Data System Cog Engineer, Stanley Lingon, the CCS Cog En­
gineer, and an Attitude and Articulation Control System 
representative7. They helped ensure the same close control of 
software development as on Viking, with good documentation and ef­
fective subroutine interfaces. The validation end of the software 
development process was handled by the Capability Demonstration 
Laboratory (CDL). Completed after the initial software was produced, 
it was a collection of either breadboard or flight surplus computer and 
science hardware, and its interfaces interconnected in the same way as 
those on the actual spacecraft. Its function is identical to that of the 
Shuttle Avionics Integration Laboratory (SAIL), in which both 
software and hardware changes could be tested to see if they func­
tioned successfully8. Under this management umbrella, and with Cog 
Engineers constantly elucidating requirements from the science side 
and interpreting them to software engineers, each of the three com­
puter systems took shape. 

Voyager CCS: Parameters and Problems 

NASA reeled from massive budget cuts during the 1970s. A 
changed political climate ended the Apollo era of near "carte 
blanche." Hampered by expensive Shuttle contracts as well as other 
factors, NASA management reduced its plans for unmanned explora­
tion of the solar system. As Voyager developed under the new con­
ditions, cost savings became a key ingredient in all engineering 
evaluations. JPL thus conducted a "CCS/CCS Memory Subsystem 
Design Inheritance Review" on January 17, 19749. Held a year after 
Greenberg's proposal for standardizing the Viking computer, the 
Review resulted in the adoption of the Viking CCS as the Voyager 
CCS. The eventual hardware functional requirements document reads 
like a copy of the Viking document10. I/0 interfaces with the new 
Flight Data System and Attitude Articulation and Control System 
computers are the major differences. Software such as the command 
decoder, certain fault processing routines, and others are fundamen­
tally identical to Viking 11 . Here again, differences are related to the 
new computers. All command changes and memory loads for the 
other computers are routed through the CCS 12. This required the ad­
dition of the routine MEMLOAD 13. Another routine, AACSIN, was 
added to evaluate power codes sent from the Attitude Control com­
puter as a "heartbeat" to inform the CCS of its health 14. The fre­
quency of the heartbeat, roughly 30 times per minute, caused concern 
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that the CCS would be worn out processing it. Mission Operations es­
timated that the CCS would have to be active 3% to 4% of the time, 
whereas the Viking Orbiter computer had trouble if it was more than 
0.2% active 15. As it turns out, this worry was unwarranted. 

Part of the reason why the more complex Voyager spacecraft 
could be controlled by a computer with the same size memory as 
Viking is the ability to change software loads. In-flight reprogram­
ming, begun when the programmable sequencers flew on Mariners, 
and brought to a state of high quality on Mariner X, was a nearly 
routine task by the time of Voyager's launch in 1977. Both the CCS 
and Flight Data System computer have been reprogrammed exten­
sively. No less than 18 loads were uplinked to Voyager 1 during its 
Jupiter encounter. During long-duration cruise, such as between 
Saturn and Uranus, new loads are spaced to every 3 months 16. As 
pioneered on Mariner X, a disaster backup sequence was stored in the 
Voyager 2 CCS memory for the Uranus encounter, and later for the 
Neptune encounter. Required because of the loss of redundancy after 
the primary radio receiver developed an internal short, the backup se­
quence will execute minimum experiment sequences and transmit data 
to earth; it occupies 20% of the 4K memory 17. CCS programmers are 
studying ways to use some bit positions in a failed Flight Data System 
memory to compensate for the shortened memory in their system. A 
readout register in the Flight Data System has a failed bit, giving the 
impression that the entire memory has a one stored in that position in 
each word. Remaining "good" areas may be assigned to the use of the 
ccs 18. 

Voyager Attitude Articulation and Control System Computer 

JPL has been committed to three-axis stabilized spacecraft since 
it began designing probes in 1959. Attitude control systems maintain 
the proper pointing. The tasks assigned to the systems later expanded 
to include the actual operation of scanning platforms for imaging and 
other remote sensing instrument pointing. On the early Mariner mis­
sions the control systems consisted of analog circuits made up of 
hard-wired logic. By Mariner VIII, digital circuits replaced the analog 
electronics, and those were used on Mariner X as well as the Viking 
Orbiter19. Viking's Lander used the Honeywell central computer to 
run its independent attitude control system20. A landing craft engaged 
in a powered descent needed far finer pointing than a spacecraft in 
free flight, and the bandwidth of a hard-wired system was insufficient 
to provide such control 21. 

Future probes, however, might need computer-controlled attitude 
electronics due to complex mission requirements or unusual 
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spacecraft configurations. NASA's Office of Aeronautics and Space 
Technology funded a study of extended life attitude control systems as 
the TOPS project wound down in 1972. The result was a combination 
analog and digital programmable attitude control system. Dubbed 
"HYPACE," for Hybrid Programmable Attitude Control Electronics, it 
was a byte-serial processor with substantial power22. Using the same 
4K, 18-bit-wide plated-wire memory from the Viking Orbiter com­
puter, HYPACE added transistor-transistor logic (TTL) medium-scale 
integrated circuits to create a relatively fast (28-microsecond cycle) 
processor with index registers for addressing. Byte-serial architecture 
was possible because the TTL chips were designed for 4-bit parallel 
operation, so the 18-bit words could be moved around in five cycles 
instead of the 18 a serial machine would need, increasing overall 
speed. Index registering meant that the same block of code could be 
used for all three axes, reducing memory requirements. It appeared 
that the attitude control systems of future spacecraft would almost cer­
tainly benefit from such a computer. 

Voyager was the first to do so, due to new requirements. One dif­
ference between Voyager and Mariner and Viking is that the latter 
two were fairly rigid in construction. Voyager's radioisotope ther­
moelectric generators, however, were mounted on a boom to keep 
radiation leakage away from scientific instruments. In addition, the 
magnetometer was boom mounted to avoid interference from 
spacecraft magnetic fields caused by motors, actuators, power buses, 
and electronics. Finally, the scan platform was also on a boom to give 
a better field of view. The extended booms made Voyager much less 
rigid in flight, with thruster firings and maneuvers causing the booms 
to flex, complicating the attitude control problem23. Additionally, the 
Titan III booster used for Voyager required a "kick stage" to success­
fully inject Voyager into the transfer orbit to Jupiter. Since the kick 
stage was kept simple, the spacecraft itself was required to do attitude 
control during firing, which entailed much narrower margins of con­
trol than the three-axis pointing in cruise24. 

JPL 's Guidance and Control Section wanted to use a version of 
HYPACE as the computer for the Voyager. However, there was con­
siderable pressure to build on the past and use existing equipment25 . 
Greenberg proposed using the same Viking computer in all systems 
on the Voyager spacecraft that needed one26. A study showed that the 
attitude control system could use the CCS computer, but the Flight 
Data System could not due to high I/O requirements27. Wayne Kohl, 
the Viking computer Cog Engineer, thought that the Voyager project 
could save $300,000 by using the Viking machine for the attitude con­
trol function28 . His division chief, John Scull, supported that idea, 
possibly because of budget pressure from NASA29. Raymond 
L. Heacock, as Spacecraft Systems Manager in the Voyager Project 
Office, and others from that organization were the key personnel in-

-
J 
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volved in making the final decision, influenced by the economy and 
feasibility of the idea30. Money could be saved in two ways by using 
the existing system: avoidance of new development costs and retrain­
ing of personnel. 

Guidance and Control grudgingly accepted the CCS computer on 
the condition it be speeded up. Requirements for active control during 
the kick stage bum meant that real-time control programs would have 
to be written to operate within a 20-millisecond cycle, roughly three 
times faster than the command computer31 . An executive for the at­
titude control computer differed in nature from those for either the 
command computer or the Flight Data System computer. Basically, 
the attitude control computer needed to run subprograms at different 
rates, requiring several cycles, as in Apollo, Skylab, and the Shuttle. 
Guidance and Control asked for a I-megahertz clock speed but wound 
up getting about three quarters of that32. The attitude control en­
gineers also added the index registers that proved so useful during the 
HYP ACE experiment. Documentation for the system still refers to the 
attitude control computer as HYP ACE, even though its heart was the 
command computer. General Electric, which built the command com­
puter, naturally built HYP ACE, but the rest of the attitude control sys­
tem was constructed by Martin-Marietta Corporation in Denver. 

Teoguer A. Almaguer was the hardware Cog Engineer for the at­
titude control computer, whereas H. Karl Bouvier led the software 
development group. Bouvier actually worked on an analysis team 
within the Guidance and Control Section, but the team members were 
afraid to use the word "software" in their name because their tasks 
might have been taken away and given to an existing software team in 
another division33 . The programmers must have done an outstanding 
job, considering the slow processor and limited memory. At launch, 
only two words of free space remained in the 4K of plated wire34. 
Tight memory is now a problem because the scan platform actuators 
on Voyager 2 are nearly worn out, and software has to compensate for 
this during Uranus and Neptune encounter periods. 



DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 179 

Box 6-1: Voyager HYPACE Operation 

HYPACE had four execution rates. Scan platform stepper motors 
and thruster actuators were among the routines executed during the 10-
millisecond cycle. Attitude control laws and thruster logic executed in 
the 20-millisecond cycle. Scanning control and tum execution were 
placed in the 60-rnillisecond group, and the command interpreter and 
heartbeat were 240-millisecond routines35 . In operation, the standard l 0-
millisecond time interrupt would cause all IO-millisecond routines to ex­
ecute. If it was time for one of the 20-, 60-, or 240-millisecond routines 
to run, it would be scheduled. Sometimes if the computer got too busy, 
the 240-millisecond cycle slipped to up to 350 milliseconds, but routines 
in that cycle were less critical than a routine to shut off an engine on 
time. 

One thing needed on Voyager that did not exist when only single 
computers flew on unmanned spacecraft was an interface between the 
machines. The command computer could directly request data from ei­
ther of its partners. A primary function of the command computer was to 
check periodically on the health of the other computers. Programmers in 
the Guidance and Control Section originally intended to send a 
"heartbeat" to the command computer each second36. This was later 
raised to once about every 2 seconds, partly because of the command 
computer overload problem mentioned above. To carry the heartbeat, six 
direct input lines, similar to the 3-bit synchronization bus on the Shuttle, 
ran from the HYPACE to the command computer. A "power code" was 
the content of the 6 bits 0transmitted on those lines. For example, power 
code 37 was the simple heartbeat. Others related to passing information 
such as pointing commands. Power code 66, called "the Omen," told the 
command computer to save disaster parameters, because a failure was 
irnminent37. Every eight 240-millisecond cycles the heartbeat was sent. 
Between times, the attitude control computer conducted its self tests. If it 
failed, the heartbeat generator was bypassed. After about lO seconds 
passed with no heartbeats, the command computer would issue a switch­
over command to the backup processor. 

A switch-over to the backup attitude control computer took place 
on Voyager 2 16 seconds after separation from the solid rocket stage38 . 
Separation was so rough that the spacecraft was sent off attitude . Simul­
taneously, the booms were being deployed by the command computer. A 
thruster configuration initialization involving the plumbing for the 
thrusters delayed their acting to correct the attitude error. 
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Box 6-1 (Continued) 

Since this was one of the mission-critical times that the command 
computer was running in dual mode, the attitude control computer got 
two commands to initialize the plumbing. Executing the second com­
mand pushed back the attitude control recovery even farther. Soon the 
computer exhausted its options and voluntarily stopped the heartbeat. 
When the backup came on-line it had no record of the gyro readings. Not 
knowing how bad things were was a blessing, as it executed a simple 
orientation and stopped the spacecraft roU39. Here is an instance where 
maintaining bit-for-bit identical memories would have been disastrous, 
as the backup computer would also have tied itself in knots. 

Developing Voyager's Flight Data System Computer 

Flight Data Systems handle the collection, formatting, and storage 
of science and engineering data on spacecraft. If the data are to be 
transmitted directly, a high rate of input and output is needed so that 
nothing is lost. If data transmission is deferred because a spacecraft is 
occulted from the tracking station, then the Flight Data System sends 
the data to a magnetic tape recorder known as the Data Storage Sys­
tem (DSS). As JPL progressed through Ranger to Surveyor to Mariner 
and to Viking, the rates of the data-handling requirements went 
steadily upward. This was because of increased instrumentation, 
greater sophistication in the spacecraft engineering systems, imaging 
equipment with better resolution (thus needing higher bit rates), and 
improved communications equipment permitting faster transmission 
of data. These changes led away from hard-wired Flight Data Sys­
tems. One big step was the use of a digital memory on Viking to store 
different sequences of data handling. It was much like the 
microprogram in a central processor and for a similar purpose: to save 
hardware40. From there it was a short step to a full-fledged computer. 

TOPS feasibility studies refer to a Measurement Processor Sub­
system, the first time a separate computer was considered for flight 
data41 . Although the command computer had been suggested as a pos­
sible Flight Data System machine, JPL engineers soon realized that 
even though the processing part of the job was well within the power 
of the computer, the I/O rates precluded its use. 

JPL commissioned the development of a new computer from 
scratch and assigned Jack L. Wooddell to the job. Wooddell prepared 
an unusual document to tell the story of his work on the computer: a 
paper for a graduate computer science course taught by Dr. Melvin 
Breuer at the University of Southern California. Written around 1974, 
the paper includes what appears to be the flight version of the 
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design42. In it Wooddell lists the tasks he performed during the design 
period. He began by preparing a list of functions that the proposed 
Flight Data System was required to provide. These included sending 
control signals to sequence the science instruments, the ability to 
handle a wide variety of data rates and formats from the various in­
struments, potential for redesigning the mission in flight (as is now 
being done), monitoring engineering telemetry, and keeping to the 
reliability standard that no single failure result in loss of data from 
more than one scientific instrument or one-half the engineering 
sensors43 . 

ORIGINAL PAGE IS 
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Figure 6-2. The Flight Data System hardware in its package. (JPL photo 
360-75 lAC) 

After determining requirements, Wooddell examined possible 
hardware and software tradeoffs. In an insightful memorandum, John 
Morecroft explained the concept of "soft l,?fic" as a complement to 
the "hard logic" in the Flight Data System . Writing in 1975, when 
the actual flight software began to be prepared, Morecroft pointed out 
that the program for the computer was actually a soft representation of 
hard-wired circuits. Conceptually, the memo stands as an explanation 
of the essential meaning of firmware in general. During the second 
phase of his work, Wooddell determined which functions could be 
handled by hardware and which should be left to the flexibility of 
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software. With those decisions made, a preliminary instruction set and 
logic design could be prepared. 

Uniquely, Wooddell began working with a programmer in 1973, 
as soon as the instructions were ready45. Richard J. Rice of JPL began 
by developing software for a breadboard version of the data computer. 
The breadboard originally used the ubiquitous 4K memory of plated 
wire with 18-bit words and 150 of the same low-power TTL ICs used 
in other JPL machines46. Instruction execution times for this version 
ranged from 12 to 24 microseconds. Rice's prototype flight program, 
developed on the basis of what was then known about Voyager in­
strumentation and previous experience, showed that the processor 
speed should be doubled47_ 

Two significant hardware changes solved this problem. One 
hardware modification added direct memory access circuits and 
provided for using them on each instruction cycle. Direct memory ac­
cess capability meant that some data could be sent directly to the 
memory without having to go through the central processor. In other 
computers, direct memory access is permitted as a sort of interrupt 
and is often referred to as "cycle stealing" because it takes time away 
from instruction execution. In the data computer, it would have been 
foolhardy to do direct memory access in that way because the data 
rate was so high that the instructions might never get a chance to be 
executed quickly enough for time-critical sequencing. Wooddell 
solved this by adding a direct memory access cycle to those instruc­
tions that did not already have cycles in which the memory was 
accessed48. By adding that cycle all the instructions took the same 
time to execute regardless of direct memory access, making it easier 
to predict program run times and to guarantee the memory access 
rate49. Rice, who suggested the change, later said that his program­
ming job would have been impossible without it50. 

The second hardware modification to Voyager's data computer 
led to a first in spaceflight computing: volatile memory. After the first 
round of prototype programs, an intermediate hardware design 
evolved using CMOS ICs51 . This type of circuit is very low powered, 
fast, and can tolerate a wide range of voltages, making it excellent for 
space use. Early in the 1970s, CMOS was still relatively new, so it 
was with some risk that JPL chose the circuits. To go along with the 
new CMOS processor, the data computer group fought for CMOS 
memories as well. Trying to drive a slow plated-wire memory with 
fast CMOS circuits would have negated the attempt to speed up the 
computer. However, CMOS memories are volatile, in that if power is 
cut off, the data stored in them disappear. The designers of previous 
manned and unmanned spacecraft avoided volatile memories, fearing 
that power transients would destroy the memories at critical mission 
times. Voyager management had to be convinced that the risk was ac­
ceptable. 
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James T. Kinsey, a JPL manager, was instrumental in getting the 
semiconductor memory accepted because a method of providing 
backup power was devised52. Voyager's primary electricity is alter­
nating current. The radioisotope generators produce direct current, 
which is converted. By running a separate power line from the direct 
current bus fed by the generators to the CMOS memories, the only 
way power would be lost is if a major catastrophe destroyed the 
generators. If that happened there would not be any need for a data 
computer anyway. Enough voltage is supplied to retain the infor­
mation in memory and in the registers in the processor that contain the 
state vector53. Success with the CMOS memory led to the adoption of 
all CMOS circuits in both computer systems on the Galileo spacecraft. 
Along with the new chips, the memory changed with an expansion to 
8K. Two "external" address bits were added to flag whether the top or 
bottom half of the memory is being accessed54. One bit is used to 
select the memory half used for data access; the other, for the half 
used for instruction access. 

Eventually, the cycle of prototyping and interaction between Rice 
and Wooddell stopped as a final design was accepted. Wooddell wrote 
that the extensive use of breadboards instead of paper designs op-
timized the process55. His method, although not strictly "software 
first" was certainly software sensitive. Martin-Marietta's experiences 
with a software first philosophy as described in the previous chapter 
indicate that Wooddell had a clearer idea of his objective than did 
Martin. The job done on the Flight Data Systems computer is a good 
model of fine engineering practice in developing a total system. 

Voyager Flight Data System Software 

The original software development for the data computer has es­
sentially been a two-man show since 1975, beginning when Edgar 
M. Blizzard joined Richard Rice to develop the flight version of the 
code. Others have been involved in testing and management, but these 
two JPL engineers have been the key programmers for the entire mis­
sion to date. They sit in the same area as the "Laboratory Test Set," an 
Interdata computer and peripherals that contain the software simulator 
of the data computer and the assembler and flight load generator. 
Across from them is the CDL, the loose conglomeration of hardware 
that represents the real spacecraft. From start to validation to release, 
their tools were within sight, and certainly hearing, since the room is 
filled with the constant hum of spinning disks, occasional clattering 
printers, and the undefinable sound of computers crunching numbers. 

Rice characterized the unique nature of the data computer 
software this way: "We didn't worry about top-down or structured; 
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Box 6-2: Voyager Flight Data System Computer Architecture 

Voyager's data computer is different from most small general­
purpose computers in several ways. Its special registers are kept in 
memory, permitting a large number (128) of them. Wooddell also wrote 
more powerful shift and rotate instructions because of data-handling re­
quirements. Despite its 1/0 rate, the arithmetic rate is quite slow, mostly 
due to byte-serial operation. This means 4-bit bytes are operated on in 
sequence. Since the word size of the machine is 16 bits, it takes six 
cycles to do an add, including housekeeping cycles56. If all the arith­
metic, logic and shifting were not done in the general registers, the 
machine would have been even slower. Reflecting its role, in addition to 
the usual ADD, SUB, AND, OR, and XOR instructions found on most 
computers, the data computer has many incrementing, decrementing, and 
branchin$. instructions among the 36 defined for the flight version of the 
machine::,7_ 

Overall, the Flight Data System requires 14 watts of power and 
weighs 16.3 kilograms58 . Its computer needs just one third of a watt and 
10 volts, less than the pow·er required for a temperature sensor59! At first 
the estimated throughput required was 20,000 16-bit words per second60. 
By flight time, the instruction execution rate was 80,000 per second, with 
data rates of 115,000 bits per second, much higher than previous Flight 
Data Systems61 . The dual processor/dual memory architecture of the 
command computer and attitude control computer is repeated in the data 
computer. There was no provision for automatic switch-over in case of 
failure. A command from the ground routed by the command computer 
is necessary for reconfiguration62 . Note that the attitude control com­
puter can be switched by the command computer without ground inter­
vention because it is much more critical to retain orientation. 

we just defined functions" 63 . One important function is the software's 
provision of basic timing for the entire spacecraft, not just itself. It is 
also required to provide the capability to read out the memories of all 
three computers, under orders of the command computer64. Don 
Johnson, the Cog Engineer, determined other requirements and inter­
faces with the scientific instruments. Rice called him "Mr. FDS," 
claiming that Johnson often knew more about the scientific instru­
ments than the scientists themselves: "If someone forgot something, 
Johnson knew it"65 . Raymond L. Heacock, Voyager Project 
Manager, said that Johnson was largely responsible for the overall 
success of the system, including the design66. Rice said that Johnson's 
ebullient style and competence worked well in the informal mode in 
which the data computer requirements were set, which was a fully 
iterative process. New software needs continued to be discovered 
during the mission, which is one reason why a programmable machine 
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was chosen. For example, at one point Rice and Blizzard were asked 
to create software to determine where the limbs of satellites were so 
that imaging could be started67. Development of some programs was 
deferred until after launch, such as the Saturn encounter program, 
when better data on the telecommunications rates and specific science 
requirements would be available68. 

Allowing for constant change mandated certain controls over the 
data computer's memory. A limit of 90% capacity was set in 1976 by 
Frewing, the Software Cog Engineer69. Though later abandoned, the 
constraint indicated the software management's early concern about 
memory overruns. Also, since the machine can directly address the 
lower 4K of memory, pro8rams were to be kept there, with the upper 
portion for transient data 7 . Later, the flight configuration of the com­
puter evolved to one processor accessing both memories. Therefore, a 
copy of the programs is kept in the lower portion of each memory, but 
both upper portions are usable by the single processor as a scratch 
pad 71. If dual mode is required, the memories are separated. Ex­
perience has produced increased confidence in the memories. At first, 
complete loads had to be sent when an update was done; recently, 
pieces of software have been allowed to be inserted in the programs. 
Full redundancy between the memories is not now automatically 
maintained 72. 

Box 6-3: Flight Data System Computer Executive 

Like the command computer, the data computer has a simple execu­
tive. Time is divided into twenty-four 2.5-millisecond intervals, called "P 
periods." Each 24 P periods represent one imaging system scan line. 
Eight hundred of those lines is a frame. At the beginning of each P 
period, the software automatically returns to memory location 0000, 
where it executes a routine that determines what functions to perform 
during that P period73 . Care is taken that the software completes all 
pending processes in the 2.5-millisecond period, a job made easier by the 
standardization of execution times once the direct memory access cycle 
was added. 

Voyager's Future 

Voyager software development continued into the late 1980s. 
Kohl, Wooddell, Greenberg, Deese, Johnson, Kopf, and others closely 
connected with the hardware of Voyager's computers were then on 
other projects, but Rice and Blizzard and their counterparts on the 
command computer and attitude control computer were still program-



186 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE 

ming, preparing Voyager 2 for Uranus and Voyager 1 to discover the 
boundary of the solar wind. An increasing problem as the spacecraft 
recede from the earth is the reduction in the data transmission rate. 
The closer a spacecraft is to earth, the higher the bandwidth possible. 
Computer loads that once took minutes now take hours because error 
checking by retransmitting to earth is slowed. In the summer of 1984, 
a Flight Data System software load took 4 hours, and the situation 
cannot improve 74. Voyager Project officials decided to use the Flight 
Data System in dual processor mode for the first time for the Uranus 
encounter to provide image data compression. Thus, the information 
content remained high even though the transmission rate was grossly 
reduced75. 

Voyager's computer system did not carry on to the next JPL 
project. Galileo combined the CCS and the Flight Data System into a 
single Command and Data System. This is logical from JPL's 
standpoint because both systems are the responsibility of the same In­
formation Systems Division. Attitude control is provided by a separate 
computer. Whereas Voyager was a functionally distributed system 
with dual redundancy, ·Galileo's Command and Data System contains 
computers that do true distributed processing and use a new concept 
of redundancy. That system may be a model for the future, as it can 
impact designs aimed at complex spacecraft with extensive data 
processing needs, such as the Space Station and Mariner Mark II, both 
due in the 1990s. 

GALILEO-TRUE DISTRIBUTED COMPUTING IN SPACE 

Project Galileo began at JPL in the late 1970s with the objective 
of developing an orbiter and probe for further exploration of Jupiter. 
Galileo will proceed toward Jupiter, launching a probe 5 months be­
fore arrival. Plans are for the probe to enter the Jovian atmosphere at 
a r~latively low angle, using an aeroshell braking system for entry fol­
lowed by a parachute system for final braking and descent. Due to the 
nature of the entry, an antenna large enough to send data directly to 
earth cannot be carried on the probe. Instead, it has to relay the data to 
the orbiter, which will fly a parallel path thousands of kilometers 
above. At the end of the probe mission, expected to last 60 to 75 
minutes until the probe is crushed by atmospheric pressure, the orbiter 
will execute an insertion bum. For the next 2 years, the orbiter will fly 
by the four Galilean satellites (hence, the mission name), using gravity 
assists to change its path after each encounter. 

Great demands will be placed on Galileo 's on-board computer 
systems, because of both the nature of the mission and the design of 
the spacecraft itself. First, Galileo is a one-shot mission. Inter­
planetary probes have been mostly launched in pairs for the obvious 
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Figure 6-3. The Unified Data System: precursor to Galileo's Command and Data 
Subsystem. (JPL photo 360-630) 

reason that a full backup then exists. Such dual launches are generally 
cost effective, as a second spacecraft can be obtained for 15% of the 
price of the first one76. Budget constraints forced NASA to buy just 
one Galileo, so there was tremendous pressure to construct a highly 
reliable spacecraft. Additional pressure has been on the project be­
cause of changes in the launch date and booster rocket. Originally 
scheduled for a 1982 launch, delays in the Shuttle program and other 
factors caused rescheduling to 1984, then 1985 and, finally, 1986, 
when the grounding of the Shuttle fleet forced an indefinite postpone­
ment. At first, the Air Force's Inertial Upper Stage rocket was chosen 
for the booster. Later, the new "wide body" Centaur got the job. Cen­
taur upper stages have flown on Atlas and Titan III boosters since the 
1960s. The new "fat Centaur" would carry 50% more fuel than the 
earlier version. Other changes were made to adapt it to the Shuttle 
cargo bay. One JPL engineer said that it is "like Abe Lincoln's axe. 
The head broke and they replaced it and the handle broke and they put 
on a new one, but it's still Abe Lincoln 's axe"77. However, NASA 
canceled the Shuttle version of the new Centaur in the spring of 1986 
due to safety considerations, leaving Galileo without a ride to Jupiter. 
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By early 1987, NASA decided to go back to using the Inertial Upper 
Stage, but it has significantly lower lifting capability than the Centaur. 
As a result, the flight path has to be changed to include a Venus flyby 
and two Earth flybys to gain velocity by gravity assistance. Unfor­
tunately, the total flight time to Jupiter will nearly triple to about 
seven years. 

Spacecraft design also caused problems for the computer desig­
ners. All previous JPL probes have been three-axis inertial to gain ad­
vantages such as easing communication and providing a stable scan 
platform for imaging. Galileo has a fixed attitude area, called the 
"despun section," and also a "spun section" that rotates three times a 
minute. Fields and particles experimenters required a spin to help 
them differentiate local fields from external fields. Aside from the ob­
vious increase in the order of magnitude of the attitude control 
problem on a dual-spin spacecraft, communication between the two 
parts is hampered by the need to transmit serially across a rotary trans­
former. Four hundred milliseconds are required to send a message be­
tween the spun and despun sections 78. To overcome this time penalty 
and provide more real-time control, a fully distributed system of com­
puters is mandated. 

Figure 6-4. A model of the Galileo spacecraft with the probe visible at the bot­
tom center. (JPL photo 230-222A) 
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Finally, computer system complexity is further increased by the 
number of science experiments on board and the fact that they are 
largely computer controlled as well. Eight of the nine instruments 
have microprocessors for control and data handling79. These have to 
communicate with the Command and Data System, itself containing 
six microprocessors. Attitude and Articulation Control has dual com­
puters, and the probe also contains a dual microprocessor system. In 
all, Galileo contains 19 microprocessors with about 320K of semicon­
ductor random access memory and 41K of read-only memory80. No 
unmanned spacecraft launched to date can approach Galileo in the 
power and size of its on-board computer network. 

JPL took great care in the selection of the computer systems for 
Galileo. Procurement of the systems for the Command and Data han­
dling equipment and the attitude control equipment proceeded 
separately but in a somewhat coordinated fashion. In the case of the 
Command system, a 1977 study examined using the existing Voyager 
computers, the National Standard Spacecraft Computer (NSSC-1), 
and some form of a microprocessor distributed system like the Unified 
Data System (UDS), then a research program at JPL aimed at complex 
long-duration space missions81 . Although a lot of pressure was ex­
erted on Galileo's builders to choose either the existing equipment or 
the NSSC-1, cost factors favored the UDS as the basis for the Com­
mand and Data Subsystem82. Similarly, the attitude control group was 
pressured to use the NS SC-1, but the desire for floating point and 
greater power defeated that idea. Since the star tracker is in the spun 
section and thus moving, complex coordinate transformations must be 
calculated, and the NSSC-l was not up to it83 . 

With new computers needed for both major controlling subsys­
tems, JPL carefully explored memory requirements and software 
development prospects. Prototype programs were written in HAL/S 
and FORTRAN for the command computer and the attitude control 
computer84. Ideas for the content of the programs came from Voyager 
experience and the executive written for the NSSC-1. The project of­
fice originally specified that HAL would be used for programming all 
flight software. When irreducible inefficiencies appeared in the com­
piler bought for the command and data computers, HAL was aban­
doned for that system and replaced with "structured macros"85. HAL 
was retained for the other computer system. Although most 
microprocessors in the scientific experiments are coded in assembler, 
one is programmed in FORTH, so high-level languages finally ap­
peared on unmanned spacecraft. The project office set a limit of 75% 
memory usage at launch (later raised to 85% for the attitude control 
computer only) and 85% load at Jupiter insertion. Officials hoped to 
avoid the tight memory problems associated with earlier missions and 
even asked the Shuttle software office for advice in setting these 
limits 86. 
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JPL considered software crucial to the success of the overall 
Galileo mission. As of 1985, Neil Ausman of JPL was in charge of all 
software, both flight and ground support, and he reported directly to 
project manager John Casani. Patricia Molko, also of the project of­
fice, wrote a standards document for software development. At one 
point, Howard W. Tindall, first introduced in the chapter on the 
Apollo computer systems, was brought in to serve as a consultant. He 
found that in some ways JPL was "going through the same problems 
that we did when we developed our original large programs"87. 
However, in some respects Galileo is more complex than Apollo be­
cause of the number of intercommunicating computer systems. Thus, 
size is not the only factor contributing to the difficulty of writing the 
software. 

The Galileo probe mission is handled by NASA Ames Research 
Center, and the entry probe was assembled by Hughes Corporation. 
Even though it contains a dual microprocessor system, its function is 
primarily confined to sequencing, and its architecture is similar to sys­
tems already described on Mariner, Viking, and Voyager. 

Galileo's Command and Data Subsystem Origins: The UDS 

STAR was JPL's foray into ultrareliable computer research in the 
1960s; the UDS was its 1970s counterpart. David Rennels, who had 
been instrumental in the ST AR program, led in developing the system. 
Assisting him on the hardware side was Borge Riis-Vestergaard, a 
visiting scientist, and Vance C. Tyree. Frederick Lesh and Paul Lecoq 
did the software. One reason the UDS project started was the desire to 
develop a new architecture for flight computers that would reduce life 
cycle costs88. Another impetus came from 1973 studies of distributed 
systems done in support of Voyager and by the Air Force89. Distribu­
tion of functions among several computers on Voyager has been 
shown to be a natural result of requirements. The Air Force study 
found that avionics tasks are better handled by partitioning and using 
dedicated computers for specific functions. Since microprocessors be­
came commercially available at about that time, they were recom­
mended for use in such distributed systems. 

Rennels' UDS project explored the difficulties in tying multiple 
computers together in a flexible manner. He defined an architecture 
using two levels of computers. Individual computers and associated 
memories at one level were called "high-level modules (HLM)." 
These computers controlled system-wide functions such as the data 
buses and fault detection. Other computers were located at specific 
subsystems and were called "terminal modules." They controlled one 
functional area such as engineering instruments or attitude and ar­
ticulation. Each module had its own processor and memory. Com-
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Figure 6-5. Galileo and its booster being deployed from an orbiting shuttle . 
(P25722AC) 

munication between modules was accomplished on a bus that carried 
data from one memory to another. By using direct memory access for 
all intercommunication, processor resources other than for transfer 
commands were unaffected. HLMs did not have 1/0 capability other 
than to the terminal modules via the bus. All input and output to 
spacecraft systems and the ground was handled by the terminal 
modules. 

Some influence from the ST AR project can be noted in that Ren­
nels kept critical functions highly redundant and simple. Reconfigura-
tion after failures reflected ST AR concepts90. In order to avoid a 
potential single-point source of failure, there was no central bus con­
troller in the UDS. Each of the HLMs controlled a separate bus, but 
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only one bus was needed to support all processors because any HLM 
could transfer data between any two memories91 . The breadboard 
built for the UDS project had three HLMs and three tenninal modules, 
so it had three buses as well92. Failure of a HLM caused its functions 
to be accepted by the remaining ones. Reliability is obtained by such 
reallocation of functions to resources, making this a highly fault­
tolerant system. 

One advantage of distributed systems is that interfaces can be 
simpler than in a system using a central computer. Each local com­
puter is responsible for its own timing and control. Only on and off 
commands and data transfers need be made between machines93 . 
System-wide synchronization is accomplished by providing all 
processors with a real-time interrupt signal. By using a cyclic inter­
rupt, the complexity attendant with priority interrupt systems is 
avoided94. Every 2.5 milliseconds, a signal is sent to all components. 
Basically, every processor has to be finished with its current processes 
before the next interrupt occurs95 . Data transfers and scheduling of 
tasks can be timed using the periodic interrupt. 

Key advantages· of the UDS concept are that expanded require­
ments can be handled by adding terminal modules, software can be 
highly specialized and distributed, and fault tolerance is very high. 
Availability of flight-capable microprocessors in the mid-l 970s made 
it possible for JPL to seriously consider the UDS as a competitor with 
NSSC-1 and the old Voyager equipment. Its flexibility and potential 
as a permanent architecture for space flight helped its case. 

NASA chose RCA's 1802 microprocessor for the Galileo im­
plementation of the UDS. A CMOS-type device, it was "nobody's 
favorite choice "96 but at the time ( c. 1977) was considered to be the 
only microprocessor suitable for spaceflight. Recall the use of CMOS 
components in the processors and memory in the Voyager Flight Data 
System. Similar advantages accrue with the use of CMOS 
microprocessors: low power requirements (30 milliwatts) and 
tolerance of a wide range of voltages97. However, some dis­
advantages had to be dealt with. CMOS chi~s are especially suscep­
tible to damage from electrostatic discharges 8. RCA 1802s are slow, 
with a 5-microsecond cycle time and an average of two cycles per in­
struction. In contrast, the discrete component Voyager CCS had a 
1.37-microsecond cycle, making it faster for functions that did not re­
quire multiple cycles99. Speed has been a major constraint to the 
software development100. Carryover of the direct memory access 
cycle to Galileo from the Voyager Flight Data System alleviates this 
problem somewhat101 . In general, making the six microprocessors 
"come to&ether" has been much more difficult than originally 
expected1 2. Software is the most important component in achieving 
the success of the CCS. 



DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 193 

Figure 6--0. Circuit boards for the Galileo Command and Data Subsystem. (JPL 
photo 360-1756) 

Box 6-..i: E\'olution of the Command and Data Subs~'stem 

Galileo's Command and Data Subsystem adapted UDS technology 
fairly directly. In 1978 designs, the Subsystem was shown as consisting 
of three HLMs and four low-level modules (LLMs), which were the 
realization of the terminal modules. Three buses were also present, each 
controlled by a HLM. Functionally there was one HLM dedicated to 
stored sequence control, one for real-time control, and the third as a 
spare. LLMs in that configuration handled sequencing, telemetry , status 
polling, and other subfunctions. Eventually one high-level processor 
was eliminated, but three buses remain, though one of them is used for 
test equipment only and will not function in flight 103 . Software architec­
ture is now much different than the UDS. 
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Box 6-4 (Continued) 

One major difference from the UDS concept is the way the proces­
sors in the Subsystem are separated into redundant strings. Whereas 
reconfiguration after a failure was done by combining any of the remain­
ing processors into a new control string in the UDS, on Galileo two basi­
cally identical strings are configured from the start, one backing up the 
other much like the backup processors on Viking and Voyager. Each 
HLM has 32K of memory and a bus controller associated with it. A LLM 
with a processor and 16K of memory for engineering control is con­
nected to the string, along with a data bulk memory (DB UM) of 8K and 
a bulk memory (BUM) of 16K. These components are in the spun sec­
tion of the spacecraft. Another LLM with l6K of memory is in the 
despun section, connected to the probe and the launch vehicle, among 
other functions 104. This configuration of one HLM and two LLMs, a 
BUM and a DBUM is repeated in string B. Therefore, the total system 
consists of six microprocessors with 176K of semiconductor memory. 
About 12K of HLM memory is write protected and used for 
programs 105. B UMs are used for auxiliary storage and buffering in that 
all new sets of commands are directly inserted into them from the ground 
and then redistributed by the software in the HLMs. Data memories 
serve as buffers for incoming science instrument data, again with direct 
memory access 106. Commands and data are transferred on the buses 
using packets with three-word headers. Headers contain the code num­
bers of the source and recipient, the starting address in memory of the 
message, and fillers for timing. More than one address can be specified 
for a message, but usually there is only one recipient 107. Data transfer is 
coordinated by the real-time interrupt. Odd-numbered real-time intervals 
are used for input; even numbered intervals for output. 

As in previous missions, several operating modes are available for 
the Command and Data Subsystem. During cruise and other noncritical 
mission phases, one string is up and running and the other is in a quiet 
state. Otheiwise both can be commanding in one of several ways. Dual 
string mode means that the strings are executing code concurrently and 
both send commands. Parallel mode is used for time-critical operations 
needing closer synchronization. Tandem mode is used during maneuvers. 
If a failure is detected in one string, the other halts the activity 108. 

Developing the Command and Data Subsystem Software 

Development of the software for this Subsystem consumed more 
time and labor than any previous unmanned spacecraft. Dr. John 
Zipse, the Cog Engineer for the Subsystem software, had an average 
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Figure 6-7. Memory modules for the Galileo Command and Data Subsystem. 
(JPL photo 360-1704) 

of 12 full-time software developers working under him at peak 
periods 109. They shared five terminals hooked to an IBM System 
370/158 computer on which the assembler and functional commands 
resided. Originally, HAL/S was specified as the programming lan-
guage for the Subsystem 110. A prototype compiler for the RCA 1802s 
was not successful, and HAL was dropped in favor of "structured 
macros" 111 . Called "functional commands" in the software documen­
tation, they have names such as IF, ELSE, DO, ASSIGN, and others 
very similar to the statements of a high-level programming 
language112. These functional commands make up the "Virtual 
Machine Language" in which most of the software was written. Each 
command causes the execution of a prepared block of 1802 assembly 
code, much like a subroutine call. Project documents recognize three 
layers of language associated with the Subsystem: Level A is the 
hardware external to the 1802s that may provide input and receive 
output, Level B is the 1802 assembler, and Level C is the Virtual 
Machine Language l 13. 

Recognizing the complexity of the software, JPL instituted ever 
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Figure 6- 8. The software architecture of the Galileo Command and Data Subsys­
tem High Level Modules. (From JPL, 625-340-006000) 

more stringent development requirements. Preparation for the 
development process began with a "Galileo Software Thinking 
Group" which met in 1977-1978 114. Programmers were ordered to 
keep software modules smaller than 150 assembly language state­
ments and were reminded that simplicity was the highest priority 115 . 
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Box 6-5: Command and Data Subsystem Software Architecture 

Galileo's Command and Data software is considered a "hierarchical 
software architecture" and is divided into two sets of processes, with fur­
ther divisions within them. Foreground processes are executed at each 
real-time interrupt, or every I/15th second. They are a self test, a clock, 
and bus control. Background processes begin each 2/3 second, and are 
much more complex. Functions done in the background have been 
divided into six "virtual machines," a term of many meanings. In this 
case, three virtual machines are considered "privileged": the administra­
tion machine, the contingency action program machine, and the fault 
processing machine. These three machines consist of software that is al­
ways resident in the Galileo computers and is kept in the 12K of write­
protected memory 116. They are called privileged because the non­
privileged machines can be canceled if they do not complete processing 
before the end of the 2/3-second cycle, whereas the privileged machines 
can never be canceled. Nonprivileged machines include an immediate 
action program machine, a delayed action program machine, and a stored 
sequence program machine. So the nonprivileged machines are reserved 
for commands and sequence control, whereas the privileged machines 
are for executive and fault detection and correction. Nonprivileged 
software is to be updated about once a week in flight 117 . Originally, the 
immediate action programs were considered privileged, but with the ad­
dition of a contingency machine they were moved to nonprivileged 
status 118. Software developers imagine that a "wall" exists between the 
privileged and nonprivileged machines. They consider that the non­
privileged software is more error prone because it is constantly changing, 
whereas the privileged software should have had a thorough exercise 
over several years in testing before the flight. 

Execution of the virtual machine software is related to the 2/3-
second interrupt. In each cycle the software goes through each virtual 
machine pending program stack and executes what is waiting. Many 
programs can be running in each virtual machine in each cycle, up to l 0 
in the administration and fault protection machines, for example. As 
mentioned above, the privileged machines always get to clear their pend­
ing programs, whereas the nonprivileged machines do what they can un­
til the time is up. 

Software described so far is resident in the HLMs. LLMs have spe­
cialized software for their particular functions, such as monitoring en­
gineering instrumentation and talking to the launch vehicle. Data from 
those tasks needed by the virtual machines are passed on the buses 
during the 1/15-second interrupt. 
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Design of the software was done in a JPL-developed Software 
Design and Development Language that used statements similar to 
those in high-level languages 119. Even with excellent documentation 
and tools, such as a hardware-based simulator for software 
validation 120, it takes (according to Zipse) a new programmer three 
months to be effective. Until Galileo has flown, no final evaluation 
can be made of the virtual machine architecture. Yet, future spacecraft 
requiring expandability and a high degree of flexibility could probably 
gain from using such an architecture as a complement to the UDS type 
hardware structure. 

Galileo Attitude and Articulation Control Computer System 

In terms of tasks, the Attitude and Articulation Control System 
has less to do than the Command and Data Subsystem, but it must per­
form its jobs faster and with more critical tolerances. During the dis­
cussion of the Voyager computers, it became clear that the attitude 
control system needed a fast-cycle, real-time software architecture 
running on a high-speed computer. Galileo's control requirements are 
much greater than Voyager's; the dual spin problem and more com­
plex imaging equipment indicated from the beginning a need for a 
completely new computer system. The computer was to provide star­
based attitude determination and control an inertially referenced, 
target-body-tracking scan platform121 . Speed was the primary 
criterion for the new processor122. 

Kenneth Holmes, in charge of looking for the Galileo control 
computer123, and the other engineers ran old Voyager attitude control 
programs on several processors. One of those processors soon proved 
itself superior: ltek's 2900 series 124. Itek, now a division of Litton In­
dustries, built a computer known as the AT AC, or Advanced Technol­
ogy Airborne Computer. Using 2900 series processors, each with 4-bit 
woi:ds, Itek assembled a 16-bit, low-power, flying minicomputer 
roughly equal in power to a Digital Equipment Corporation 
PDP-11/23. Navy aircraft use this computer, although its specific ap-
plications are classified 125. AT AC' s basic cycle time is 250 
nanoseconds, or more than five times faster than the Voyager 
computer's cycle. However, the memory cannot cycle faster than 2 
microseconds, so operations rates average 143,000 cycles per 
second 126. Floating-point capability is a plus, and since it handles 
eight interrupts using microcode, there is no software overhead for 
real-time operation127. Another good feature is that its 16 registers are 
general purpose; none are dedicated as accumulators, program 
counters, address registers, and so on. Therefore, multiprocessing is 
made much easier. Further advantages to the computer are that special 
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Figure 6-9. The central processor and input/output circuits of the Galileo At­
titude and Articulation Control Subsystem. (JPL 230-l 128bc) 

instructions can be added by the user for specific applications. Four 
instructions added by the Galileo project saved over 1,500 words of 
code in the flight program 128. 

The AT AC came with a considerable amount of software support. 
Target compilers were available for FORTRAN, BASIC, and 
HAL/S 129. Galileo project management wanted a higher order lan­
guage used in the coding, so HAL was adopted for the attitude control 
system. Unlike the Command and Data Subsystem, HAL was success­
fully adapted to the AT AC. Compilers developed by Intermetrics for 
the ATAC are about 12% speed inefficient, but 36% memory in­
efficient compared with assembler130. Apparently this was within ac­
ceptable limits, and the flight applications code is written in HAL, 
with the operating system in assembler. Edward H. Kopf, Jr. said, 
"We love HAL/S; we could never do it without HAL/S," even though 
he referred to it facetiously as "flight PL/I." Given the complexity of 
the resultant software, he was probably right that a high-level lan­
guage was critical to success. 

Attitude Control Electronics Software Organization 

Implementing HAL/S on the AT AC involved creating a special 
operating system. Ted Kopf wrote GRACOS, or the Galileo Real-

ORIGINAL p GE rs 
O__E POOR QUALITY 



200 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE 

Figure 6-10. Memory modules of the Galileo attitude control computers . (JPL 
230-112lbc) 

time Attitude Control Operating System, to accomplish that 
implementation 135 . GRACOS begins the operation of the software by 
scheduling a HAL/S module called STARTUP. Within STARTUP 
are statements that set up the concurrent processes necessary to do the 
attitude control and articulation tasks (a version of STARTUP is 
reproduced in the HAL/S appendix as an example of the language). 
Up to 17 concurrent processes may be running under GRACOS, with 
at least 10 up all the time 136. STARTUP is given as much time as 
necessary to complete, and then the established processes begin at the 
next 1/15-second real-time interrupt137. Kopf wrote GRACOS to be 
mission independent. He avoided constraining the timing of rate 
groups and other things that would have been too specific 138 . Interest­
ingly, if the fault-handling routine has to come in, it restores the 
registers of the failed HAL/S module where the fault occurred and 
tries again, very similar to the "roll back and try again" scheme in 
STARf39. 

Sanford M. Krasner, the Software Cog Engineer for the Attitude 
Control Electronics, reported directly to Brian T. Larman, the 
Spacecraft Flight Software System Engineer. Early in the project, five 
people were full time on the software development, several more than 
on Voyager 140. The coding process was speeded up when HAL was 
used as the software design language 141 . To make development 
easier, Voyager structure was adopted whenever possible142. 

ORIG rNAL PAGE IS 
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Box 6-6: Configuration of the Attitude Control Electronics 

Galileo's Attitude and Articulation Control Subsystem necessarily 
has parts in both the spun and despun sections of the spacecraft. Most 
components are in the spun section, including the two redundant proces­
sors and 64K of memory. Called the ACE, for Attitude Control 
Electronics, its despun partner is the DEUCE, for Despun Sec1ion 
Electronics, a long way to go for an acronym. Communication between 
the ACE and DEUCE is across the rotary transformer. Since the trans­
former is not considered fully reliable, input or output to the DEUCE is 
not complete until an ACKNOWLEDGE interrupt reaches the ACE131 . 
CMOS-type memories similar to those used in the Voyager Flight Data 
System are in the ACE. Sixty-six lK chips are needed, two of which are 
actually permanent read-only memory. Those two contain the Memory 
Loss Recovery Routine written in ATAC assembler132. A 5-volt keep­
alive current directly from the generators is constantly fed to the 
memories, but in the case of a destructive transient the Recovery Routine 
can restart the software after it has been repaired or replaced. 

Planning for the system included careful memory sizing. Based on 
actual Voyager programs and extrapolations from them to handle the 
new requirements, a 1978 study thought lOK of memory to be sufficient. 
Using a policy of 100% margin and 75% limit at launch, 32K was even­
tually bought 133 . As noted above, a waiver to 85% full at launch was 
given. Ground computers can reprogram the ACE in flight by sending 
code to the off-line memory through the Command and Data Subsystem. 
As with its own LLMs and as pioneered in the UDS, the command com­
puters can directly access the ACE memory. Commands can be placed in 
the active memory where they are "discovered" by the ACE software 134. 

Ironically, the advanced nature of the new attitude control system 
and its control computer made it more vulnerable to space conditions 
than its predecessors. A potential disaster was averted when the 
"single event upset" was discovered and dealt with before launch. 

The Single Event Upset Problem 

Space environments are much harsher to electronics than the sur­
face of the earth. Since circuitry essentially consists of hardware that 
moves electrons, creates and destroys magnetic fields, and emits 
waves of electromagnetic radiation, fields and particles of the types 
loose in space can affect the operation of electronic equipment. Ironi­
cally, the miniaturization of components has made electronics more 
sensitive to interference. One possibility that concerns computer 
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designers is the effect of highly charged particle impacts on memory 
cells. If a particle has sufficient energy to change the information 
stored in a bit, it can affect the software in a potentially disastrous 
way. Such a spurious change is called a single event upset (SEU). Suf­
ficient numbers of particles can cause so many bits to change states 
that the software fails. Since primary and backup memories are 
equally vulnerable, simple redundancy is not a solution. Error­
correcting codes that test for random bit flips exist but require storage 
and processing time not always available on a spacecraft. Addition­
ally, bits in the processor can be affected during execution, so the 
problem is not limited to memory. 

Galileo's processors and memories were chosen in 1977. Voyager 
had not yet reached Jupiter, so hardware decisions were based on 
1973-1974 Pioneer data 143 . Nothing was known about SEU vul­
nerability, so no space for error detection and correcting codes and no 
provision for special shielding was made. Some incorrect imaging 
commands sent by sequencers in the Pioneers were later tagged as 
SEUs. Voyager's clocks were slowed by Jovian radiation so that the 
computers were forced out of synchronization occasionally 144. By 
1980-1981, the nature of the SEU problem became apparent. Sulphur 
ions from Jupiter's volcanic moon, Io, were being whipped up to high 
energy by the Jovian gravity. In 1982, Galileo Project Chief Engineer 
B. Gentry Lee was assigned the job of determining how bad the SEU 
problem could be and finding a solution. Lee arranged for cyclotron 
tests at the University of California's Berkeley campus in which com­
puter and other electronic parts were submitted to bombardment by 
high-speed particles. Results indicated that the 2901 chips used in the 
attitude control computers were highly SEU sensitive, with 20% 50% 
of hits causing probable software failures 145 . RCA 1802s used in the 
Command and Data Subsystem were actually much less sensitive, be­
ing of older, and thus less dense, technology. 

Attitude control engineer Kopf commented, "It is not worth flying 
the mission if you cannot get rid of the SEU problem." Failures were 
mo~t likely at the most critical part of the probe mission when the or­
biter is very near Jupiter. In order to avoid possible further delays in 
an already much postponed mission, Lee searched for solutions along 
two tracks. One solution would use a radiation-hardened processor 
built by Trecor called the RHEC-Rad Hardened Emulating 
Computer-1750A. Even though it is an emulator capable of imitating 
the 2901, a new retargeted HAL compiler would be needed. The cost 
of this solution would be $20 million. Lee's second solution was to 
contract with Sandia National Laboratories to custom make radiation­
hardened 2901s. No software needed be changed, just new ICs were 
necessary, and they cost $5 million. Due to cost considerations and 
the inherent attraction of retaining the already created and largely 
validated software, the Sandia solution was chosen 146. As a footnote, 
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it is interesting that if the Galileo had launched on time, a sufficient 
understanding of the SEU problem would not yet have been available, 
and a doomed spacecraft carrying an unknown time bomb would have 
been traveling toward an unfriendly Jupiter waiting to hurl ion thun­
derbolts at it. 

FUTURE UNMANNED SPACECRAFT COMPUTERS 

Distribution of computers aboard spacecraft has now been done 
several times. Both Voyager spacecraft inherited command com­
puters from the Viking project. Computers for specific functions such 
as attitude control and data formatting were added in response to in­
creased requirements. The result was a functionally distributed system 
of processors. Galileo's project managers also adopted the concept of 
functional distribution, assigning microprocessors to control attitude 
and, in the lower-level modules of the Command and Data Subsystem, 
to connect to engineering and other instruments, including the scien­
tific experiments. Additional innovations on the Galileo spacecraft 
centered on the development of virtual machine software, which dis­
tributes functions over several processors. 

Advancing microprocessor technology makes the continuation of 
the concept of single function computers more attractive. At WL, 
plans are currently under way for the Mariner Mark II, which will be 
the deep space version of the Multimission Modular Spacecraft 
developed by Goddard Space Flight Center for earth orbital opera­
tions. Using the same concepts of a standard bus and modular equip­
ment, JPL hopes to reduce mission costs to $400 million each, about 
half the price of Galileo 147. The staff is exploring the use of the C 
programming language, a very powerful tool, for the new spacecraft. 
Future missions seem certain to use multicomputers, with internal net­
works similar to Galileo's. In the 15 years since the first primitive 
programmable sequencers flew with 128 word memories, JPL 
spacecraft have grown to carry 2,500 times more memory. Progessing 
from simple counting to complex coordinate transformations in such a 
short time is remarkable, and the application of computer power to 
each spacecraft function will make for ever more remarkable gains. 



Part Three: 

Ground-Based Computers 

For Spaceflight Operations 

NASA's ground computer systems are characterized by large size, by 
the implementation of real-time programming, and by the use of many 
computers connected together. The need for these three attributes has 
caused NASA and its contractors to devise new techniques for com­
puter applications, such as operating systems for mainframe com­
puters capable of handling real-time processing and sophisticated net­
working. Through these developments NASA has had its largest im­
pact on computing in the commercial world. 

Differences between ground-based computers and on-board com­
puters center on the relative ease of hardware procurement with the 
continued difficulty of software development. On-board computers 
evolved from custom-made systems to the largely off-the-shelf Skylab 
and Shuttle computers. Ground computers followed a more conven­
tional line, as they could be, from the beginning, commercially avail­
able systems, though applied to noncommerical tasks. NASA ex­
amined many existing computer systems each time it needed a 
machine. In fact, the government's bidding process gave NASA a 
larger mix of different vendors' equipment than most commercial en­
terprises, causing occasional difficulties in connecting computers 
together. This problem and that of adapting business machines to real­
time processing were largely solved by software. Contractors received 
invaluable experience in large systems development and networking 
in the process of achieving NASA's goals. 

Ground-based computer systems are used for preflight checkout 
and the launching of space vehicles, controlling both unmanned and 
manned missions, creating simulations of rocket flight for vehicle 
development and of space flight for crew training, processing 
telemetry data from launch vehicles and space probes, and in basic 
research. In the following chapters these functions are grouped into 
launch processing, mission control, and support tasks. Chapter 7 
develops the concept of launch processing from the manual era to the 
fully automated Shuttle flight preparation. The chief result from this 
effort was a large integrated network of computers that proved to be 
highly innovative. Chapter 8 presents computer systems in both the 
manned Mission Control Center in Houston and the unmanned control 
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centers at the Jet Propulsion Laboratory (JPL) and Goddard Space 
Flight Center. In Chapter 9, the uses of computers in simulations and 
data reduction are discussed. 



7 

The Evolution of 

Automated Launch Processing 
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Rocket technology is both old and new. Since the Chinese first 
started shooting off fireworks a millenium ago, the sight of a rocket 
streaking ever faster skyward, a comet's tail of fire behind, has ex­
cited even those unimpressed with machines. Fireworks rockets, and, 
later, military bombardment rockets through the first three decades of 
this century, shared the same components: casing, fuel, and payload. 
Construction was complete when the gunpowder fuel was loaded in 
the casing, warhead affixed, and a fuse planted the base. Such rockets 
could be stored without maintenance and fired with little preparation, 
needing only to assure that the fuse was still attached. The difficulty 
came in the area of guidance. A set of fins or a balancing stick pas­
sively guided the early rockets. Frequently they would turn on the 
men who launched them or shoot horizontally over the heads of 
fireworks watchers. Thus, the old technology of preparing rockets for 
flight consisted of keeping them dry, aiming them carefully, and light­
ing the fuse. 

In Germany during the late 1930s the new technology of rockets 
began to mature. Increased interest in rocketry developed in Europe 
and the United States after World War I. Rocket societies flourished 
in England, Germany, and the United States. Robert Goddard flew a 
liquid propellant rocket, the first of its kind, in Massachusetts in 1926. 
Liquid fuels, with their higher specific impulse and thrust potential, 
soon replaced solid fuels as the primary area of propulsion research. 
Shortly after Hitler came to power, the German army established a 
rocket development program that led to the liquid-propellant A-4 
(popularly known as the V-2). A-4 rockets far exceeded the 
capabilities of previous ones, terrorizing the populations of London 
and Antwerp in the latter stages of World War II. Over 14 meters tall 
and weighing over 12,000 kilograms, an A-4 carried nearly 1,000 
kilograms of explosive payload up to 400 kilometers. Its guidance 
system was a radio beam-rider type with an electronic analog com­
puter controlling vanes in the exhaust and elevons on the fins. If wind 
deflection caused the rocket to veer horizontally off course, the analog 
computer would calculate corrections and activate the vanes. Complex 
plumbing and turbopumps were needed to feed the engine with fuel. 
Experience gained in nearly 2,000 expensive failures led German 
technicians working on the A-4 to develop techniques of testing the 
many components of the rocket during manufacture and before com­
mitting it to flight. For example, the guidance system was tested at the 
factory by an electronic analog computer that simulated the flight of 
the rocket so that the system's reactions could be observed 1. On the 
launching pad, engineers could test various moving parts of the 
vehicle by activating them using actual physical connections to the 
firing room. 

German rocket scientists who came to the United States after 
World War II brought this new technology with them. Eventually 
based in Huntsville, Alabama, at the Army's Redstone Arsenal, they 
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conceived an increasingly sophisticated series of rockets: Redstone, 
Jupiter, Juno, and Saturn. Concurrently, the Air Force chartered the 
Atlas, Titan, and Thor ballistic missiles. During the 1950s, each of 
these vehicles was developed in programs marred by frequent flight 
failures. Actual numbers and the complexity of components grew by 
several factors over the A-4. The new devices and their failures led to 
more testing, both at the factory and before launch. The concept of a 
"countdown," during which each flight-critical component of the 
vehicle is systematically checked, reached a high level of efficiency. 

As the 1960s began, most rockets and their payloads were still be­
ing checked out by discrete connections between the components and 
a test panel. When the countdown reached an advanced stage, par­
ticularly after fueling, the test engineers were cloistered in a block­
house. Through cables from the rocket to the blockhouse, the en­
gineers could monitor the status of various components and activate 
tests. An engineer would flip a switch, and something would happen, 
either on a dial or a strip chart, that he could actually see and interpret. 
When the first Saturn I rockets were launched and the Mercury 
spacecraft made their appearance, both in 1961, it became obvious 
that the level of complexity of both vehicles and payloads had reached 
the point where manual test methods were inadequate. Individual 
NASA engineers and managers on different programs began to 
evaluate the possibility of automating some of the checkout 
procedures using digital computers. Eventually, this led to the 
Shuttle's fully automated Launch Processing System. 

The heart of the Shuttle is its computer system. Without it, no 
component of the spacecraft could be adequately tested or monitored. 
When a Shuttle is being refurbished after a flight in the Kennedy 
Space Center's orbiter Processing Facility, a large double hangar near 
the landing runway, the spacecraft's computers are connected to 
checkout and launch computers located in a firing room in the Launch 
Control Center. When moved to the Vehicle Assembly Building for 
mating with its fuel tank and solid propellant boosters, the Shuttle is 
reconnected to the firing room. After being transported to the pad, the 
final preparations are also controlled from the firing room. Finally, 
countdown and launch are executed from the same firing room. This 
scenario came after two decades of evolution, during which the role of 
computers became dominant both on board spacecraft and in launch 
processing. The integrated techniques exemplified in the Shuttle 
Launch Processing System developed from separate automated sys­
tems devised for vehicle checkout, spacecraft checkout, and telemetry 
monitoring. Important in the evolution is the part played by on-board 
computers. The journey toward full automation got great impetus 
from the Saturn and Apollo programs. 
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Figure 7-1. Launch processing facilities at the Kennedy Space Center: the Shut­
tle Orbiter Processing Facility (left), the Vehicle Assembly Building (center), and 
the Launch Control Center (right). (NASA l 16-KSC-377C-82/41) 

LAUNCH PROCESSING IN THE SA TURN ERA 

A Saturn V rocket with an Apollo spacecraft on top presented a 
magnificent sight, which engineers nonetheless viewed with a mixture 
of prideful awe and dread. No earthly booster since the Skylab launch 
has been as large or as powerful. Shuttles being mated in the Vehicle 
Assembly Building originally designed for the Saturn appeared as 
dwarfs in houses made for giants. It looked as though there was nearly 
enough room to stack them two high. The dread came from the fear of 
failure among the thousands of components, many capable of bringing 
disaster and killing a crew in flight. Early in the Saturn program 
automation began to be introduced in the testing of the gargantuan 
rockets. Marshall Space Flight Center acquired computers for Saturn 
vehicle checkout. Marshall also had responsibility for the Launch 
Vehicle Digital Computer (LVDC) housed in the Instrument Unit that 
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was the last stage below the Apollo spacecraft on both Saturn IB and 
Saturn V configurations. NASA's Launch Operations Center, later 
renamed Kennedy Space Center, acquired computers for telemetry 
data reduction and display and began work on the checkout systems 
used for the Apollo spacecraft, a project later transferred to the 
Manned Spacecraft Center in Houston. Each of these computer­
controlled systems contributed to the concepts and development of the 
Shuttle Launch Processing System, now wholly based at the Kennedy 
Space Center. 

Checkout of the Saturn Vehicle 

Marshall Space Flight Center in Huntsville had primary respon­
sibility for the design, manufacture, and flight preparation of the 
Saturn vehicles. In 1951, when Marshall was still the headquarters of 
the Anny Ballistic Missile Agency, Kurt H. Debus formed a launch 
team that commuted to the Air Force's Eastern Test Range in Cape 
Canaveral, Florida. Within a short period of time, the frequency of 
launches made it necessary to establish a permanent group at the 
Cape, called the Missile Firing Laboratory. When Marshall was es­
tablished on July 1, 1960, the Laboratory was renamed the Launch 
Operations Directorate. By 1962, the activities at Cape Canaveral 
grew to the level that the Launch Operations Center was formed 
separately from Marshall and given status equal to other NASA 
centers. However, its charter stated that the centers responsible for a 
particular vehicle or spacecraft had to perform its checkout and test, 
so during the Apollo era Marshall prepared Saturns and the Manned 
Spacecraft Center worked on the Apollos. Personnel at the Launch 
Operations Center performed facilities management and provided 
telemetry data reduction. 

Computers were used both on-board the Saturn vehicles and in 
preparing them for flight.* Ten Saturn I vehicles were launched be-

*For a complete description of the evolution of the Saturn and its components, 
see Roger Bilstein, Stages to Saturn: A Technological History of the 
Apollo/Saturn Launch Vehicles, NASA SP-4206, 1980. Chapter 8 centers on the 
use of computers in checkout and the development of the Instrument Unit and its 
flight computer. Chapter 16 of Charles D. Benson and William B. Faherty, 
Moonport: A History of Apollo Launch Facilities and Operations, NASA 
SP-4204, 1978, describes the development of automated launch operations. Due 
to these prior treatments, my account will concentrate on briefly summarizing the 
use of the computers to provide the necessary introduction to the section on the 
Launch Processing System, rather than retelling the whole story. Some new 
evidence is presented where applicable, but the reader is urged to consult both 
previous works. 



212 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE 

tween 1961 and 1965. Each was unmanned, the series being used 
primarily to demonstrate that clustered-engine first stages and high­
energy upper stages were feasible. The first five launches did not use 
a computer for guidance. Each was a suborbital mission utilizing a 
German-made mechanical time-tilt device for control2. On the fifth 
flight, an ASC-15 computer, built by IBM originally for the Air 
Force's Titan, flew as a passenger and handled telemetry 
transmissions3. It guided the last five missions, several into earth or­
bit. When Saturn evolved into the IB and V series, an Instrument Unit 
containing the LVDC was mounted atop the S-IVB stage on each 
vehicle. Termed the "integrating element" of Saturn, IBM was not 
only responsible for its computer but for its construction4. Besides the 
computer, the Instrument Unit contained the Launch Vehicle Data 
Adapter as an I/O front end, analog control circuits and an ST-124 
guidance platform. On lunar missions the L VDC guided the spacecraft 
until the S-IVB stage separation after the lunar trajectory insertion. 

IBM's LVDC was architecturally quite similar to the Gemini 
guidance computer5. It used nearly the same instruction set, 26-bit 
data words and 13-bit instructions. One difference was that the 
memory had two-syllable locations instead of Gemini's three. Con­
struction of the L VDC, however, was radically different. For 
reliability reasons, triple modular redundant (TMR) circuits were 
adopted. Even though the component count went up just 3.5 times, the 
reliability increased 35 times6! Three logic channels, each with seven 
functional modules, required 39 5 voters 7. Packaging the computer 
used techniques developed under the Advanced Saturn Technology 
Program commissioned by Marshall and executed by IBM8. First of 
the "flat pack" integrated circuit series, IBM applied this silicon semi­
conductor technology in its System 360 commercial machines9. 

Use of a computer in the launch vehicle led directly to using one 
for checkout. Marshall bought an RCA 110 to communicate with the 
IBM ASC-15 used in the Saturn I. Later, RCA upgraded its machine 
by enlarging the memory to 32K 24-bit words of core and an ad­
ditional 32K on an associated magnetic drum. When the Saturn IBs 
began to be launched, discrete circuits for interfaces with the rest of 
the launch vehicle were added 10. Renamed RCA ll0As, these com­
puters continued to be augmented to handle more communications cir­
cuits, so that by the time Saturn Vs appeared, the computers could 
maintain the status of each of 1,512 signal lines 11 . At first the 11 Os 
simply handled communications and switching. Activating test 
procedures and conducting tests were still done manually. But in 
1962, IBM suggested that Chrysler convert the 110s they used for 
stage checkout of the Saturn I to do the tests automatically 12. Even 
though the advantages of automating procedures seem obvious, chief 
among them the fact that all are done exactly alike, it was difficult to 
get people responsible for checkout to convert from doing things 
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Figure 7-2. IBM engineers work inside the Saturn launch vehicle Instrument 
Unit. (IBM photo) 

manually, a theme repeated in other parts of the Apollo program 13. At 
that time, computers were seldom used for on-line work, and most en­
gineers were still unfamiliar with them and wary of any more innova­
tions in an already innovative program. However, Chrysler converted 
some factory tests to automatic, using a special language, "HYLA," to 
define them. Additionally, several Packard Bell computers connected 
to a common memory automatically checked out parts of the Saturn 
I. Use of a common memory as a computer interconnection device 
reappeared in several later systems and is critical to the success of the 
Shuttle's Launch Processing System. Engineers wrote the language 
"SOL," or Systems-Oriented Language, for the Packard Bell 
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machines. By late 1962, the Saturn V stage contractors accepted the 
concept of automatic checkout and settled on a common system, the 
Control Data Corporation CDC-924A computer, as the factory test 
machine, with l l0As ass1ned to the S-1 stage and for the assembled 
vehicle at the launch site1 . 

By this time, it was clear to Ludie Richard, a NASA engineer, 
and his team at Marshall that preparing a language to help test en­
gineers write automated procedures was the key to continued accep­
tance of the principle. A custom-designed programming language 
would leave control over the definition of the tests in the hands of the 
engineers, avoiding communication problems that might arise with 
computer programmers inexperienced in checkout techniques15 . IBM 
eventually wrote routines for the RCA computers in assembly lan­
guage, but the majority of the automated tests were ATOLL 
(Acceptance, Test, or Launch Language) programs stored on tape. 
Richard acquired the over two dozen RCA 11 0As that were eventually 
used. His deputy, Charles Swearingen, was put in charge of managing 
the flight computer, ground computer, and checkout software 1 . 
James Lewis and Joseph Medlock were instrumental in developing the 
checkout systems and defining ATOLL17. IBM wrote both the flight 
programs and the Saturn Operating System that ran on the RCA com­
puters and executed ATOLL procedures. 

By mid-1963 the final configuration of the Saturn checkout com­
puters was set by Richard's group. At Launch Complex 34, the Saturn 
IB launch site, one master RCA 11 0A was in the blockhouse and a 
slave underground at the pad. For Saturn Vs at Complex 39, one 
RCA 11 0A was located in each of the four firing rooms in the Saturn 
Launch Control Center, which was attached to the Vehicle Assembly 
Building in which the Satums would be stacked. Each of four mobile 
launchers also contained a computer. In addition to the l l0As, the 
firing rooms also had a DDP-224 minicomputer as a display driver for 
the CRTs showing output data to the engineers, as well as a controller 
for slides and other visuals. Computers in the mobile launchers could 
be-used for checkout in the Assembly Building as well as at the pads, 
a foreshadowing of the later Launch Processing System. Due to 
reliability problems with the 11 0As, the launcher computers used a 
dual memory configuration. Checkout programs filled just half the 
memory, so the other half acted as a duplicate for redundancy, the 
same principle as applied to the L VDC memory. 

Part of the credit for the perfect success record of the Saturn 
vehicles (all Saturn I, IB, and V boosters flew without a failure) must 
be due to the effectiveness of the checkout procedures. Without 
automatic testing the confidence in the rockets could not have been at­
tained, since they were too complex for effective manual procedures. 
In addition to checkout methods specific to the launch vehicle, the 
launch directors in the firing rooms had access to automated test data 
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Figure 7-4. A block diagram of the Saturn Operational Display System. (From 
IBM, SLCC Programming System) 

from the spacecraft preflight test equipment developed by both the 
Launch Operations Center and Manned Spacecraft Center. 

Development of Apollo's Acceptance Checkout Equipment 

From the first Apollo earth orbital flights through the lunar mis­
sions, Skylab, and the Apollo-Soyuz Test Project, ground testing and 
countdown support of the spacecraft and its associated systems were 
the responsibility of the ACE, or Acceptance Checkout Equipment**. 

**The acronym ACE evolved from PACE, or Preflight Acceptance Checkout 
Equipment, which appears in some of the literature. It was discovered that the 
name conflicted with a commercial product, so the "Preflight" was dropped. Prior 
to PACE, there was a short period when the equipment was known as SP ACE, but 
apparently not officially. 
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ACE stations were located in the Apollo Operations and Checkout 
Building in the Industrial Area of the Kennedy Space Center, at 
Launch Complexes 34 and 37, at the Johnson Space Flight Center, 
and at North American Aviation and Grumman Corporation assembly 
plants. Two of the North American stations were modified for use in 
assembling the Shuttle in Palmdale, California18. 

ACE resulted when a spacecraft checkout engineer figured that 
there had to be an alternative to manual methods. Thomas Walton 
transferred from a job in the computer room at Langley Space Flight 
Center to the Cape Canaveral Launch Operations Center in early 
1961. Assigned to the checkout of Mercury spacecraft, by September 
he had enough of manual testing and applied his background in com­
puters to devising another way of doing things 19. Walton convinced 
his boss, Harold G. Johnson, to let him build a digital ground station 
for telemetry from the capsule. Using the Mercury missions as 
prototypes, he proved that digital equipment could display the en­
gineering data previously shown on dials and strip charts. His success 
led to a search for a computer system to handle the data in real time. 
With NASA's Gary J. Woods, he traveled to several companies in 
search of a machine. Wal ton did not believe that a computer like an 
IBM mainframe of that era could do the job. Since they were designed 
for large-scale batch processing, the difficulties of adapting such a 
computer to the real-time world of telemetry displays and automated 
checkout would be too great. Instead, he and Woods looked for 
simpler minicomputers such as the Digital Equipment Corporation 
PDP-1 and the Control Data Corporation CDC-16820. Walton con­
vinced the Gemini Project Office to buy a pair of CDC-168s to be 
used for checking out their spacecraft. Meanwhile, plans continued to 
create a system dedicated to the Apollo. 

Marshall and Launch Operations personnel met in 1963 to deter­
mine whether the checkout equipment for both the Saturn vehicle and 
the Apollo spacecraft could be combined. Richard's and Walton's 
teams decided to continue separate paths21 . The results were the 
Saturn checkout system and the first ACE unit using General Electric 
discrete equipment and CDC-168 computers going on line in late 
1964. 

Although the first ACE stations were under construction, a small 
political battle was raging over who would have ownership of the 
program. Joseph Shea, then at NASA Headquarters in Washington, 
wanted to control it from the Apollo Project Office there. Transferred 
to Houston in 1963 to take over management of Apollo, he moved the 
ACE development group of between 50 and 60 persons there 
instead22. This act reinforced the feelings that the Kennedy Space 
Center was to be strictly an operations center, staying clear of research 
and development activities. 
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Figure 7--6. An ACE station with twin Control Data computers. (NASA photo 
107-KSC-67C-9 l 9) 

Each ACE station used two digital computers with a common 
memory. One was the Digital Command Computer, which processed 
commands from the control or firing rooms to the spacecraft and was 
interconnected with the ground support equipment. A second machine 
was the Data Processing Computer, which drove the displays and con­
trolled peripherals. Memory could be directly accessed by discrete cir­
cuits in the ground station, so data for both computers could be placed 
there23. ACE stations could function in manual command mode, 
semiautomatic, or fully automatic with manual override. Stations in 
the Kennedy Industrial Area serviced the spacecraft both before and 
after mating with the Saturn V boosters. When Launch Complex 39 
went into use, checkout wires carrying digital formatted data ran over 
15 kilometers from the ACE stations to and from the pad and firing 
rooms in the Saturn Launch Control Center using a video wideband 
transmission system24. Of course ACE had to cooperate with the RCA 
1 l0As at various points, so interfaces between the different computers 
consisted of dedicated I/O registers, sense lines, and priority 
interrupts25 . ACE also had to talk to the Apollo guidance computers 
in the command module (CM) and the lunar excursion module 
(LEM). On the average, the CM computer operated for 50 hours in 
support of the countdown. A CRT display controlled by ACE dupli­
cated the data shown on the display and keyboard while the Apollo 
computer was in operation. 26 
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Walton judged that the development of ACE did a lot to stimulate 
the technology of on-line processing. Certainly it helped create tech­
niques of interconnecting multiple different computer systems. Also, 
this was one of the first times that data transfers in the megabit range 
were accomplished over distance. 

Digital Displays of Telemetry 

Telemetry transmissions from the vehicle are one important 
source of data for rocket engineers. In the early days of rocket flight 
research, the causes of failures often could only be guessed. When the 
larger size of later rockets made it possible to carry radios for sending 
back data, sensors were added to supply engineering data from critical 
components throughout the flight of the vehicle. If a failure occurred, 
it was often possible to determine which components contributed most 
to it by examining the reams of data sent back and originally recorded 
in analog form on the • ground. However, Tom Walton's pioneering 
digital ground station for Mercury displayed the data in processed 
digital form. In 1962, the Atlas-Centaur project automated postflight 
telemetry data reduction27. By the mid-l 960s, digital telemetry dis­
plays were standard at Kennedy Space Center, provided by a pair of 
mainframe computers in the Central Instrumentation Facility. 

Kennedy acquired two General Electric 635 computers for 
telemetry monitoring and batch processing of institutional programs. 
GE 635s were 36-bit processors capable of double-precision 
arithmetic28 . Programmers prepared separate code for each of the 
Delta, Atlas-Centaur, and Saturn flight vehicles. Delta and Atlas 
launch pads, as well as Complexes 34, 37, and 39, could be switch 
connected to the computers at any one time. Forty different displays 
were possible and could be transmitted to the appropriate blockhouse 
or Launch Control Center firing room29. NASA's Bruce Miller was in 
charge of systems programming for the GE computers, with Bradley 
Hughes as the chief scientific programmer. 

These computers had the longest operational life of any installed 
at the Kennedy Space Center. GE delivered the first machine in late 
1965. A second came on line in early 1966. Until May of 1983-18 
years later!- one was still in use driving blockhouse displays for 
Delta and Atlas-Centaur. GE had long been out of the computer busi­
ness by then, having sold its digital computer division to Honeywell in 
the early 1970s. Kennedy retained a permanent systems programmer 
from GE ( who later moved to Honeywell) to keep the operating sys­
tems going and used a retired blockhouse 635 from Wallops Island as 
a source of parts30. From the beginning the computers had a dual 
operating system. Batch institutional jobs could be run at the same in-
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stant a real-time telemetry program was running, except when a 
Saturn was being supported, as its program was so big it pushed out 
the batch programs. When Kennedy Space Center officials searched 
for a second machine for the Central Instrumentation Facility, they 
considered other vendors. IBM's branch manager in Cape Canaveral, 
W. 0. Robeson, sent a letter suggesting a System 360/50 as an ad­
ministrative computer, pointing out that evidence from prior telemetry 
computers indicated that they rarely failed31 . The dual operating sys­
tems could then be abandoned. However, Kennedy bought the second 
635 to provide a redundant backup anyway, accepting the loss of 
batch processing during Saturn operations. 

Telemetry data reduction computers thus provided yet another 
source of information to the launch directors in the Apollo/Saturn era. 
Still, some engineers were convinced that the computer data were 
never accurate, just as their colleagues in the checkout world had to be 
dragged into automation32. Regardless, telemetry displays became an 
integral part of the technology of launch processing. 

Impacts of the Apollo/Saturn Era on the Shuttle Launch 
Processing System 

Developing the major computer components of the launch 
processing system for Apollo/Saturn provided software contractors 
such as IBM and the Kennedy Space Center staff valuable experiences 
later transferred to the Shuttle Launch Processing System and on­
board software for the Shuttle program. Additionally, some tech­
niques known in theory, but never properly applied, found justifica­
tion during the Apollo/Saturn programs. The areas of impact included 
the modularization of software, lessons learned by IBM as a key fu­
ture contractor, and Walton's continued influence on ground computer 
concepts. 

Software written for the L VDC and the GE 635 computers started 
as single monolithic programs and evolved to modularized programs 
at just about the same time. Flight software for the ASC-15 computer 
used on the Saturn I vehicles was necessarily monolithic because it 
had to be sequentially executed and strictly timed33. Any changes im­
pacted on the execution time, and therefore had to be carefully in­
tegrated. The computer could not handle waiting for an interrupt to in­
stigate an action. Actions had to be initiated by the program relative to 
its starting time. When the ASC-15 gave way to the L VDC, a more 
powerful and flexible machine, programmers continued in the 
monolithic mode. Finally, IBM staff realized that by preparing the 
software in essentially free-standing chunks, the impact of changes 
would be limited to the modules and not spread side effects through­
out the software. This discovery came late in the Saturn program but 
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early enough to affect the development of the Skylab on-board 
software. Also, IBM separated the modules into groups consisting of 
the control subsystem and applications subsystem, which is a 
prototype of the Shuttle on-board software organization34. IBM 
helped transfer this concept to the Shuttle by moving people such as 
Kyle Rone and Lynn Killingbeck from working on the Saturn com­
puter directly to the Houston office to support the Shuttle software 
development. NASA also independently moved toward modulariza­
tion when, in 1973, it broke down the programs used on the GE 635s 
to support telemetry data reduction. Before then, it took an average of 
3 months to implement a simple change in the monolithic version of 
the program, because of the massive debugging necessary to eliminate 
side effects35 . Thus, modularization came to be expected by NASA as 
part of software design. If modularization was not used on the Shuttle 
on-board software, preparing new flight loads would have been im­
possible within the projected time between flights of an individual or­
biter. 

Besides modularization, Apollo/Saturn significantly influenced 
IBM's later work on the Shuttle 's on-board software, especially the 
company's design of the system used for Shuttle launch processing. 
IBM summarized its conclusions in a document released in late 1972, 
just at the time both Shuttle ground and on-board software contracts 
were being Iet36. The study recommended that the vehicle's flight 
software be capable of reloading all programs on board37. This was 
implemented on the Shuttle, as the mass memory units (MMUs) con­
tain all preflight and flight software for the primary avionics com­
puters, the display computers, and the engine control computers. 
Ground software recommendations required that all checkout func­
tions use a higher order language and that checkout be conducted 
using one computer system38. 

During Saturn, both A TOLL and machine language programs 
controlled preflight tests, the machine language routines absorbing a 
considerable amount of development and maintenance time. This les­
son helped spur the creation of an improved checkout language, 
GOAL. In regard to consolidating all functions in one computer, IBM 
thought that the difficulties of integrating the two RCA computers, the 
DDP-224 display computer, and the telemetry reduction computers 
were excessive. By taking that position, IBM found itself squared off 
against the distributed concepts envisioned by Tom Walton and his 
team for the Shuttle system. Walton refused to move to Houston when 
Shea transferred the ACE team. By staying at Kennedy, he was able to 
influence the structure of the Shuttle Launch Processing System and 
help make the Center fully responsible for all checkout and launch 
operations for the entire vehicle, a significant change from the 
Apollo/Saturn program. 
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THE SHUTTLE LAUNCH PROCESSING SYSTEM 

When NASA began planning for the Space Transportation Sys­
tem (STS), it espoused ambitious requirements, such as an eventual 
launch rate of 75 per year. A projected fleet of three orbiters would be 
limited to a maximum 2-week turnaround between flights and a 2-
hour countdown in order to achieve that many firings39. Compared to 
the 5-month checkout of a Saturn V and its 3-day countdowns, this 
seemed outrageous, especially since the Shuttle would be no simpler 
than an Apollo/Saturn. NASA put considerable effort into examining 
commercial aircraft maintenance techniques to see what could be 
adopted for Shuttle use. One study indicated that only 53% of the tests 
done on a Saturn V would need be repeated if the spacecraft were 
reusable40. Even with this reduction, nearly 46,000 measurements 
have to be made and monitored in real time in the process of prepar­
ing a Shuttle for launch41 . Clearly, there was no way NASA could do 
the Shuttle checkout with Apollo concepts42. As Henry Paul, who 
headed the Launch Processing System development for NASA, said, 
"Automation ... becomes a requirement for operations, not an 
elective"43. Still, some engineers needed to be convinced that hard­
wired testing could be successfully eliminated, even though the last 20 
hours of a Saturn countdown was 85% automated44. Building the 
present system, during which almost all preflight testing and prepara­
tion is done under control of software, and in which much of the 
countdown, sometimes even including the calling of "holds," is done 
by computing machinery, was a remarkable effort45 . One of the big­
gest changes from the Apollo/Saturn preflight checkout systems is 
that Kennedy Space Center became responsible for the development 
of the Launch Processing System. Given the organization of NASA at 
the time, this was one of the biggest surprises as well. 

Kennedy Space Center Gets the Job 

During the late 1960s NASA began studies of the configuration 
of the eventual STS. Most designs were predicated on a winged 
booster, which would return to the launch site immediately after 
separation from an orbiter with internal fuel tanks. Such a design 
could theoretically be launched from anywhere in the United States 
isolated enough to handle aborts safely. Project staff examined a 
number of sites and made projections of the cost of an "ideal launch 
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site" that would have all the facilities necessary for handling the Shut­
tle. Chief among these were a hypergolic and cryogenic fuels facility, 
a hangar for the orbiters and boosters, a mating building, a control 
center, the launch pads, and a runway with a safing bay for emptying 
residual fuels after landing. One study placed the cost of a new facility 
with these characteristics at $1.9 billion. On the other hand, modifying 
existing Apollo/Saturn facilities at Kennedy and adding new equ*­
ment where needed would cost $355 million, a significant savings 6. 
In March 1972, NASA selected the solid rocket booster/external tank 
configuration for the Shuttle. All inland launch sites were thus 
eliminated, and just Kennedy Space Center, Vandenberg Air Force 
Base, and a site in Texas remained under consideration47 . Since exist­
ing facilities could be modified at both Vandenberg and Kennedy, the 
cost-conscious administrators settled on those two launch sites. Van­
denberg was expected to handle polar orbit launches and most military 
payloads. Kennedy would launch eastward, continuing the established 
situation and giving Kennedy the opportunity to try for the develop­
ment of the checkout system. 

Phase B Shuttle studies conducted by a number of contractors in­
cluded concepts of the checkout system48. Some hinted at the direc­
tion the eventual system would take. One pointed out the need for ef­
ficient and simple man-machine interfaces, and called for having 
ATOLL, FORTRAN IV, and COBOL compilers available to the 
engineers49. Kennedy's own early study, based on Rockwell and 
McDonnell-Douglas Shuttle configurations, called for a central data 
processing facility connected to every part of the Shuttle handling 
equipment, including a mission simulator on site and by communica­
tions link to Mission Control in Houston50. Meanwhile, remnants of 
the old ACE group at Johnson had started work on a Shuttle checkout 
system. 

A "Checkout Systems Development Lab" at the Johnson Space 
Center did research on new concepts of preparing manned spacecraft 
for flight51 . Individual BIC, for "built-in checkout," cells would be lo­
cated at test points throughout a spacecraft, each cell with I/O 
registers. Automated tests would read and write to these cells. 
Johnson's development team wanted a single central computer to be 
connected to several sets of Universal Test Equipment consoles and 
thence to the Shuttle52. General Electric built a prototype of a 
"Universal Control and Display Console" for the Laboratory. Each 
control console would have two color display tubes and be capable of 
supporting tests on any specified parts of the spacecraft53 . The system 
was similar to earlier Apollo/Saturn concepts, with a big computer in 
the middle doing all the testing and displays, communicating with the 
spacecraft, and so on. One improvement was that the Universal Test 
Equipment meant that units could be mass produced and assigned to 
different checkout tasks without significant hardware changes. When 
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the time came for the Shuttle project office at Johnson to make a deci­
sion about preflight checkout, the hometown lab made a proposal that 
was "underdeveloped" and vague54. Most likely, the engineers in the 
Development Lab thought the job was theirs because in all previous 
programs the center responsible for the spacecraft was responsible for 
checkout. When Kennedy had tried to do some ACE development, it 
was moved to the center responsible for the Apollo. Therefore, a full­
blown proposal did not seem necessary. They were in for a surprise. 

Impetus to make Kennedy the development center for the Launch 
Processing System came from many levels. The center's director, 
Kurt Debus, made his support clear to his engineers in 197255. Walton 
saw a chance to do another ACE, but this time as a fully integrated 
system for all parts of the spacecraft. The consensus was that by 
having Kennedy Space Center do the development, much mane; 
would be saved and civil servants would be more actively involved5 . 
Even though the work originated with Walton 's Design Engineering 
Directorate, talent for developing the Launch Processing System came 
from across the Center57. A study group of about half a dozen en­
gineers, led by Theodore Sasseen and including Henry Paul, Frank 
Bryne, George Matthews, and others who had key roles in the later 
implementation of the system, met and began work on a prototype58. 

Making the prototype turned out to be one of the key factors in 
landing the Launch Processing System development job for Kennedy. 
The engineers made a small model of a liquid hydrogen loading 
facility, with real valves and tanks. Using a Digital Equipment Cor­
poration PDP 11/45, they devised software that graphically displayed 
a skeletal view of the piping and valves, with actual pressures printed 
next to the appropriate valve. The prototype could transfer fuel to the 
model spacecraft under software control, with the user able to monitor 
flows and pressures at the console. Confidence in their ability to 
create automated procedures encouraged the engineers, and they also 
now had a physical version of their system to help in selling it. 
Johnson's Universal Test Equipment had no counterpart in terms of 
functionality. 

The prototype represented a single, and complete, part of the total 
system, a system quite different in concept from previous ideas. 
Launch processing and mission control prior to the Kennedy develop­
ments were based on using a minimum number of mainframe com­
puters. Frank Byrne had the technical vision to develop a distributed 
computing system, in which dozens of small computers would do the 
checkout functions. Walton provided the leadership and tenacity to 
hold to the concept and see it put into place59. Several important ad­
vantages result from using distributed computers. First, the tasks more 
closely fit the power of the machine. Using a mainframe computer for 
relatively simple forocedures such as solid rocket booster checkout 
would be overkill 0. Second, a distributed system would free software 
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developers from worrying about fitting their programs in with others 
in a big machine's memory. Each discipline, such as engines, 
cryogenics, and avionics, would have a separate console61 . Third, 
parallel testing could be done62. A mainframe would have to be in­
ordinately large to contain all the checkout programs. Therefore, they 
would have to be loaded and run serially, as in the RCA 11 0As, 
defeating the short countdown requirement. Finally, Paul was con­
vinced that overall hardware costs would be reduced compared with 
mainframe configurations63 . 

In 1972 Robert F. Thompson was the head of the Shuttle project 
office at Johnson and in charge of deciding where to place the check­
out development. Faced with a choice between a homegrown system 
similar to tried and true predecessors and a new concept developed at 
Kennedy that even had opposition there, he ruled in favor of 
Kennedy's proposal against the opinions of his advisors. The winners 
are gracious toward Mr. Thompson, calling him an "honest manager" 
and a "nonterritorial individual"64. Thompson judged Kennedy's to be 
the best proposal, but he also thought it more efficient for NASA to 
develop the Launch Processing System where it would eventually be 
used and by the people who would use it. 

Getting Started: Contracting For the Launch Processing System 

Due to the earlier site studies and the building of the prototype, 
Kennedy Space Center had a good idea of what it wanted in the 
Launch Processing System. Reflecting the detailed requirements 
developed for the Shuttle on-board computers, the Design Engineer­
ing Directorate's engineers started in March 197 3 to prepare the 
"Launch Processing System Concept Description Document"65. 
Released in October, the document specified the architecture and con­
cepts of the system in detail, before any major contractor 
involvement66. Kennedy's efforts on the Launch Processing System 
are reflected by the fact that nearly 100 civil servants were involved in 
the planning between 1973 and the March 1976 freeze of the 
design 67. 

Plans for the System included extensive remodeling of Saturn 
facilities. The Processing System itself is largely contained in the 
Launch Control Center. Hardware is divided into the Checkout, Con­
trol, and Monitor Subsystem (CCMS), the Central Data Subsystem 
(CDS), and the Record and Playback Subsystem (RPS). Small, task­
dedicated computers are in the four firing rooms of the Control Center 
and are the primary component of the CCMS. Large mainframe com­
puters located on the floor below the firing rooms make up the biggest 
part of the CDS. NASA's Joseph Medlock, Thomas Purer, and Larry 
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Dickison envisioned test engineers developing their own procedures 
using an engineer-oriented language like A TOLL in concept but better 
and easier to use68 . These procedures would then be developed on the 
mainframes and tested against simulations stored on the mainframes. 
When verified, they would be included in the system and stored on 
disk. When a firing room became active to support a vehicle, the en­
gineer would load his test procedure from the mainframe to the min­
icomputer attached to his console and execute it from the console. 

Depending on which spacecraft subsystem is involved, the 
tendrils of the Launch Processing System may follow it wherever it 
goes on the Space Center site. The firing rooms are connected to the 
Vehicle Assembly Building, the launch pads, the Cargo Integration 
and Test Equipment, and the new orbiter Processing Facility, a two­
bay horizontal hangar. At each location, hardware interface modules 
make it possible to test and monitor the orbiter and other parts of the 
spacecraft from the firing rooms. So the System is locally distributed 
computationally, but physically centralized---especially compared 
with the RCA 1 l0As and GE 635s of the Saturn era. 

One critical side effect of using a mix of mainframe data base 
machines and minicomputers for individual system checkout, as well 
as the need to talk to a pervasive on-board computer system, was that 
for the first time, several different network architectures had to be 
combined into one69. The inherent difficulties involved led NASA to 
award the software contract before choosing hardware so that the 
software contractor could help in the computer selection 70. Further, 
the minicomputers were chosen apart from the contract for the con­
soles and other hardware associated with the CCMS. Four source 
selection boards eventually convened: one each for software, min­
icomputers, the CDS, and the CCMS71 . 

Since test engineers would write the applications software, the 
software contractor would be primarily responsible for the operating 
system under which the applications would run, the new test language, 
GOAL (for Ground Operations Aerospace Language), and any 
modifications to the microcode for the minicomputers and other 
equipment needed to successfully connect them. Interfacing largely 
became a software problem because the changes were to be imple­
mented in microcode. Six contractors tried for the job, with IBM beat­
ing out General Electric, TRW, Computer Sciences Corporation, 
McDonnell-Douglas, and Harris Computer Corporation 72. The initial 
$11.5 million contract ran from May 1974 to March 197973. This con­
tract was extended several times due to delays in launching the first 
Shuttles, but IBM's involvement ceased in the operations era. The 
company did its usual good job, and users of the eventual system 
believed it fulfilled the requirements74. IBM used a top-down struc­
tured approach in designing the software, holding weekly formal 
reviews during the development stage so that NASA could closely 
monitor activities 75. 
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By winning the software contract first, IBM found itself in the un­
usual position of having to program other people's computers. One 
IBM employee said that his company was encouraged not to bid on 
the hardware contracts 76. According to Byrne, IBM was not kept out 
of the hardware bids so much as they lacked a suitable minicomputer 
to offer. The System 34 was under development at that time, as was 
the Series/I, but IBM chose not to make its new minicomputers 
public 77. Three companies made the final round of bids on the min­
icomputers: Prime, Varian Data Machines, and a small new company 
called Modular Computers, Inc 78. Design Engineering had built a 
prototype of a launch processing console set for the solid rocket 
boosters using Prime computers. (Later shipped to Marshall for 
awhile, it finished its career in the Vehicle Assembly Building nearly 
10 years after construction. 79) Because of this, many thought Prime 
had the contract won, but it was edged out by Modular Computers, 
much to the surprise of Byrne and Walton80. ModComp initially con­
tracted for 60 machines at a cost of $4.2 million, a number later ex­
tended considerably as console sets were placed in all four firing 
rooms, the cargo integration facility, the Shuttle Avionics Integration 
Lab (SAIL) at Johnson, and the hypergolic maintenance facility, as 
well as at Vandenberg. Two months after the computer contract was 
let in June of 1975, Martin-Marietta defeated Grumman Aerospace 
Corp., Aeronutronic Ford, and General Electric for the remaining 
CCMS hardware. 

By November 1976, IBM received the first minicomputer for 
software development, and by February of 1977, the first station for 
GOAL applications development was delivered81 . Honeywell won the 
CDS hardware contract in the fourth quarter of 1975, and John Con­
way of NASA managed the acquisition of equipment and personnel 
for that Subsystem during 1976-197782. By 1977, the Launch 
Processing System began to take physical shape. 

The Common Data Buffer: Heart of the System 

Most diagrams of the physical components of the Launch 
Processing System show an inordinately large rectangle at the center 
of the drawing, with all other components either directly or indirectly 
connected to it. That rectangle represents the common data buffer, 
which Thomas Walton called the "cornerstone of the system"83. The 
biggest problem with creating distributed computing systems is devis­
ing a method of intercomputer communication that is reliable, fast, 
and simple. In a system such as the Launch Processing System, which 
depends on a number of computers "knowing" the same data about the 
spacecraft, some method of protecting and centralizing the common 
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Figure 7-7. Shuttle Launch Processing System hardware structure. (Courtesy 
IBM) 

data is needed. Frank Byrne, who was involved in the planning for the 
Processing System from the start, took on the job of designing a 
device to keep track of commonly needed data that also made it pos­
sible for the various computers to communicate with each other. Ken­
nedy followed a plan to use commercially available equipment in as 
many parts of the Launch Processing System as possible. Minicom­
puters and mainframe computers are used largely unchanged. 
However, since no organization had tried to closely connect such 
large numbers of machines, some of which were quite different in ar­
chitecture from the others, there was no commercially available solu­
tion to the common data problem. Byrne had to design one on his 
own: the common data buffer. 

Byrne noted that as the number of computers in a distributed sys­
tem increases, the complexity of intercomputer communication in­
creases. He wanted to remove the complexity. By placing the common 
data at a central location he eliminated the need to update multiple 
copies of the data in separate machine memories. Possibly he got the 
idea for a common data area from his work on the GE 635s in the 
Central Instrumentation Facility. Those machines had a "data core" 
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which could be accessed by both84. ACE stations also used common 
data areas. Basically the common data buffer provides each machine 
in the system with a set of "post office boxes." Specific parameters, 
such as valve pressures, voltages, and fuel levels, are assigned a loca­
tion in the buffer memory. Each machine can read any location in the 
memory, but only the machines explicitly assigned to the task of 
maintaining a certain parameter can write to that parameter's location. 
That way a secondary machine cannot spuriously change a 
parameter's value. Programmers do not have to worry about where 
any particular parameter is kept. As long as it is ref erred to by its 
proper name in a GOAL program, the system build process will assign 
it its correct address as the program is compiled and integrated. In ad­
dition to acting as a common storage area for data, the buffer main­
tains the entire system interrupt stack and flags and status variables. 
Since it is centrally located, it is also used to temporarily store ap­
plication programs as they are loaded from the repository in the CDS 
to the individual minicomputers. As such, it acts as a "way station." 

Box 7-1: Inside the Common Data Buffer 

Even though the common data buffer is a unique design, it uses 
standard commercial chips and boards. Nothing was custom built85 . 
Memory chips are made of negative metal-oxide semiconductors (N­
MOS), with each section consisting of 64K of one bit and 32 sections 
making up 64K of 32-bit words, matching the word size of the Mod­
Comp computers in the firing rooms and the error-correcting code used 
in transmissions86 . Memory can be read in 200 nanoseconds, very fast 
by any current standard. Motorola 6800 microprocessors are used in the 
buffer as controllers, each with 2K of read-only memory and 1 K of 
read/write memory87. The 64K main memory has the first lK words set 
aside for interrupts, the next lK as a common read/write area for flags 
and other variables, and the remainder as the protected memory area88 . 
Data can move through the temporary storage areas and out to the com­
puters at a rate of 8 megabytes per second89. 

A common data buffer can have up to 64 devices (computers or 
other buffers) hooked to it at one time. Each device is connected to a 
buffer access card. The cards are scanned by the buffer in rotation, look­
ing for incoming data or requests for data. If a device is needing the buff­
er and its request is noted on the access card, the device then has a slice 
of time to do its work, after which the scanner ( which has been "looking 
ahead") goes to the next card indicating a usage request90. In this way, 
when one machine is writing or even reading , all other machines are shut 
out, preventing both contention for resources or simultaneous attempts to 
update data91 . 
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An early criticism of the common data buffer concept was that it 
would be a single point of failure92. Standard protections were built 
into the buffer, such as dual power supplies and the use of triple 
modular redundancy in some components93. However, the biggest 
problem in a system of this type is protecting against communication 
errors. Millions of bits are speeding throughout the network each 
second, providing considerable opportunity for lost or garbled data. 
Byrne's answer was to include a powerful set of error-correcting 
codes, which he created with the help of Robert W. Hockenberger of 
IBM, who was brought in specifically to work on the problem94. 

The resulting codes enable the data buffer to successfully operate 
with any 2 bits of the 16-bit words in error! When a word is being 
transmitted between computers and the buffer or vice versa, it is sent 
as a 32-bit message. The first 8 bits are data, the second error­
correcting code, then the next word's first 8 bits are code, and the last 
8 data. Data are alternated in this way to protect against "big" signal 
losses95. Individual bits are checked using the correcting codes at 
each end of a transmission. One hundred per cent of the 1-bit errors 
can be corrected, 99%+ of the 2-bit errors can be fixed, 70% of 3-bit 
errors, and even half of the four bit errors. Since the memory chips are 
arranged in 64K by 1-bit banks, the loss of an entire sector of memory 
means the loss of just 1 bit per word, which can then be corrected. The 
error-correcting codes themselves are generated by software on read­
only memories96. Even though such extensive protection is provided, 
in a decade of operation there has been no failure of a common data 
buffer, and internally never more than 1 bit has been garbled97. 

In terms of the architecture of distributed systems, the common 
data buffer was a pioneer. Currently, many distributed systems exist 
partly because of the proliferation of minicomputers and microcom­
puters. Micros, especially, can be connected to common data bases on 
shared hard disks. NCR Corporation briefly marketed a system called 
Modus from 1982 to 1984 that featured the ability to connect with dif­
ferent types of microcomputers, a shared data base, and microproces­
sor control of communications that effectively locked out other com­
puters from corrupting data being updated by another one on the net­
work. In general, though, no commercial system is as effective as the 
Launch Processing System in terms of speed, simplicity, and 
reliability. Most intercomputer communication is clouded by dif­
ferent protocols, nonadherence to declared international standards, 
and lack of speed. Frank Byrne's work stands as an original and bril­
liant solution to the key problem in implementing the Launch Process­
ing System. Fittingly, Byrne received proper recognition for his ach­
ievement. NASA granted a $10,000 bonus and an award98. The buffer 
itself was patented, a rarity for the government side of the space 
program 99. 
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CCMS Hardware 

The hardware of the CCMS consists of the common data buffer 
and everything else in the four firing rooms of the Launch Control 
Center. Even though the buffer appears on the charts as the largest 
item, in reality it is one of the smallest, filling two electronics racks in 
the back of a firing room. Most of the equipment in a room is blue­
colored consoles and boxes: the ModComp computers and their con­
soles. The number and arrangement of consoles are dependent on the 
function of the particular room. Firing rooms one and three are for 
flight operations, with three capable of being made secure for DOD 
launches. Rooms two and four are for software development and test­
ing, number four used for secure operations 100. Firing room two has 
three buffers to facilitate multiple parallel software development101 . 
Operations firing rooms normally are confiftured for 12 consoles, plus 
a master, integration, and a backup console 02. 

During a countdown, consoles in the adjacent software develop­
ment room are kept active as a further backup103. Each ModComp has 
three display terminals, and those three make up one console. These 
are mounted in a half semicircle, so two computers and their attached 
consoles located side by side look like a "D" with the rounded part 
facing the front of the room. Each of the computers contains either a 
5-megabyte hard disk or 80-megabyte hard disk for storin§ applica­
tions programs uploaded from the mainframes in the CDS 1 O . Early in 
the program each engineer had his own disk, and could carry his 
programs to different computers, but when configuration control 
began to be needed the removable disks were replaced 1 OS. Loading an 
entire firing room through the buffer to the ModComps takes a full 
shift. Each computer can run up to six GOAL programs concurrently. 

Individual consoles have marvelous capabilities. NASA commis­
sioned Mitre Corporation to do a human factors study for the Launch 
Processing System106. Some of the resulting concepts make the 
usa]?ility of the system outstanding, and it is superior to many 
workstations in existence today. Color displays, programmable func­
tion keys that make it possible to replace long strings of keystrokes 
with a single push, full cursor control, and other features make it pos­
sible for an engineer to create applications programs that can be run 
without using the keyboard 1°7. This concept antedates by 10 years the 
now ubiquitous "mouse" found on such machines as the Apple Macin­
tosh. In addition, the consoles can be switched to become a terminal to 
the CDS for procedure development and to examine data recorded 
during operations. Special keys on the console enable program execu­
tion to be temporari1J; halted or single-stepped, aiding debugging of 
GOAL applications 1 8. As a further convenience, each console has 
hard-copy capability; "snapshots" of displays can be made, with all 
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the graphics intact, but in black and white. Graphics use is assisted by 
special keys that provide comers, standard symbols for valves, 
transducers, and other components that can be put at cursor positions 
on the screen. Thus, the engineers can build pictorial skeletons of the 
systems they are testing for greater clarity. In general, these consoles 
are among the best available in any computer installation and are 
ideally suited to the purpose of the Launch Processing System. 

Besides the use of ModComps attached to consoles, other Mod­
Comps are used as front end processors to provide interfaces between 
the spacecraft and ground service systems and the buffer. ModComps 
used for applications programs have 64K words of memory, but the 
front end processors have 48K, 64K, or 304K, depending on their con-
nections to other devices109. Hardware interface modules at the actual 
points of entry to the ground support equipment plugged into the 
spacecraft send and receive data from the front end processors. Those, 
in tum, examine the data for parameters that are approaching their test 
limits. If a parameter nears a limit, the processor issues an interrupt 
and calls in a "control logic" program to handle the matter110. Control 
logic is a subset of GOAL used for making sure things are not done 
outside their proper order and within specific time constraints. For or­
biter communication, a launch data bus front end processor communi­
cates directly with the on-board general-purpose computers. Other 
"downlink" front end processors only receive pulse code modulated 
data to be processed for orbiter, main engine, and payload com­
ponents. 

Between the console computers and front end processors, a typi­
cal operations firing room contains over 30 minicomputers, each inter­
connected through the buffer. These computers can control tests and 
monitor the Shuttle anywhere hardware interface modules are avail­
able to connect it to the firing room, whether in the orbiter processing 
facility, the Vehicle Assembly Building, or the pad. Since each con­
sole can do the functions of any other console simply by changing its 
software load, the system has tremendous flexibility. 

CDS Hardware 

Supporting the CCMS is the CDS. Two sets of two Honeywell 
66/80 mainframe computers are the heart of the CDS. NASA pur­
chased the original pair of these 36-bit machines with half a million 
words of main memory each and an additional half a million words 
for sharing. As software for the Launch Processing System grew in 
size, the memories were upgraded to 1.5 million words each and 1 
million words of shared memory 111 . One hundred seventy-two disk 
drives are connected to the machines as mass storage, with a total 
capacity of almost 30 billion bytes. Originally, the computers used 
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Figure 7-8. Typical firing room layout for the Shuttle. Less than 50 engineers are 
needed for the countdown. (NASA photo 108-KSC-78PC-240) 

Honeywell's 4JS l operating system, which is no longer supported by 
the company. One NASA computer scientist said that "we have taken 
almost every piece of standard software and modified it" to meet the 
unique needs of the Launch Processing System 112. Most often the 
first pair of Honeywells support an operations firing room, whereas 
the second set is being used for software development. If one of the 
pair notices that it has failed self-tests for 10 machine cycles, it 
automatically switches control to its partner. 

The third part of the Launch Processing System is the RPS. In­
itially implemented with Apollo-era equipment, it was later moder­
nized with new recorders and computers. The RPS records most data 
telemetered from the spacecraft for later playback and produces 
records and printouts in real time for immediate analysis by system 
engineers conducting tests 113 . Firing room engineers can play back 
tests or other data directly to their firing room consoles for problem 
resolution or trend analysis 114. At first, the RPS only had enough 
equipment to support one Shuttle at a time, so to switch from one to 
another required rearranging a number of connections 115 . This situa­
tion was corrected during the modernization so that the RPS can now 
handle multiple Shuttle data flows. 
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Launch Processing System Software 

Software for the Launch Processing System is of three types: ap­
plications software, written in GOAL, performs the test and integra­
tion functions; simulations software enables engineers to verify their 
GOAL programs before using them on the real equipment; and sys­
tems software controls the execution of the other types. In the Launch 
Processing Division at the Kennedy Space Center, two branches sup­
port the hardware of the Launch Processing System, one for each 
major subsystem, whereas the Applications and Simulations Branch 
supports software by developing simulations and assisting test en­
gineers in GOAL procedure writing. One of the reasons for the utility 
and success of the System is that civil service operations and main­
tenance personnel have been included in software planning and design 
from the beginning in order to make the System better meet their 
needs 116. They essentially built their own tools 117. That policy con­
tinues in the Applications and Simulations Branch, which helps the 
engineers refine their test requirements118. 

GOAL applications programs are the largest part of the Launch 
Processing System software, totaling 14.2 million words by the early 
1980s. As a comparison, the displays, control logic, and test control 
software added up to less than 700K words 119. Despite the early resis­
tance of engineers to the automation of testing, they found that they 
learned more about their assigned part of the spacecraft by writing 
ATOLL or GOAL programs 120. In instructing a computer, saying 
"pressurize the tank until the pressure is high enough" is too vague. 
Engineers writing programs are forced to think through the proper 
parameters and values and to account for anomalies ahead of time. 

Kennedy engineers abandoned A TOLL because it had 
deficiencies in ease of use and in comprehensiveness. Too often as­
sembly languages had to be used to do something A TOLL could not. 
Henry Paul assigned A TOLL veteran Joseph Medlock of Kennedy to 
head the GOAL development group 121 . Medlock and his team of civil 
servants received help from Martin-Marietta Corporation in defining 
the language, and then IBM implemented GOAL. The result was a 
highly readable, self-documenting procedural language. Just over four 
dozen statements are available, and training time is short, taking half 
days for 3 weeks (see Appendix III for an example of a GOAL 
program) 122. IBM designed GOAL's compiler to disallow any un­
defined branches or procedures, making it more strict than FORTRAN 
compilers123. GOAL is highly flexible and permits engineers to 
decide for themselves the degree of interaction required to do a 
test 124. GOAL pro~rams are run within the computers in time slices 
of 10 milliseconds 1 5. 
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When an engineer is developing a GOAL procedure, he writes the 
procedure on his console using it as a terminal to the CDS. After the 
procedure is complete, it is tested against a simulation in the 
Honeywell computers, if a simulation is available. A Shuttle Ground 
Operations Simulator, consisting of GOAL-like statements, is avail­
able for developing models to test programs relating to ground equip­
ment such as fueling systems and external power12 . However, due to 
the lack of an AP-101 processor and Shuttle on-board software, 
procedures for checking out the flight equipment are limited or nonex­
istent. There is no way at Kennedy to test those procedures except 
against an actual spacecraft, so they must be sent to SAIL at the 
Johnson Space Center127. In addition to that restriction, simulations 
programs are limited to 256K words, the largest program a Honeywell 
66/80 can run, since it is not a virtual memory machine. As a result, 
some models have to be run in parts 128. 

A subset of GOAL is used to write control logic. Control logic 
prevents things from being done out of the proper order and within 
specific time constraints, avoiding disaster. It is necessary because of 
the parallel nature of testing. For example, before liquid oxygen can 
be moved through pipes and valves, they must be prechilled to near 
the temperature of the liquid, or the oxygen will flash evaporate. Con­
trol logic of the "prerequisite sequence" type checks to make sure the 
prechilling has been done. Or, if a valve pressure or voltage is nearing 
a dangerous level, "reactive sequence" control logic programs are 
automatically called by the front end processors to eliminate the 
anomaly 129. Control logic thus makes parallel operations safe. 

GOAL and control logic procedures must be integrated with the 
rest of the System before use to resolve potential conflicts and assign 
real addresses in the buffer to logical addresses in the programs. In­
tegration is done in a laboratory containing the "Serial O" 
ModComp/console, the first set delivered 130. Integration requirements 
led NASA designers to abandon some of the flexibility envisioned in 
the early stages of the program 131 . Originally, they thought the en­
gineers would have more responsibility for their programs and 
changes, but the complexity of the system required some measure of 
configuration control. Some 200 GOAL prof:rams are needed just to 
load the liquid oxygen tank automatically 32. With thousands of 
GOAL procedures to integrate, engineer autonomy had to be limited. 

Cargo Integration and Test Equipment 

One part of the Kennedy Space Center with an important role in 
the Shuttle program and also a user of Launch Processing System 
resources is the Cargo Integration and Test Equipment (CITE). With 
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hundreds of Shuttle flights planned to carry a variety of payloads from 
all over the world, the process of properly integrating cargo with the 
orbiter is a large task. Both electronic and physical interfaces must be 
checked in order to verify, for example, that a Spacelab module built 
in Germany will properly fit to a vacuum-proof seal in the cargo bay 
and be able to "talk" to the Shuttle computers as well. 

Soon after beginning work as the prime contractor, Rockwell In­
ternational and NASA did a study to find out how much and what 
kind of Interface Verification Equipment (IVE) would be needed for 
the operations era. By doing things the "traditional" way, in which the 
payload supplier did the interface verification, an estimated 20 sets of 
very expensive equipment were required. Robert Thompson favored 
sense over politics and decided in early 1976 to let Kennedy develop a 
centralized version of the IVE and do all the final interface testing for 
all the customersl33. 

During June, July, and August of 1976 the formal requirements 
for the cargo facility were baselined. But when a source selection 
board met to begin choosing equipment, the members realized that 
they were about to violate the basic principles of the Launch Process­
ing System by bringing in new equipment and doing things in a 
unique way instead of using existing contracts and computers 134. Ac­
cordingly, Kennedy stocked the cargo facility with the same physical 
and electronic interfaces present in the orbiter, permitting the same 
contractors and maintenance contracts to be used. In 1978, an AP-101 
was added to provide a means to test software interfaces. Equipment 
in the cargo facility can also directly connect with the Launch 
Processing System so that payloads can be further integrated. CITE is 
another user of the simulations kept on the CDS 135. 

Payloads delivered to Kennedy are checked out and further 
prepared in either the horizontal facility (Spacelab would be worked 
on there) or the vertical facility ( communications satellites are in­
tegrated vertically). After completion of the integration tests, a special 
transporter with cargo space as large as the Shuttle's bay moves the 
payloads to the Vehicle Assembly Building for installation in the or­
biter. 

The Launch Processing System in the Operations Era 

Originally, Henry Paul had a goal of reducing the number of tech­
nicians in a firing room from the 250 of the Apollo era to about 45. 
Although he succeeded, in the early 1980s, the Launch Processing 
System was still labor intensive, with 75 civil servants and 700 con­
tractors involved 136. However, in late 1983, NASA awarded the shut­
tle maintenance contract to Lockheed, which is now responsible for 
physical equipment and software relating to Shuttle launch process-
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ing. That award marks the end of the multicontractor development era 
and the beginning, for the first time in NASA's history, of an opera­
tions era for a manned spacecraft. Before the Shuttle, each flight and 
the preparations beforehand were idiosyncratic. Now some degree of 
standardization and routine is possible, largely because of the nature 
of the Launch Processing System. Carl Delaune, a NASA engineer in 
the Applications and Simulations Branch, is exploring ways of apply­
ing artificial intelligence to checkout procedures, such as creating a 
program that makes suggestions to test engineers if strange values 
occur 137. If his inquiry bears fruit, eventually the amount of human 
interaction during checkout will shrink even further. 

As the development effort at Kennedy matured, the purposely 
staggered development of a Launch Processing System at Vandenberg 
Air Force Base began. Plans were to build the military facility after 
most of the developmental bugs were out of the NASA model. The 
Air Force saved money at its installation by modifying facilities built 
for the Gemini-technology Manned Orbiting Laboratory program in 
1966138. Originally designed as a Titan III launch site, the complex 
provides for mating orbiter, tank, and boosters at the pad, as no 
Vehicle Assembly Building exists there. Ground checkout facilities 
are split between locations at North Vandenberg and South Vanden­
berg, so the CDS, CCMS, and RPS are physically separated 139. With 
the commissioning of the western launch site in the early 1990s, the 
Shuttle program will have reached its full flowering. 

Summary 

Distributed computing, connecting different vendors ' equipment 
successfully, good user interfaces, and automation are all topics of 
continued concern and research in the computer industry. The Launch 
Processing System solves all those problems in a specific arena. It is 
difficult to think of a system better suited to its task. A marvel of in­
tegration, efficiency, and suitability, it reflects the ingenuity and clear­
sightedness of its originators. Lessons learned in the 1960s during the 
first attempts at automating checkout were applied in toto to the 
Launch Processing System. Rarely has a second system so com­
pletely eliminated the deficiencies of its predecessor. 



8 
Computers in Mission Control 
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Mission control begins when launch processing ends. At the point a 
missile is committed to flight-as when the Shuttle solid rockets are 
fired or a liquid-fueled booster rises an inch off the 
pad-responsibility for monitoring and control of the spacecraft shifts 
from the launch director and his crew to the flight director's team. 
Three major tasks occupy the flight controllers: sampling the 
telemetry stream to make certain everything is going well and to col­
lect science data, doing navigation calculations, and sending com­
mands. Manned and unmanned spacecraft require this support, with 
manned spacecraft having the advantage of carrying observers and 
decision makers to supplement what can be done from the ground. To 
successfully support both types of missions, digital computers must 
operate on massive amounts of data in real time. Mission control tasks 
are beyond the abilities of humans alone. 

Mission control centers and their equipment are located far from 
the launch site. NASA's manned mission control began in 1961 with 
Project Mercury at the Cape Canaveral launch area, but its computers 
were at Goddard Space Flight Center near Washington, D.C. Since 
1964, early in the Gemini program, both computers and controllers 
have been housed in Building 30 at the Johnson Space Center in 
Houston. NASA's unmanned near-earth missions are controlled 
mostly from Goddard, with most deep space missions handled through 
the Jet Propulsion Laboratory's (JPL) Spaceflight Operations Facility 
in Pasadena, California. 

In addition to control centers, mission support requires numerous 
tracking stations to collect and format telemetry and radar data to help 
in monitoring and navigation and to transmit commands. These 
widely scattered stations and the control centers are linked together by 
the NASA Communications Network (NASCOM), headquartered at 
Goddard. The Space Tracking and Data Acquisition Network 
(STADAN), used to specialize in unmanned spacecraft but, having 
combined with the Manned Spaceflight Network (MSFN) in 1972, has 
become the general network. When all the specified Tracking and 
Data Relay Satellites are in place, they will take over much of the 
manned flight communications, yet tracking is still a ST ADAN 
responsibility. Lunar and planetary probes are the venue of the Deep 
Space Network, which operates three main stations at Goldstone, Cal­
ifornia, Madrid, Spain, and Canberra, Australia, each with a variety of 
antennas ranging up to 64 meters in diameter. The Deep Space Net­
work helped with manned lunar missions when the Apollo spacecraft 
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passed a distance of 10,000 miles from earth*. 
In contrast with on-board computers, computer systems used in 

control centers and tracking stations have primarily consisted of off­
the-shelf equipment. NASA could take this approach to procurement 
because, so far, adequate processing power to achieve mission objec­
tives has been available in commercial systems. When mission control 
began in the late 1950s and early 1960s, software technology had not 
reached the necessary level of sophistication. The prime contractor 
had to develop completely new operating system software for the 
Vanguard, Mercury, and Gemini programs, but was able to incor­
porate large chunks of existing operating systems into those used for 
Apollo and Shuttle, as well as some later deep space missions. This 
was possible in part because experience and techniques learned from 
designing the original operating systems were used in new commer­
cial products. 

MANNED MISSION CONTROL COMPUTERS 

As with manned spacecraft on-board computers, computer sys­
tems used in manned mission control are more sophisticated and 
larger than those used for unmanned missions. Even though un­
manned satellites and space probes pioneered the use of computers in 
mission control, the need for quick response and redundancy, the in­
herent complexity of manned spaceflight, and the rigors of the race to 
the moon forced rapid improvements and innovations in systems used 
in manned mission control so that they surpassed the older systems. 

The story of computers in manned mission control is largely the 
story of a close and mutually beneficial partnership between NASA 
and IBM. There are many instances of IBM support of the space 
program, but in no other case have the results been as directly ap­
plicable to its commercial product line. When Project Vanguard and 
later NASA approached IBM with the requirements for computers to 
do telemetry monitoring, trajectory calculations, and commanding, 
IBM found a market for its largest computers and a vehicle for 
developing ways of creating software to control multiple programs ex-

*For the story of the tracking and communication networks, see William 
R. Corliss, Histories of the Space Tracking and Data Acquisition Network 
(STADAN), the Manned Space Flight Network (MSFN). and the NASA Com­
munications Network (NASCOM), NASA CR-140390, June, 1974, and N.A. Ren­
zetti, ed., A History of the Deep Space Network From Inception to January 1, 
1969, Jet Propulsion Laboratory TR 32-1533, September l , 1971. Each has con­
siderable detail about the technical developments involved, including the decision 
to use computers at stations. 
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ecuting at once, capable of accepting and handling asynchronous data, 
and of running reliably in real time. These things the company was 
able to do quite successfully, and the groups it assigned to the job im­
pressed their NASA counterparts. When asked about IBM's perfor­
mance in this field, one NASA manager said without hesitation, "IBM 
is the best" 1. 

The company maintained its lock on mission control contracts 
through Gemini, Apollo, and the Shuttle. At each point, some ex­
perienced personnel were transferred to other parts of the company to 
share lessons learned. Several individuals contributed to OS/360, the 
first multiprogramming system made commercially available by 
IBM2. One became head of the personal computer division3. NASA 
also used successful managers from mission control work to help 
other programs. Howard W. "Bill" Tindall started with Mercury and 
Gemini ground software and later made a significant contribution to 
the quality of the Apollo on-board software. No other software system 
developed under NASA contract in the 1960s was as well thought out 
and executed as manned mission control. 

Beginnings: Vanguard and Mercury 

America's most spectacular contribution to the International Geo­
physical Year (1957-1958) was the Vanguard earth satellite, which, in 
ignorance of Russian preparations, was thought to be the world's first 
orbiting spacecraft. In June of 1957, Project Vanguard established a 
Real-Time Computing Center (RTCC) on Pennsylvania Avenue in 
Washington, D.C, consisting of an IBM 704 computer4. The 40,000-
instruction computer program developed for Vanguard did data reduc­
tion and orbit determination5. Orbit calculations needed to be done in 
real time so that ground stations could be warned of the approach of 
the satellite in time to listen for its signals and know where in space 
the data came from. Thus, IBM gained early practical training in the 
primary skills needed for mission control. In 1959, when NASA was 
ready to contract for a control center for Project Mercury, IBM had 
experience it could point to in its proposal, as well as an existing com­
puter system about to be freed from Vanguard work. 

NASA awarded Western Electric the overall contract for the 
tracking and ground systems to be used in Project Mercury on July 30, 
19596. By late 1959, IBM received the subcontract for computers and 
software 7. Washington remained the site for the computer system be­
cause it could benefit from centralized communications already in 
existence8. NASA founded Goddard Space Flight Center the next 
year, and since it was less than half an hour from downtown 
Washington, the same advantages would accrue from locating the 
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computers there. Combined NASA and IBM teams used the old com­
puter system downtown until about November 1960, when the first of 
Mercury's new 7090 mainframe computers was ready for use at God­
dard. James Stokes of NASA remembers the first time he and. Bill 
Tindall went to the new computer center, they had to cross a muddy 
parking lot to where a "building" with plywood walls, window air 
conditioners, and a canvas top confounded the IBM engineers who 
were trying to keep the system up and running under field conditions9. 
That structure evolved to become Building Three of the new Space 
Flight Center and housed the system through the Mercury era 10. 

IBM's 7090 mainframe computer was the heart of the Mercury 
control network. In 1959, the DOD issued a challenge to the com­
puter industry in the form of specifications for a machine to handle 
data generated by the new Ballistic Missile Early Warning System 
(BMEWS). The 7090 was IBM's response. Essentially an improve­
ment of the 700-series machines like the one being used as a develop­
ment machine for Mercury, the 7090 adapted the new concept of 1/0 
channels pioneered in the 709 and was so large that it needed up to 
three small 1410 computers just to control the input and output. The 
DOD's needs for BMEWS closely paralleled those of Mercury in 
terms of data handling and tracking. Thus, IBM was in a good posi­
tion with its hardware. 

To provide the reliability needed for manned flight, the primary 
Mercury configuration included 7090s operating in parallel, each 
receiving inputs, but with just one permitted to transmit output. Called 
the Mission Operational Computer and Dynamic Standby Computer, 
the names stuck through the Apollo program. This was NASA's first 
redundant computer system. Switching from the prime computer to 
the Dynamic Standby was by manual switch, so it was a human 
decision 11 . During John Glenn's orbital mission, the prime computer 
failed for 3 minutes, proving the need for an active standby 12. 

Three other computers completed the Mercury network. One was 
a 709 dedicated to continuously predicting the impact points of mis­
siles launched from Cape Canaveral. It provided data needed by the 
range safety officer to decide whether to abort a mission during the 
powered flight phase and, if aborted, information about the landing 
site for the recovery forces. Another 709 was at the Bermuda tracking 
station with the same responsibilities as the pair at Goddard. In case of 
a communications failure or double mainframe failure it would be­
come the prime mission computer. Lastly, a Burroughs-GE guidance 
computer radio-guided the Atlas missile during ascent to orbit13. 

Locating the computers near Washington while placing the mis­
sion control personnel at Cape Canaveral led to a communications 
problem that resulted in a unique solution. In early digital computers, 
all input data went to memory by way of the CPU. Large amounts of 
data that needed to be accepted in a short time often backed up, wait-
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ing for the central processor to handle the flow. A solution is direct 
memory access, which sends data directly from input devices into 
storage. Transfers of large blocks of data directly to memory are con­
ducted through data channels, first used by IBM on its 709 and then 
on the 7090. By using channels, processing could continue while I/O 
occurred, increasing the overall throughput of the system. Mercury's 
7090s were four-channel systems. Normally, the peripherals handling 
input and output would be connected to the channels physically close 
to the machine, but the peripherals (plotters and printers) driven by the 
Mercury computers would be about 1,000 miles away in Florida. The 
solution was to replace Channel F of the 7090 with an IBM 7281 I 
Data Communications Channel, a device originally created for Mer­
cury that has had great impact on data processing14. 

Four subchannels divided the data handled by the 7281 device. 
One was an input from the Burroughs-GE guidance computer to 
provide data used in calculating the trajectory during powered flight. 
The second input radar data for trajectory and orbit determination. 
Two output subchannels drove the displays in Cape Canaveral's Mer­
cury Control Center and locally at Goddard 15 . 

Connecting the two ends of the system was a land line allowing 
transmission at 1,000 bits per second 16. Although this was a 
phenomenal rate for its time, now a simple microcomputer routinely 
transmits at 1,200 bits per second on nondedicated public telephone 
lines. The distance and newness of the equipment occasionally caused 
problems. Once in a while during a countdown, data such as the lift­
off indicator, which was a single bit, would get garbled and give er­
roneous signals 17. Most times such flags could be checked by other 
sources of information, such as radar data contradicting the lift-off 
message. Also, up to a 2-second time lag on the displays in the control 
center was common 18. During powered flight, such delays could be 
significant; thus, the need for a separate impact prediction computer 
and another machine in Bermuda. 

Software development for the Mercury program was another area 
in which IBM advanced the state of the art 19. In the beginning of the 
computer era, operators ran programs on computers one at a time. 
Each program was assigned peripherals, loaded, run and, if errors oc­
curred, stopped individually. As machines grew larger and the number 
of users increased, some way of making the process of loading and 
executing programs more efficient was needed. The result was the 
concept of "batch" processing, in which a set of several programs 
could be loaded as a unit and executed in sequence. A special control 
program called a "monitor" watched for errors and aborted programs 
trapped in loops or that spun off into corners. To handle the many jobs 
needed by manned spacecraft mission control, IBM set up a method 
for programs to be interrupted and suspended while other programs of 
greater priority ran, and then resumed when the high-priority jobs 
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ended. Thus, a number of programs could be loaded into the machine 
and run, giving the illusion of simultaneous execution, even though 
only one had the resources of the central processor at any one time. 
This was the only way the processing of radar data, telemetry, and 
spacecraft commands could be accomplished in the split seconds of 
time allotted. 

IBM called the control program the Mercury Monitor, but that is 
a misnomer in that it superceded the capabilities of the known 
monitors of the time. It was event driven, which means that certain 
flight events (lift-off, sustainer engine cutoff, retrofire) formed the 
basis of the starting times of certain processes20. The Mercury Pro­
gramming System's primary functions included capsule position 
determination, retrofire time calculation, warning ground stations of 
the acquisition times, and impact prediction after retrofire. Three 
separate groups of processing programs, each stored on tape until 
needed, did these functions at different times: launch, orbit, and 
re-entry21 . No matter which group of processors was loaded into the 
machine, the Monitor frequently checked a table listing processes 
waiting for input or output. Software placed entries in the table when 
the Data Communications Channel signaled that data were ready to be 
transferred22. The Monitor then handled the requests in priority or­
der. Within a processor group, such as orbit, a set of different single­
function processors would be defined. Thus, the entire mission control 
program was highly modular, allowing easier maintenance and 
change. In fact, some modules from the Vanguard programs could be 
adapted to Mercury use. 

NASA wanted to take over the software as soon as possible, so 15 
or so civil service employees were assigned to the IBM group while it 
was still in downtown Washington. However, the Space Task Group 
retained direct control over the software development, a somewhat 
frustrating situation for NASA engineers much closer to the actual 
project and in a better position to make suggestions23 . At the time, 
NASA saw its role as that of a knowledgeable user and recognized it 
lacked the expertise to handle some of the calculating tasks involved. 
James Stokes, a NASA engineer, admitted that "we didn't know 
enough to specify the requirements" for the software24. IBM was not 
much better off and acquired its expertise by contracting for the ser­
vices of Dr. Paul Herget, then director of the Cincinnati Observatory, 
who had privately published a book on orbit determination in 194825 . 

The Mercury network provided continuous height, velocity, flight 
path angle, retrofire time, and impact points. During powered flight, 
the main computer center, the Cape impact prediction computer, and 
the Bermuda tracking station computer all would give GO/NO GO 
recommendations to the flight director. After engine shutdown, the 
system needed to give GO/NO GO data within 10 seconds, so that a 
safe recovery could be effected if orbit had not been reached. During 
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the orbital cruise, the astronaut could be given updated retrofire times 
each time he came in contact with a ground station26. 

As the Mercury program wound down during 1962 and NASA 
began to accelerate preparations for Gemini and Apollo, the Agency 
decided to place both the computers and flight controllers for manned 
spaceflight mission control in a combined center in Houston. Goddard 
staff proceeded under the assumption that the new control center 
would not be ready in time for the first Gemini flights, which turned 
out to be correct. Gemini I, II, and III used Goddard as the prime com­
puter center, with the new system in Houston acting in an active 
backup role for flight three. Beginning with flight four, the second 
manned mission, Houston took over as prime, with Goddard acting as 
the backup throughout the Gemini program27. 

For IBM and NASA, the development of the Mercury control 
center and the network was highly profitable. IBM's Mercury Monitor 
and Data Communications Channel were the first of their types28 . Fu­
ture multitasking and priority interrupt operating systems and control 
programs owed their origins to the Monitor. Large central computers 
with widely scattered tenninals, such as airline reservation systems, 
have their basis in the distant communications between Washington 
and a launch site in Florida. For both organizations, the experience 
gained by staff engineers and managers directly contributed to the 
success of Gemini and Apollo. 

Second System: The Gemini-Apollo RTCC 

Before the first Mercury orbital flight was off the ground, NASA 
engineers working on mission control tried to influence the design of 
the new center in Houston. Bill Tindall, who worked on ground con­
trol for NASA from the beginning, realized that locating the Space 
Task Group management at Langley Research Center, the computers 
anq programmers at Goddard, and the flight controllers at Cape 
Canaveral created serious communication and efficiency problems. In 
January 1962, he began a memo campaign to consolidate all com­
ponents at one site, obviously the new Manned Spacecraft Center29. 
On February 28, just 8 days after John Glenn's flight, Tindall made 
his strongest case in a detailed essay in which he noted that IBM was 
the only company capable of creating real-time software. He wanted 
the Ground Systems Project Office, then in charge of oversight of the 
RTCC development, to allow representatives from the Flight Opera­
tions Division to assist in mission programming30. As the eventual 
users of the system, it made sense to include them. 
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Figure 8-1. IBM 7094s in the Gemini Real Time Computer Complex. (IBM 
photo) 

In April, the Western Development Laboratories of Ford's sub­
sidiary Philco Corporation began a study of the requirements for the 
new mission control center. One aspect of the study was to take 
numeric data and give it pictorial content, making the jobs of the 
flight controllers less hectic but necessitating much more sophisticated 
computer equipment31 . As Philco worked through the summer, 
NASA Administrator James Webb announced on July 20 that there 
would be an expanded replacement for Mercury Control. A "request 
for proposal" was prepared, including concepts developed by Philco 
and documented by them in their final facilities design released on 
September 7. 

Philco's design was broad in scope, covering physical facilities, 
information flow, displays, reliability studies, computers, and even 
software standards. Philco specified that modularity in program 
development was a must, as it would ease maintenance and allow the 
use of ''lower caliber" people to code subprograms, leaving the real 
stars to do the executive software32. This organizational rule became 
standard for large program projects. Another specification required 
that the probability of successful real-time computer support for a 
336-hour mission be 0.9995. Also, due to rendezvous plans for 
Gemini and the dual-spacecraft Apollo lunar missions, the center had 
to control two spacecraft at one time.· To meet the reliability and 
processing goals, Philco examined existing computer systems from 
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IBM, UNIV AC, and Control Data Corporation, as well as its own 
Philco 211 and 212 computers, to determine what type and how many 
would be needed. The calculations resulted in three possible con­
figurations: five IBM 7094s (the immediate successor to the 7090, es­
sentially a faster machine with a better operating system, IBSYS); 
nine UNIVAC 1107s, IBM 7090s, or Philco 21 ls; or four Philco 212s 
or CDC 3600s33 . No matter which group would be chosen, it was ob­
vious that the complexity of the Gemini-Apollo Center would be 
much higher than its two-computer predecessor. To help keep the sys­
tem as inexpensive and simple as possible, NASA specified to poten­
tial bidders that off-the-shelf hardware was essential. 

IBM moved quickly to respond to NASA's call for proposals, 
delivering in September a 2-inch thick, three-ring binder full of 
hardware and software bids, including a detailed list of personnel they 
would commit to the project, complete with employment histories. Al­
though the company knew it was the leading candidate (Tindall 's en­
dorsement could hardly have escaped notice), it carefully matched the 
specifications, such as clearly stating that modularization and unit 
testing would be the norm in software development. One area in 
which they differed from Philco' s calculations was the number of 
machines needed. Perhaps to keep the total bid low, IBM proposed a 
group of three 7094 computers. By splitting the software into a Mis­
sion Computer Program and a Simulation Computer Program, one 
machine could run the Mission Program as prime, another run it as the 
dynamic backup, and the third run the simulation software to test the 
other two, thus fulfilling requirements for redundancy and preflight 
training and testing. This forced IBM to explain its way around the 
0.9995 reliability requirement. Three machines yielded reliability of 
0.9712, slightly over four being needed to achieve the specification 
(thus, Philco's suggested number of five). IBM made a case that the 
reliability figures were misleading and that during so-called "mission­
critical" phases the reliability of three machines would exceed 
0.999534 . 

. Eighteen companies bid on the RTCC, including such powerful 
competitors as RCA, Lockheed, North American Aviation, Computer 
Sciences Corporation, Hughes, TRW, and ITT. NASA assigned Chis­
topher Kraft, the eventual chief user, to chair the source board that 
studied the responses to the request for proposal. Tindall served also, 
with James Stroup, John P. Mayer, and Arthur Garrison, all of the 
Manned Spacecraft Center. They awarded the original contract NAS 
9-996, covering the Gemini program, to IBM on October 15. Worth 
$36 million, it was to run until the end of August 1965. Extended to 
December 1966, the total cost came to $46 million35. 

With 6 weeks of preparation already done before the contract 
award , IBM's core of engineers were ready for business in Houston 
by October 28. J. E. Hamlin started as project manager and interim 
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head of systems engineering. He had 12 years of IBM experience, 
first as a hardware engineer, later as a group leader for SAGE 
software, and then manager for the Mercury system implementation. 
He had barely started work at JPL's Deep Space Instrumentation 
Facility when the RTCC contract came up. In his first report in 
January 1963, he was able to announce the arrival of the first 7094 to 
be used for software development. The computer and, later, two 
others were installed in an interim facility on the Gulf Freeway. Each 
started with 32K words of memory and 98K words of auxiliary core 
storage, with a 1401 as a front end for input and output36. On the 
negative side, Hamlin's early projection of a peak staff of 161 had 
leaped to 228 by the time of the first report. Eventually, 608 IBM 
people worked simultaneously on the project, with 400 of them on 
software development. The magnitude of the task was greatly under­
estimated both by IBM, which made the bid, and NASA, which ac­
cepted it. 

Hardware needs grew along with the staff. The original three 
machines moved from the interim center to Building 30 at the Manned 
Spacecraft Center. Two more were added, fulfilling Philco's 
prophecy. The size and rating of the machines was also increased to 
model 7094-IIs with 65,000 words of main core storage and 524,000 
words of additional core as a fast auxiliary memory37. In the new con­
figuration, one machine was the Mission Operational Computer, the 
second, the Dynamic Standby Computer, and the third, the Simulation 
Operations Computer as before, with the two new ones used as the 
Ground System Simulation Computer and a standby for future 
software development. The Ground System simulator acted like the 
tracking network and other ground-based parts of mission control to 
test software. 

IBM's original proposal projected completion of the new system 
within 18 months. As time passed and problems occurred, the plan al­
tered to begin with support of the Gemini VI mission. But slips in 
Gemini and steady progress on the software enabled the use of the 
Center for passive parallel computations during the Gemini II un­
manned flight on December 9, 1964, just under 26 months after the 
contract award. On Gemini III, the Houston control center did its final 
test as an active backup. The results were so promising that from 
Gemini IV on, mission control shifted from the Cape to Houston. 

Gemini Ground Software Development 

NASA's requirements for the Gemini mission control software 
resulted in one of the largest computer programs in history. In ad­
dition to all the needs of the Mercury system, Gemini's proposed ren­
dezvous and orbit change operations caused a near-exponential in-
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crease in the complexity of the trajectory and orbit determination 
software. Placing a computer on board the spacecraft made it neces­
sary to parallel its computations as a backup and also necessary to 
devise a way to use the ground computer system to update the Gemini 
flight computer. Also, by the the time the Gemini program matured, 
all data on the tracking network were in digital form, and thus com­
putable, so the amount of data that passed through the ground system 
increased further38. 

IBM reacted to the increased complexity in several ways. Besides 
adding more manpower, the company enforced a strict set of software 
development standards. These standards were so successful that IBM 
adopted them companywide at a time when the key commercial 
software systems that would carry the mainframe line of computers 
into the 1970s were under construction39. IBM approached the more 
difficult areas by acquiring the services of specialist consultants and 
sponsored a group of 10 scientists pursuing solutions to problems in 
orbital mechanics. It included Paul Her§et and some men from IBM's 
Cambridge, Massachusetts "think tank" 0. 

Key to the flight system was the Mission Computer Program. It 
centered on a control program called the Executive, which took over 
the functions of the Mercury Monitor. Under the Executive, three 
main subprograms operated in sequence. NETCHECK performed 
automatic tests of equipment and data flow throughout the entire 
Manned Spaceflight Network, certifying it ready for the launch of the 
spacecraft. It succeeded the CADFISS (Computation and Data Flow 
Integrated Subsystem) program used in Mercury41 . ANALYZER did 
postflight data reduction. However, the Mission Operations Program 
System remained the heart of the software, responsible for all mission 
operations, such as trajectory calculations, telemetry, spacecraft en­
vironment, backup of the on-board computer, and rendezvous calcula­
tions. It divided into a number of modules: Agena launch, Gemini 
launch, orbit, trajectory determination, mission planning, telemetry, 
digital commands, and re-entry, with several subprograms within each 
section42. Each subprogram was highly sophisticated and very power­
ful. The re-entry profram, for example, could calculate retrofire times 
22 orbits in advance 3. 

IBM found it impossible to complete this complicated system 
with the tools used in the Mercury program. All of the Mercury con­
trol software was in assembly language. Aside from the assembler, 
software tools were minimal, reflecting the state of the art circa 1960. 
Partly inspired by the difficulties of developing a large system such as 
Mercury and SAGE and partly to help commercial customers creating 
new software to match the size and capabilities of the new line of 
mainframe computers, IBM provided a much better set of tools with 
its 7094 series machines than with earlier models. A fairly robust 
operating system, IBSYS, could be used with the 7094, and a 
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modification of it gave the Gemini software developers a decent editor 
and compilation tools for high-level languages. Called the Compiler 
Operating System, it included a combination FORTRAN/Mercury 
compiler called GAC (for Gemini-Apollo Compiler), making it pos­
sible to do some programming in FORTRAN. The Mercury compiler 
contained all the functions of SOS, the Share Operating System, 
which was IBM's standard system of the late 1950s and the predeces-
sor to IBSYS44. 

Besides using better tools, the Gemini programmers tried to keep 
the architecture simple and changeable. Using process control tables 
was an important design decision, as they could be changed to fit dif­
ferent mission requirements with some ease and without disturbing 
software in place. Their use continued throughout the Apollo and 
Shuttle programs45. The Executive was a further refinement of the 
real-time control program first approached in Mercury. A relatively 
spare 13,000 words in size, the Executive provided priority-based 
multiprogramming. It could transfer needed data to supervisory 
routines which, in tum, started processes46. At the lowest level, con­
tention between cyclic processes and demand processes characterized 
the RTCC47. Its obvious success helped form NASA's ideas of what a 
good real-time operating system should be, which later influenced the 
nature of the operating system on board the Shuttle. NASA personnel 
were close to the Gemini-Apollo ground system development, some­
times defining test cases and duplicating programs to check whether 
requirements had been met48. 

Even with better tools and a more powerful computer, the 
processing needs of the mission control software quickly exceeded the 
capacity of the 7094. IBM recognized that the usual 32K memory of 
the machine would be insufficient when the company prepared its 
proposal. Therefore, it suggested the use of look-ahead buffering, 
which meant the next set of programs needed during a mission would 
be loaded over the ones going out of use49. The commercial practice 
of using tape storage for waiting programs became impossible due to 
the size and speed demands of the Gemini software. Thus, IBM added 
large core storage (LCS) banks to the original machines. These banks, 
even though not directly addressable, provided a higher speed secon­
dary memory. Tapes would be loaded to the large core and then trans­
ferred to primary storage as needed50. An IBM engineer credited 
work in the use of LCS and paging memory as being influential in the 
development of IBM's version of virtual memory, the main software 
technological advance of its fourth generation 370 series machines of 
the early l 970s5 1. As the Gemini program continued, NASA grew 
more concerned about the ability of the 7094s to adequately support 
Apollo, considering the expected greater complexity of the navigation 
and systems problems. Kraft expressed concern that the "real time" in 
the RTCC needed enhancement52. As the large core filled, loading 
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from tape for certain programs became common practice. Once, when 
President Lyndon B. Johnson was visiting the control center, the 
NASA official leading the tour wanted to show the president a fancy 
display. Not fully conversant with the software, he chose one that ran 
off tape, so the entire party stood uncomfortably, minutes seeming 
like hours, while the machine dutifully found the program and put up 
the display53. NASA wanted a change. 

It was about this time that IBM announced its System 360 series, 
a compatible line of several computers of different sizes using a new 
multiprocessing operating system that owed some of its characteristics 
to the company's NASA experiences. NASA thought the upper level 
machines of the new product, specifically the 360/75, would have suf­
ficient power to replace the 7094s for Apollo, although the LCS 
would have to be continued due to the sheer size of the software. 
IBM's announcement, as is usual with the company, preceded the 
shipping dates of the machines by some months. It did not take long 
for NASA to realize this and become impatient. Control Data Cor­
poration (CDC) released its 6600 line of computers in 1965 and was 
actually shipping to customers as IBM failed to deliver. Robert 
Seamans of NASA Headquarters suggested that the Manned 
Spacecraft Center buy 6600s and let IBM retain the software 
contract54. CDC's machine was actually faster and more powerful 
than the 360. Later, CDC sued IBM, claiming its premature 360 an­
nouncement sought to hold the market and that claims made for the 
360 were not realized when the product actually came out. IBM 
settled out of court with major concessions totaling nearly $100 mil­
lion, rushing delivery of the first 360 to Houston in time to stave off 
the movement to other vendors. NASA announced the conversion to 
the 360 in a news release dated August 3, 1966. 

Transition to Apollo 

Although the four remaining 7094 computers continued to sup­
port flight operations through the first three Apollo (unmanned) mis­
sions, IBM used the first replacement 360 to begin software develop­
ment for the Apollo lunar flights. As in Gemini, two spacecraft, the 
command module (CM) and the lunar excursion module (LEM), 
needed support, with five computers each contributing to the overall 
system. Again, LCS provided added memory. Unfortunately, all the 
software could not be moved directly from one machine to the other 
due to the change in operating systems. The new operating system for 
the series, OS/360, had the multitasking capability developed during 
Mercury days but operated primarily in batch mode. Many programs 
could be entered, either by cards or through remote entry from ter­
minals, and run together, but not in real time. The priority-interrupt 
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provisions on the standard operating system were not sophisticated 
enough to handle the sorts of processing Apollo needed. Beginning in 
1965, IBM modified the operating system into RTOS/360, the real­
time version55 . Extensive use of modularization helped in the tran­
sition. Separately compiled subprograms in FORTRAN, moreover, 
could be moved to the 360 with relative ease, but the assembler-based 
code had to be modified. This work continued for nearly as long as it 
took to get the original system operating, even though the architecture 
remained essentially intact. 

One problem would not go away: memory. Each 360 had 1 mil­
lion bytes of main memory, about four times the size of 7094 main 
store. A further 4 million bytes of LCS was added to each machine56. 
Even with some of the NETCHECK functions transferred to the new 
twin 360s in the Goddard Real-Time System (GRTS) and with 
seldom-used programs such as the radiation dosage calculator and 
ground telescope pointing program permanently located off-line, 
memory use rose to match the additional space. Simply meeting the 
requirements for ascent filled the main store57. At this time, NASA's 
Lynwood Dunseith, who had worked on the ground software since 
Mercury, realized that the worry over memory was causing program­
mers to develop idiosyncratic, "tricky" code in an effort to save a few 
words58. Dunseith knew the danger of that attitude, since it made the 
programs even more complex than their absolute complexity war­
ranted. During the period he managed the software development, he 
tried to reduce the dependence on such expedients. It helped him that 
the 360s made it possible to develop significant parts of the software 
in FORTRAN59. Although FORTRAN is not as easily readable as 
some other procedural languages, it far exceeds 360 assembler in un­
derstandability. 

As the Apollo system moved into the operations phase, the use of 
the Dynamic Standby Computer waned. During the first manned 
flight, Apollo 7, the Mission Control Center used a single computer 
for just under 181 hours of a 284-hour support period, which included 
countdown and postflight operations60. During Apollo 10, a dual 
spacecraft flight with LEM operations near the moon, the plan was to 
use the standby for 5 hours before a maneuver. Therefore, on only six 
occasions in an 8-day flight would there be two-computer support. To 
assist an off-line standby in coming to the rescue of a failed primary, 
operators made checkpoint tapes of current data every 1.5 hours. A 
failure of the Mission Operations Computer occurred at 12:58 Zulu on 
May 20, 1969. By 13:01, the standby had been brought up, using a 
checkpoint tape made at 12:0061 . No significant problems resulted, 
which is actually a good summary of mission control operations 
throughout the Apollo era, Skylab, and the Apollo-Soyuz Test 
Project. 
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Figure 8-2. A display and control panel m Mission Control for the Shuttle 
program. (NASA photo S-80-26315) 
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Reducing Mission Control: Conversion to the Shuttle 

During planning for the Space Transportation System, with fre­
quent launches and multiple missions aloft expected, NASA studied 
ways to make the spacecraft more autonomous and thus reduce the 
functions of mission control. IBM again won the ground support con­
tract, this time over primary competitor Computer Sciences 
Corporation62. Beginning in June 1974 and continuing into the 1980s, 
IBM worked on a new software system and mission-specific 
changes63. Five System 370/168 mainframe computers make up the 
Shuttle Data Processing Complex, the nominative successor to the 
RTCC. Each has 8 million bytes of primary storage, and, being virtual 
memory machines, do not need auxiliary storage of the LCS type. 
Disk is used instead. Three computers are involved during operations: 
One computer is the Mission machine, one, a Dynamic Standby Com­
puter, and a third, the Payload Operations Control Computer. Now, in 
the late 1980s, these computers are being replaced by IBM 3083 series 
machines, marking Mission Control's fourth generation. 

By this time, quite experienced and fairly knowledgeable about 
what would be needed, NASA and IBM approached the ideal of 
thorough design before coding began64. Reflecting the structure of the 
on-board software, the requirements documents proceeded through 
different levels of complexity. For the first time in ground software 
development, a quality assurance group from outside the development 
organization watched over software production65. 

The efficiency of the software developers increased with the con­
version from batch processing to interactive processing. During Mer­
cury, Gemini, and Apollo, programmers tested new software in batch. 
With the main IBM Federal Systems Division office nearly a mile 
from the actual computers housed in Building 30, it was necessary for 
a courier to pick up card decks, deliver them to the Computing Center, 
and later return the results. In this manner, an average of only 1.2 runs 
per programmer per working day was possible. During 1974-1976, 
NASA commissioned a study of batch versus interactive program­
ming, in which programmers using terminals could prepare jobs and 
run them from the IBM building. Using IBM's Time-Sharing Option 
(TSO) system, interactive processing clearly won out over batch in 
terms of effectiveness. NASA accordingly ordered all Shuttle ground 
software to be done under the time-sharing system66. 

Regardless of the intentions of the Shuttle managers to shrink the 
ground operations software, the ground support functions provided by 
the Data Processing Complex have not been reduced. Some parts of 
the original tasks are handled more completely on-board, but the con­
tinued addition of new equipment and concepts increased the size of 
the software. It supports over 40 digital displays and 5,500 event 
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lights. The total size of the system is 600,000 lines, roughly 26% 
larger than Gemini and rivaling Apollo67. Shuttle missions are ap­
proachinf the complexity that a single computer can no longer 
support6 . In addition, high between-flight change traffic delayed the 
transition to the operations era. As late as 1983, 8% of the total code 
changed each mission, keeping 185 programmers busy. New and 
more powerful computers can always be added, but the process of 
changing software must be automated or the expense of labor inten­
sive maintenance will continue to the end of the Shuttle program. 

UNMANNED MISSION CONTROL COMPUTERS 

Mission control of unmanned spacecraft is significantly different 
from that of manned spacecraft. Most important of the differences is 
the long duration of many unmanned flights. Except for Skylab, no 
American manned flight has lasted more than 2 weeks. In contrast, 
when Voyager 2 encounters Neptune in 1989, it will have flown for 
12 years. During that time, the Voyager Project staff must monitor the 
health of the spacecraft and gather and interpret the data it is collect­
ing. Few of the original engineers will still be associated with the mis­
sion, so conceptually mission planning for a long-duration unmanned 
flight must concentrate on an extended view of operations and the 
development of detailed documentation69. Another difference is that 
the manned mission control centers are used for one project at a time, 
whereas the unmanned centers may be controlling a wide variety of 
missions. So far, there has been no overlap in the manned programs in 
the sense that no Mercury flights continued after Gemini flew, and so 
on. In contrast, the Jet Propulsion Laboratory (JPL) commanded Sur­
veyors, Lunar Orbiters, Pioneers, and Mariners all at once in the 
mid-1960s, and has continuously been responsible for multiple mis­
sions. 

Control of Near-Earth Missions 
at the Goddard Space Flight Center 

NASA formed Goddard Space Flight Center with the Naval 
Research Laboratory's Vanguard Project team as a nucleus. After 
Vanguard ended, use of the IBM 704 in downtown Washington 
ceased, and a model 709 was installed at Goddard on May 23, 1960, 
as a replacement machine for use in working with earth-orbiting satel­
lites. Within 2 months, the first of six 7090 computers also arrived. 
Folklore has it that Goddard soon housed 1 % of the total computing 
power in the entire United States. Although two of the 7090s and later 
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other computers supported Mercury flights, Goddard's most substan­
tial customer base has been the plethora of scientific, navigational, 
communications, mapping, and weather satellites launched in the last 
quarter of a century. 

Goddard pioneered the use of dedicated small computers for 
specific missions, thus eliminating the complexity of handling mul­
tiple missions on a single mainframe. This occurred in spite of the 
presence of large numbers of big computers. Some command and con­
trol and definitely navigation calculations are carried out on large 
machines, but each project has a small computer to handle data reduc­
tion and the day-to-day operation of the spacecraft. As examples, the 
Nimbus weather satellite program used Control Data 160A computers, 
the Orbiting Geophysical Observatory had Scientific Data Systems 
SOS 910 and 920 computers, and so did the Orbiting Solar 
Observatory 70. These machines could be sent on to another project 
when their current job ended, and in fact some of the SOS machines 
had rather long lifetimes of nearly two decades. In addition to using 
small computers at the control center, Goddard installed UNIVAC 
1218 computers in the Manned Spaceflight Network ground stations, 
originally for control of Gemini and Agena and later for Apollo. Both 
the 160As and 910s were among the first products of their respective 
fledgling companies, and, with the 1218 and Digital Equipment 
Corporation's PDP series, the forerunners of the minicomputer boom 
of the 197 Os. 

Relatively little changed in the general techniques of mission con­
trol at Goddard for about two decades. As the 1980s continue, the 
trend is for the majority of unmanned satellites to be commercial 
rather than scientific in nature. Commercial satellites are controlled by 
their owners, although NASA provides orbit determination and some 
command services on a reimbursible basis. However, sufficient mis­
sions exist, such as the expected 17-year duration Hubble Space Tele­
scope, to keep Goddard involved in ground control activities for some 
time, along with its continued commitment to NASCOM and 
STADAN. 

To the Sky's Limit: Mission Control at JPL 

As Goddard strove to standardize earth orbital operations and dis­
tribute its functions, JPL approached the similar problems in a dif­
ferent way, centralizing operations as much as possible. In many 
respects, Goddard and JPL are fraternal twins. Each has a set of 
ground-tracking stations, .plus on-site control centers for a variety of 
missions. The difference is that JPL is responsible for deep space ex­
ploration. In fact, the lower limit of its responsibilities is set at 10,000 
miles. For a short period, it did satellite work. JPL developed the 
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guidance system and propulsion for the Sargeant battlefield missile 
and studied adapting clusters of the motors as upper stages to the 
Redstone missile. The resulting Jupiter-C launch vehicle put 
America's first satellite into orbit on the night of January 31, 1958. 
Called Explorer I, the satellite carried IPL-developed instrumentation. 
A room near the office of laboratory director Dr. William Pickering 
became an active unmanned mission control center since it contained 
communications equipment connected to the tracking network that 
confirmed Explorer reached orbit. That same year NASA was formed 
and JPL became closely affiliated, changing its mission to deep space 
work. 

In 1959, the early Pioneer flights aimed at the moon. JPL built a 
series of tracking stations, beginning at Goldstone in the high desert of 
California, to track the missions 71 . Unlike earth orbiters, whose close­
ness to the planet make it necessary to have a large number of stations 
to stay in contact, deep space probes needed only three stations spaced 
so that one would always face the spacecraft. Initially, the stations 
were located in Australia and South Africa as well as at Goldstone, 
but later one in Madrid replaced the African station and the Australian 
one moved from Woomera to Canberra72. The stations were collec­
tively named the Deep Space Instrumentation Facility. 

From the beginning, JPL considered using computers in the sta­
tions as data-gathering devices. One 1959 rerort suggested using IBM 
650 machines, which were small computers 3. In 1962, Dr. Eberhardt 
Rechtin, head of the Instrumentation Facility, sent Paul Westmoreland 
and Carl Johnson to evaluate the computers of Scientific Data Sys­
tems, a new company 74. Westmoreland and Johnson thought that the 
SDS 910 could be used as the data gatherer, with the slightly more 
powerful 920 as a data processor. Accordingly, Rech tin directed that 
the machines be ordered and got the first 920 built and the second 
910. The 910s and 920s still functioned in similar tasks as late as 
1985!** 

Functionally, the SDS computers took data received from the 
spacecraft and formatted and recorded it on magnetic tape. A com­
puter at JPL processed the data more completely. Initially, an IBM 
704 similar to the one used for Vanguard did the work. JPL installed 
the computer in late 1958 to use with Pioneer 3 and 475. Early Ranger 
lunar impact flights later had all data reduction done off tape on that 
machine. Data in analog form on the tapes would be translated into 
numbers that spewed out on teletypes and punched paper tape. 
Aerojet-General Corporation also owned a 704 that JPL used as a 
backup 76. 

**After 1968, the SOS machines were known as XDS 910 and 920. Xerox 
bought out SOS and renamed the products "Xerox Data Systems." 
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Planning for the first Mariner missions revealed that more com­
puting power would be needed at JPL to handle the increased data 
generated both by more instrumentation and longer mission lifetimes. 
Dual 7090 computers similar to those installed at Goddard were 
bought for data reduction. To provide flight controllers with more up­
to-date information about spacecraft telemetry, a Digital Equipment 
Corporation PDP-1 computer served as a near-real-time data proces­
sor. Data could be displayed on teletypes from 4.5 to 7 minutes after it 
was received77. By this time the Deep Space Instrumentation Facility 
could transmit data via NASCOM instead of having to wait for air­
mail to deliver the tapes. Operations with this equipment taught JPL at 
least one useful lesson: Power fluctuations in September and Decem­
ber 1962 caused both 7090s to go down at once, eliminating the 
redundant capability 78. As a result, JPL built an auxiliary power 
generation facility, perhaps leading the manned Mission Control Cen­
ter, under construction at this time, to do the same. 

Centralizing the Effort 

During the 1960s, NASA found itself about to be involved in a 
large number of critical deep space projects. Ranger would be fol­
lowed by the Surveyor series of lunar landing missions. Mariners 
would continue to fly to Venus and Mars, with several targeted for 
Martian orbit and imaging duty. Lunar Orbiters would look for Apollo 
landing sites and Pioneers were aimed at deeper space. JPL did not 
have primary responsiblity for all of these programs. Lunar Orbiter 
came from Langley Space Flight Center, and Pioneer from the Ames 
Research Center. If each responsible organization had to set up a con­
trol center for its spacecraft, considerable overlap and duplication 
would occur. Accordingly, in 1963, NASA decided to have JPL track 
and command all deep space missions, with the help of project per­
sonnel from home centers stationed at JPL79. On December 24, 1963, 
JPL's director William Pickering formally established the Deep Space 
Network80. Managed by William H. Bayley, with Eberhardt Rechtin 
as technical head, it would serve all of NASA, just like NASCOM did 
from Goddard81 . 

JPL was already building a Space Flight Operations Facility to 
house new, more powerful computers and the various teams from its 
own projects. Anticipating NASA's decision, Eugene Giberson, then 
of the Surveyor project, directed some of his money to help develop 
the centralized computer center82. The combination of the Operations 
Facility and the Deep Space Instrumentation Facility was the Deep 
Space Network. After opening on ~ay 15, 1964, the Operations 
Facility supported Mariner Mars 1964 as its first flight83. 
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Even though expected to handle all deep space missions, some or­
ganizations fought to retain mission functions. Ames set up the 
Pioneer Off-Line Data Processing System (POLDPS) in 1965 to 
handle non-real-time data recorded by the SOS 910s at the stations84. 
Both the Lunar Orbiter and Surveyor projects also wanted to record 
their telemetry data at the stations, so the Network bought dual SOS 
920s for each site. Later, Pioneer 10 and 11 data were processed with 
these systems85. Langley originally wanted to control the Viking 
Lander, but costs and common sense forced that job back to JPL. 

Figure 8---J. The Space Flight Operations Facility central control room at the Jet 
Propulsion Laboratory. (JPL photo P23358BC) 

Evolution of the Space Flight Operations Facility 

JPL 's Space Flight Operations Facility has had three generations 
of equipment. Beginning in 1964, two strings of solid-state computers 
formed the basis of the system. Each consisted of an IBM 7094 
mainframe, an IBM 7040 medium-sized computer, and an IBM 1301 
disk storage system placed between them. Later, a trio of System 
360/75 computers replaced this configuration. More recently, the con­
trol center adopted a distributed computing strategy similar to 
Goddard's. 
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As in the manned programs, during critical mission phases both 
strings of the original generation of equipment would be running at 
the same time but with the data from the stations only routed to one of 
them. If a 7094 failed, its associated 7040 could be connected to the 
other 1301 (and, thus, the second 7094), leaving the second 7040 as 
another layer of backup86. Later upgraded to a 7044, the smaller com­
puter acted as a traffic cop on the incoming data. All inputs ( teletype, 
telephone, microwave) went to the machine before they went 
anywhere else, and the software in the 7040 routed the data to active 
programs, inactive programs, or administration stations87. George 
Gianopolis of JPL, one of those charged with the responsibility of get­
ting the system to work, remembers that the 7040s were especially 
difficult to install88. The 7040s deposited data on the 1301 disk 
storage system. A 54-megabyte hard disk, the 1301 served both the 
7040 and the 7094 from the middle, so both could access data at iden­
tical addresses. This concept presages the network file servers in the 
modem office and the Common Data Buffer in the Launch Processing 
System. Airline reservation systems and other large data base opera­
tions utilized the same configuration beginning at about the same 
time. Using a smaller computer to handle resource-hungry input and 
output tasks and a common storage area is a standard network concept 
today. As for the 7094, the flight operations director could control its 
use by "percentage time sharing" in which higher priority jobs simply 
got more machine time89. The primary functions of the 7094 were 
telemetry analysis, tracking, predictive work for the stations, and 
maneuver commanding. UNIV AC computers in the JPL institutional 
computer center did the navigation calculations as batch jobs, separate 
from the Operations Facility computers90. 

Although a powerful system, the 7040/7094 combination had to 
stretch to meet mission requirements. Upgrading it to 7044/7094 
Model II status helped some, but the system could handle only a 
Mariner mission (two spacecraft) or a Surveyor but not both91 . Sur­
veyor project officials even had to add a PDP-7 as a front end com­
puter to the front end computer, putting it between the stations and the 
7044 and driving strip chart recorders92. More assistance came during 
the Mariner Project when engineers realized the UNIV AC 1218 com­
puters used in preflight testing of the spacecraft could also do en­
gineering telemetry analysis93. This was not done until Mariner Mars 
1971. Soon, though, the acquisition of more powerful 360 series 
machines ended the reign of the 7094s. 
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Monolithic Computer Systems 

In October of 1969, JPL installed its first System 360/75, a gift 
from the Manned Spacecraft Center, where it was considered surplus. 
A second machine arrived in April 1970, this one left over from the 
demise of NASA's Electronics Research Center in Cambridge, Mas­
sachusetts. JPL bought a third machine, which survived until August 
198394. Each 360 had 1 megabyte of primary core storage and 2 
megabytes of LCS, half that of an Apollo-configured machine95. Two 
of the 360s controlled missions as a redundant set, with the third used 
for development work. A special switch connected the 360s to the in­
stitutional UNIVAC 1108 mainframe computers so that tracking data 
could be directly transferred for use in navigational computations96. 
But the gift from Houston was not entirely welcome at JPL, for along 
with it came the Real-Time Operating System (RTOS) developed by 
IBM for the Apollo program. As Gianopolis saw it, "what we picked 
up from Houston was good for Houston, but not necessarily for us"97. 

Unmanned spacecraft missions needed to create large data bases 
capable of handling the long series of telemetry signals that might go 
on for months or years. IBM's RTOS tried to keep all data in core 
memory, using disk storage as read-only devices. JPL needed to be 
able to write to the disks. Also, each Apollo computer concentrated on 
real-time functions and did not do development work. JPL wanted to 
run FORTRAN jobs on the machine, but RTOS could not handle it98. 
A crisis of sorts arose with the Mariner Mars 1971 orbital mission. 
During the cruise period to the planet the ground software failed every 
5 hours. By the time Mariner reached orbit around Mars, the failure 
rate fell to once every 20 hours99. Still, something had to be done, so 
JPL contracted for an overhaul of the operating system, culminating in 
1972 with the JPL/OS, which incorporated the needed changes. 

Since the 360s lacked a small computer for a front end (original 
thinking being that the machine could handle the load by itself), JPL 
implemented the idea of using the preflight testing computers in mis­
sion support for Mariner Mars 1971 too. Incoming telemetry went to 
the UNIVAC 1230/1219 set first. Then the 360s did commanding, 
tracking data evaluation, predictions for the stations, and engineering 
work. Besides the UNIVAC test set, the UNIVAC l 108s provided 
navigational data and, by then, the Image Processing Laboratory at 
JPL had its own 360/44 for processing planetary imaging 101 . 

Viking, a much more complex project than Mariner, and with es­
sentially four spacecraft (two orbiters, two landers) to control, 
stretched the 360s and their helpmates to the limit. JPL assigned the 
small UNIV A Cs to handle the Viking Orbiter data, since the 
spacecraft were built and tested at JPL and the software was in place. 
System 360s controlled the landers 102. At peak, 700 controllers 
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worked the Viking mission, more than on any other space program to 
date (The count was double that of Skylab, the largest manned support 
group)103. Facing dual Voyager missions and Galileo, with the 
prospect of continuing Viking far past the original mission life es­
timates, JPL was again looking for a way to upgrade mission control. 

Distributed Computing Becomes the Answer 

As JPL discovered planning the computers for the Voyager on­
board systems, functionally distributed small computers offered more 
reliability and cost savings than large single processor systems. The 
Laboratory implemented a distributed system to fill its Voyager 
ground control needs as well. Viking was the last mission to be sup­
ported from a large mainframe computer. By the time Voyager neared 
Jupiter, two strings of dedicated minicomputers performed the 
telemetry, tracking, and engineering monitoring functions. A single 
minicomputer shared by several projects did the commanding. Why 
did the change occur? First, the Deep Space Network was unhappy 
with the level of support it derived from a centralized system. Second, 
even though centralizing deep space mission control at JPL was a 
sound idea, putting too many missions on a single computer system 
was less so. No matter how much JPL tried to standardize things, each 
mission had its unique characteristics, calling for changes in the sup­
port software. With a distributed system, changes could be made with­
out affecting other software. When missions neared critical phases, 
such as launch or encounter, software had to be frozen until the phase 
passed. With enough spacecraft aloft, the amount of time available to 
change software became quite short104. 

NASA provided an additional impetus to switch to a distributed 
system. Acknowledging the Deep Space Network's concern over 
using the 360s in the JPL control center and worried that the Network 
could not monitor its performance when supporting projects originat­
ing at other centers (such as Pioneer), the Agency directed the Net­
work to develop monitoring capability in separate computers. Be­
tween 1972 and 1974, a set of ModComp 2 minicomputers was con­
nected in a local area network at JPL to implement this directive 105. 

In 1976, the control center itself converted from 360s to Mod­
Comp 2s and 4s in preparation for Voyager. Later the Laboratory 
added ModComp Classics and retained some of the UNIVAC 1218s 
and 1230s (renamed 1530s after upgrades) 106. These computers are 
arranged in redundant sets. Each project (Voyager, Galileo, etc.) has 
its own telemetry machine and shares a command machine. A routing 
computer in the basement of the Sp~ce Flight Operations Facility 
building is the entry point of all data from NASCOM, sending the 
data to the appropriate computer. The command computer reverses the 
process for outgoing data. 
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Figure 8--4 , A schematic of the components of the Space Flight Operations 
Facility. (JPL 333-6620) 
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By the early 1980s, the Deep Space Network was heavily into 
distributed computing. It converted from the 920s to ModComp 2s at 
the stations and ordered three Digital Equipment Corporation 11/780 
VAX superminicomputers for use at JPL. Nearly 100 minicomputers 
were connected on an Ethernet. The use of high-level languages be-
came the rule rather than the exception 107. Key to the future success 
of the Deep Space Network is the inherent flexibility of distributed 
computing centers. They mirror the use of modules in software: inter­
changeable parts in a changing field. 

Software Development in the Deep Space Network 

Software development for the control center and the stations has 
always been a challenge, as programmers have struggled to use 
machines built primarily for commercial use in the arena of real-time 
control. In keeping with the centralization of the computers in 1963, 
the original software developers worked under Frederick Lesh in a 
"program analysis group" 108. JPL separated software development for 
mission operations from that of the network stations just before 
Mariner Mars 1969109. Also, at that time emphasis began to be placed 
on making the software more parameter-based and, thus, more 
flexible and capable of use on multiple missions110. A new manage­
ment concept led to the assignment of a program cognizant engineer 
to each software system engineer. The software engineer would define 
requirements, prepare test cases, and oversee the program engineer, 
who would produce the code. This turned out to be quite successful 
and avoided the difficulties encountered when an engineer thought 
(wrongly) that he could do both jobs alone111 . In microcosm, this is 
the "outside verification" concept used extensively in programming 
now. 

Martin-Marietta Corporation, the Viking Lander contractors, had 
to do some dangerously unique software development when NASA 
decided to move control of the Lander from Langley to JPL. Since Or­
biter software development and giving support to other missions tied 
up JPL' s computers, Martin took the chance of developing the Lander 
software in a "minimal higher or&der language," specifically a hope­
fully transportable subset of FORTRAN. Martin's solution reflected 
its recent migration to IBM 370 series and Control Data 6500 series 
computers at its Denver plant. These were technologically more ad­
vanced than the JPL computers and could not be trusted to produce 
directly transportable software112. The idea worked, but Martin ad­
mitted that the requirement for delivering mission supfort software 10 
months before the flight provided strong· motivation 11 . 
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Figure 8-5. The 64-meter antenna of the Deep Space Network at Goldstone, Cali­
fornia. (JPL photo 333-5967BC) 

As JPL moved to a distributed system, a concerted attempt at es­
tablishing software standards has resulted in a state-of-the-art set of 
documents 114. Based on structured programming and software en­
gineering principles, these documents and the decision to use more 
high-level languages such as HAL, C, and Pascal make the Deep 
Space Network one of the most sophisticated software organizations 
within NASA. A further decision to no longer change commercial 
operating systems (possible now that computers are more general 
purpose), will help ensure continued cost reduction and 
consistency 115. 

Mission control is the most computer-intensive part of spaceflight 
operations. From the beginning of both the unmanned and manned 
programs, the computer industry has been constantly forced to stretch 
the capabilities of both hardware and software in order to meet 
NASA's needs. In this way, NASA was a driving force in the 
development of multiprocessing operating systems and large com­
puter complexes. 
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The computers discussed so far actually flew in space or worked in 
direct support of launches and missions. Yet NASA found numerous 
uses for computers in areas somewhat removed from flight operations. 
Chief among these are simulations and image processing, which made 
the training of crews, development of launchers and spacecraft, and 
analysis of image data possible. 

Simulations are used in hundreds of ways in the space program. 
Simulation programs and hardware test the workings of vehicles and 
spacecraft, determine the accuracy of flight paths, train controllers, 
check out designs, and actively contribute to the software develop­
ment process. Simulations help NASA find out whether its programs 
and projects will work as planned, lessening the risks for crews and 
equipment. Especially important are simulations used in crew training 
and simulations used to test hardware. Both provide models by which 
to judge the extent and efficacy of NASA's dependence on simula­
tions and to demonstrate the dependency of such simulations on com­
puters. 

Image processing was developed to make the analysis of digital 
images transmitted by unmanned deep space craft more consistent and 
fruitful. At first largely driven by the needs of the Jet Propulsion 
Laboratory's (JPL) scientific community, imaging spread quickly with 
applications such as Landsat and the Shuttle's imaging radar. From 
spectacular images of distant worlds to detailed pictures of the 
neighbor's farm, imaging technology has contributed to the quality of 
life on earth. Without the use of high-speed computers, the analysis 
and use of the billions of bits of imaging data would be impossible. 

CREW-TRAINING SIMULATORS 

NASA's requirements for flight simulators far exceeded the state 
of the art when the first astronaut crews reported for duty in 1959. 
Feeling obligated to prepare the astronauts for every possible contin­
gency, NASA required hundreds of training hours in high fidelity 
simulators. Each crewman in the Mercury, Gemini, and Apollo 
programs spent one third or more of his total training time in 
simulators. Lunar landing crews used simulators more than half the 
time 1. 

Simulators must provide the astronaut trainee with as close an ap­
proximation of spaceflight as is possible on earth, without losing sight 
of the need to extensively practice procedures to respond to failures as 
well as nominal events. Requirements for realism increase the com­
plexity of the simulation. For example, when an astronaut fires 
thrusters, the simulator must activate readouts and lights showing the 
thrusters firing, fuel reducing, velocity changes, and also show move­
ment in the scene outside the cabin window. In a moving base 
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simulator, such as a simulator in which a spacecraft cabin is 
suspended on hydraulically moved pylons to enable it to tilt, physical 
motion must take place. Causing all these things to happen and coor­
dinating them to happen simultaneously is the difficult task of the 
simulator designer2. 

A manned spaceflight program always had more than one type of 
simulator. Usually there was a pair of full-function simulators, one 
fixed base and one moving base, used for procedures training and ex­
tended simulations. Often, part task trainers were needed for more dif­
ficult mission phases as well. NASA built a simulator for the last 200 
feet of the landing of the lunar module. One part-task trainer exists to 
train astronauts in using the Shuttle on-board computer system and its 
software. 

Mission simulators today are so dependent on computers that it 
has become necessary for proper design to think of it as large data 
processing complex that incidentally is driving displays and perform­
ing other functions in a crew trainer3. For the Shuttle Mission 
Simulator several dozen mainframe, mini, and on-board computers in­
terconnect to create window scenes, change displays, move indicators, 
and light event lights. Reaching this level of computer involvement 
resulted from a steady evolution since the beginnings of manned 
spaceflight. 

Project Mercury Mission Simulators 

When the time came to design the Mercury flight simulators, ex­
perience with aircraft simulators and with those built for the X-15 
rocket plane were all that were available. There is one critical dif­
ference between training needs for test pilots of aircraft and those of 
astronauts. Although flying experimental aircraft is always danferous, 
they are rarely taken to their projected limits on the first flight . Even 
the X-15 had a long series of buildup missions, first with a smaller en­
gine, later incrementally increasing speed, then altitude, until a series 
of full out flights sent the plane to the edge of space. In rocket flight 
the spacecraft is pushed to the outer limits of stress and endurance 
from the instant of ignition. Its crews must be fully prepared for all 
contingencies before the first flight and continue to be prepared for 
every flight afterwards. 

The primary simulator for the first manned spacecraft was the 
Mercury Procedures Simulator (MPS), of which two existed. One was 
at Langley Space Flight Center, and the other at the Mission Control 
Center at Cape Canaveral. Analog computers calculated the equations 
of motion for these simulators, providing signals for the cockpit 
displays5. In addition to this primary trainer, a centrifuge at the U.S. 
Naval Air Development Center in Johnsville, Pennsylvania, served as 
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a moving-base simulator. A Mercury capsule mock-up mounted at the 
end of the centrifuge arm provided ascent and entry training6. Ad­
ditionally, Langley built a free-attitude trainer that simulated the at­
titude control capabilities of the spacecraft and two part-task trainers 
for retrofire and entry practice. 

Analog computers commonly supported simulation in the 1950s 
and early 1960s. Having the advantage of great speed, the electronic 
analog computer fit well into the then analog world of the aircraft 
cockpit and its displays. By 1961, though, it became obvious that the 
simulation of a complete orbital mission would be impossible using 
only analog techniques 7. The types and number of inputs and calcula­
tions stretched the capabilities of such machines so that when NASA 
defined requirements for Gemini simulators, digital computers 
dominated the design. 

Computers in the Gemini Mission Simulators 

Training crews for the more complicated Gemini spacecraft and 
its proportionately more complicated missions required the use of 
digital computers in the simulators. Aside from the tasks done during 
Mercury, such as ascent, attitude control, and entry, the Gemini 
project added rendezvous and controlled entries utilizing the 
spacecraft's greater maneuvering capabilities. At the Manned 
Spacecraft Center, NASA installed simulators to provide training for 
these maneuvers, including a moving-base simulator for formation 
flying and docking and a second moving-base simulator for launch, 
aborts, and entry. Besides these, two copies of the primary Gemini 
Mission Simulator, which had the same purpose as the Mercury 
Procedures Simulator, and the Johnsville centrifuge completed the list 
of Gemini trainers. One of the Mission Simulators was at Cape 
Canaveral; the other at Houston. 

Gemini Mission Simulators used between 1963 and 1966 
operated on a mix of analog and digital data and thus are a transition 
between the nearly all analog Mercury equipment and the nearly all 
digital Apollo and later equipment. Three DDP-224 digital computers 
dominated the data processing tasks in the Mission Simulator. Built 
by Computer Control Corporation, which was later absorbed by 
Honeywell Corporation, the three computers provided the simulator 
with display signals, a functional simulation of the activities of the on­
board computer, and signals to control the scene generators8. 

Functional simulation of various components was made easier by 
the use of digital computers. In a functional simulation, the actual 
component is not actually located in the simulator, its activities and 
outputs being created by software within the computer. Thus, in the 
Gemini Simulator, the on-board computer was not installed, but the 
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algorithms used in its programs were resident in the DDP computers, 
and when executed, activated computer displays such as the incremen­
tal velocity indicator just as on the real spacecraft. 

Scene depiction in the Gemini era still depended on the use of 
television cameras and fake "spacescapes," as in aircraft simulators. 
Models or large photographs of the earth from space provided scenes 
that were picked up by a television camera on a moving mount. Sig­
nals from the computers moved the camera, thus changing the scene 
visible from the spacecraft "windows," actually CRTs. A planetarium 
type of projection was also used on one of the moving-base simulators 
at Johnson Space Center to project stars, horizon, and target vehicles. 

Gemini simulations often included the Mission Control Center 
and worldwide tracking network. No commercially available com­
puter could keep up with the data flowing to and from the network 
during these integrated simulations, so NASA asked the General 
Precision group of the Link Division of Singer Corporation to con­
struct a special-purpose computer as an interface9. Singer held the 
contract for the simulators under the direction of prime contractor 
McDonnell-Douglas, which supplied cabin and instrumentation 
mock-ups. Fully functional simulators came on line at the Cape and 
Houston during 1964. 

Moving-base simulation came into its own during the Gemini 
program. The docking simulator was in a large rectangular cube that 
permitted great freedom of motion in training crews for station keep­
ing and docking. The dynamic crew procedures simulator that repli­
cated launch, abort, rendezvous, tethered ( with the Agena upper 
stage), and entry maneuvers and procedures suggested the feeling of 
acceleration at lift-off by tilting the spacecraft at a rate equal to the g 
buildup during launch from about a 45-degree angle to nearly horizon­
tal to the floor. This resulted in a push on the astronaut's back, which 
increased from 0. 707 g to lg. Engine cutoff and weightless flight could 
be suggested by returning the spacecraft to its original position, giving 
a feeling of maximum comfort to the crew 10. Negative gs could be 
simulated by tilting the nose down, causing the astronauts to feel their 
weight on their shoulder harnesses. 

Designing and using the Gemini simulators gave NASA a lot of 
experience in producing high fidelity simulations. Actual flight ex­
periences from Mercury went into improving the Gemini simulators. 
Gemini rendezvous and maneuver experience helped make the Apollo 
simulations better. NASA adopted some of the Gemini equipment for 
Apollo. The use of Honeywell's DDP-224 computers continued, while 
moving-base simulators were adapted to Apollo use by changing the 
spacecraft mock-up and modifying existing techniques 11 . Still, the 
Apollo program requirements demanded a further increase in the 
amount of computer power. 
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Figure 9-IA. The Apollo Command Module Mission Simulator. (NASA photo 
108-KSC-67PC-l 78) 

Figure 9-1B. An artist' s conception of the Apollo Lunar Mission Simulator. 
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Computers in the Apollo Mission Simulators 

No less than 15 simulators trained crews during the Apollo 
Program. Three were the primary Command Module Simulators, with 
one at Houston and a pair at the Cape. Two were the primary Lunar 
Module Simulators, one at each site. At Houston, a Command Module 
Procedures Simulator trained crews just to rendezvous with the com­
mand module, as there was a Lunar Module Procedures Simulator for 
lunar module rendezvous and landing training. Gemini's Dynamic 
Crew Procedures Simulator became the same for Apollo. Additional 
moving-base simulators at the Manned Spacecraft Center were for 
lunar module formation flying and docking, and a centrifuge (to avoid 
trips to Johnsville). Langley Space Flight Center pioneered the 
research into the final 200 feet of lunar landing by suspending five 
sixths of a simulator's weight to give astronauts practice in controlling 
the lander in the gravity of the moon 12. Another lunar landing 
simulator used a jet engine to support five sixths of its weight and per­
mit free-flight landing training. That simulator required a simulator of 
its own to keep the crews from crashing it. Finally, a pair of partial­
gravity simulators gave the astronauts the chance to walk in space 
suits while having five-sixths of their weight supported. Later in the 
program, Marshall Space Flight Center built a simulator for the lunar 
rover vehicle. 

Among the plethora of simulators, use of the Command Module 
Simulators and Lunar Module Simulators nonetheless occupied 80% 
of the Apollo training time of 29,967 hours 13. These simulators and 
their associated computer systems were crucial to the success of the 
program. The Apollo 13 emergency in April 1970, when there was an 
explosion in the service module on the way to the moon, demonstrated 
the high fidelity and flexibility of the simulators as all lunar module 
engine burns, separations, and maneuvers could be tested and ad hoc 
procedures developed as the crippled mission progressed. 

In contrast to the procedures simulators, all of which were driven 
by a single mainframe comguter, the Mission Simulators used net­
works of several computers 1 . Honeywell won a $4.2 million contract 
on July 21, 1966 to supply DDP-224 computers for the complexes15 . 
Singer-Link was again the contractor for the simulators. Singer al­
located three computers for the Command Module Mission Simulator 
and two for the Lunar Module Simulator. The sets of computers could 
communicate among themselves by using SK words of common 
memory, where information needed throughout the simulation could 
be stored 16. Later, a third and fourth computer were added, respec­
tively, to the Lunar and Command Module Simulators. These com-
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puters simulated the on-board computers. By the Apollo 10 flight a 
fifth computer, simulating the launch vehicle, completed the Com­
mand Module Simulator computer complex17. The two types of 
simulators and the Mission Control Center could do integrated simula­
tions, thus requiring up to 10 digital computers to be working on one 
large problem simultaneously 18. 

Software became as important to the simulated world of Apollo 
as it was in the real world. Software development for the Apollo Mis­
sion Simulators required the efforts of 175 programmers at the peak, 
compared to 200 hardware persons 19. Over 350,000 words of 
programs and data eventually ran in the two simulators. Using digital 
computers, trainers could return the crews to a certain point in a 
simulation and try again by simply recording the status of the com­
puters and data on magnetic tape and reloading memory to match the 
state of the software at the time desired. This sort of flexibility made 
the training task much easier. 

Early in the development of the Apollo simulators, a problem 
arose that would have had critical consequences if not solved. The im­
portance of the on-board computer to the guidance and navigation of a 
moon-bound spacecraft was obvious. Crews interacted with the com­
puter thousands of times in a typical mission; its keyboards contained 
the most used switches in the spacecraft. Initially, the Apollo 
Guidance Computer (AGC) for both the command module and the 
lunar module were simulated functionally, just like the rest of the 
spacecraft hardware20. This meant that the major components of the 
Apollo modules existed as software in a DDP-224 rather than in their 
physical form in the simulator. 

Even so, functionally simulating the on-board computer soon 
proved to be nearly impossible. Mathematical models and algorithms 
for specific Apollo missions had to be sent to the simulator program­
mers from the Instrumentation Laboratory at MIT. Although Singer 
contracted for over 20 experienced IBM programmers, the develop­
ment of functional simulations lagged21 . The programmers had to 
take logic and create software for the DDP-224s that executed just 
like the software on the AGC. Essentially they coded programs al­
ready being coded for the real computer but in a different machine 
language. Warren J. North of the Computational Analysis Division at 
the Manned Spacecraft Center studied the process of creating the new 
software and found it took about 4 months to write the functional 
simulation. Since crews needed the software for training at least 6 
months before the mission, and some buffer had to be allowed for 
last-minute glitches and their solutions, software designs for the AGC, 
developed at MIT, had to be available a full year before a flight, a 
very difficult schedule to meet at the time22. As a result of this study 
and the continued concern of the Apollo Spacecraft Project Office, 
W. B. Goeckler of the Systems Engineering Division of the program 
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asked James L. Raney of Computational Analysis to do a feasibility 
study of using a DDP-224 to simulate the AGC23. Goeckler thought it 
might be possible to make the Honeywell computer think it was the 
MIT computer and execute the MIT code, thus eliminating the need 
for rewriting the programs and solving the time problem. 

When Raney joined Apollo in February of 1966, he faced a rather 
interesting question: Could a floating-point arithmetic, two's comple­
ment representation, 24-bit computer with accumulators and index 
registers run programs written for a fixed-point, one's complement 
representation, 16-bit machine that buried its registers in memory? 
Hardly likely, just about everybody thought--except Raney. 

Instead of a functional simulation, a computer running another 
computer's code uses interpretive simulation techniques. It takes a 
single instruction from the other's program, executes it using as many 
instructions as necessary from its own repertoire, and then goes on to 
the next. Since the AGC had a unique interrupt structure and limited 
arithmetic capabilities (limited compared with the DDP-224), many 
Apollo instructions took multiple Honeywell instructions to get 
around the differences. 

Raney suggested both hardware and software modifications to the 
DDP-224. He specified a switch to disable the machine's floating­
point capability. Instructions were added to enable more efficient 
table searching and other operations that the AGC did well. To handle 
the different word sizes, Raney let the right-most 14 bits of the DDP 
word be the value of a corresponding AGC word. The left-most bit 
was always set to zero to indicate that it was an Apollo word, and the 
intervening bits matched the sign bit of the original word. Words that 
could not be translated (i.e., executed one for one), had to be executed 
by interpretive subroutines written for the purpose and stored in the 
lower part of the Honeywell memory. Raney figured that since the 
DDP had a 10-to-1 advantage in execution speed over the AGC, 
several instructions could be used to do one Apollo instruction with­
out slowing down the program. He used the index registers in the 
Honeywell DDP to act as the Fixed Bank Register, which kept track 
of which core rope memory module the AGC was currently using, as 
well as the address of the next instruction. Finally, to store the AGC 
code, the flight program was put in the upper half of the 64K words of 
core, with the interpreter used in the AGC to execute its own instruc­
tions in an area in lower core. The contents of the AGC's 2K erasable 
memory and the 8K of common core addressable by all the simulator 
computers also was in lower core, along with Raney' s interpretive 
subroutines 24. 

Despite Raney's careful evaluation of the situation and proposed 
solution, many Afollo project personnel opposed it, simply feeling it 
was unworkable2 . In desperation, NASA approved the attempt at an 
interpretive simulator and bought the modified computers. In the end, 
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the simulation within a simulation was spectacularly successful. Even 
though Raney and his team took care to time the subroutines so that 
they matched execution of the actual Apollo code, the simulated com­
puter was faster than the real article. Following the Apollo 9 earth­
orbiting mission that tested the command module and lunar module 
rendezvous techniques, pilot Dave Scott complained that he had up to 
12 seconds less time to react when the computer signaled for a 
maneuver to begin. This was adjusted for later flights. 

Developing the interpretively simulated AGC had several impacts 
on the program. MIT could use the simulator as a field test of its code 
before flight. Since MIT used tape rather than core rope to send the 
programs to Houston and the Cape, errors discovered could be cor­
rected and then the corrections tested in a "real" situation. Crews 
could react to the way the software worked with them. Also, the 
simulator cost just $4.6 million, compared to an estimated $18 million 
for functionally simulating the programs. 

Actually, the Apollo Mission Simulators were the last of their 
type in that the analog environment of the spacecraft that dictated 
hybrid and functional simulations changed to a digital environment 
that lent itself to full digital simulations for the Shuttle program. 
Evolution to full digital simulation, including digital imaging of win­
dow scenes, meant even more dependence on digital computers. 
Making the Shuttle a more autonomous and thus more complex 
spacecraft contributed to a massive increase in the size of the com­
puter systems needed to support simulations. 

Full Digital Reality: Computers in the Shuttle 
Mission Simulators 

The difficulty of producing a fully digital simulation of the Shut­
tle may be appreciated by considering the fact that when NASA 
issued the first request for proposals for the Mission Simulators, there 
was no response26. Singer, which by then had converted Precision 
Link to the Simulator Products Division, eventually responded with a 
plan for a detailed analysis of the simulation problems of the Shuttle. 
NASA had already decided that the extreme cost of developing Shut­
tle simulators would be moderated by acquiring fewer of them27. 
Shuttle program director Robert F.Thompson formed a committee in 
1970 to monitor development of the simulators and involve the 
projected users, the Flight Crew Operations Division, and the Flight 
Operations Division, in its design28 . Singer considered the require­
ments and suggested a large complex of mainframe computers 
functioning through limited task minicomputers to drive the simulator. 

All Shuttle simulators are located at the Johnson Space Center. 
The fixed-base simulator replicates the four crew stations on the flight 
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Figure 9-2. The fixed base Shuttle Mission Simulator (upper center) with some 
of its electronics. (NASA photo S-81-27526) 

deck of the orbiter. It has window views through both aft windows 
and the overhead windows. Hosted by four Sperry Corporation 
UNIV AC 1100/40 mainframe computers, 15 Perkin-Elmer minicom­
puters (mostly 8/32s) provide digital images for the windows, inter­
face with the on-board computers, and perform other functions, acting 
as fancy channel directors for the mainframes29. A motion-base 
simulator recreates the two forward crew stations, all forward window 
views, and the heads-up display used in landing. Also hosted by four 
1100s, it has 11 minicomputers due to the lesser digital image require­
ments. The fixed-base simulator not only has to display proper images 
of the earth and the cargo bay but it also must image the remote 
manipulator arm and any payloads, thus requiring the power of five of 
the 8/32s. Supplementing the two primary Mission Simulators is the 
Shuttle Procedures Simulator. Also called the "Spare Parts Simulator," 
it was often cannibalized to keep the more critical Mission Simulators 
running30. In the early 1980s it was scrapped, and a Guidance and 
Navigation Simulator was built out of its remaining parts. It is used 
for some part-task training. 

Singer quickly decided that the Shuttle's on-board computers 
could not be interpretively simulated, _as the AGC was31 . IBM's 
AP-101 machines used on the spacecraft were roughly as fast as the 
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UNIVAC computers, eliminating the time advantage the DDP 
machines had over the AGC32. Functional simulation of five com­
puters working in concert was also out of the question. Therefore, 
each simulator had five computers, just as in the real spacecraft, and 
NASA bought two more as spares. During the course of the program, 
however, the computers began failing. With training schedules calling 
for simulation runs of 16 hours a day plus maintenance and reloading, 
several computers reached 30,000 hours of operation, far greater than 
the operational life of the flight version. Roughly 12 or 13 are ac­
tually available at any one time, with the two primary simulators al­
ways kept at a full complement of five, and the Spare Parts Simulator 
using the rest33 . The mass memory unit (MMU) of the on-board com­
puter system, the magnetic tape drive that stores the software, is func­
tionally simulated. It proved impossible to keep the actual mass 
memories running long enough to be cost effective. Designed for only 
a few minutes of use in each flight, they fell apart under the demands 
of the simulators. A disk drive controlled by an IBM Series/I proces­
sor replaced the MMU, with delays built in to make it load as slowly 
as a tape would. 

Software for the Shuttle Mission Simulators is based on a 20-
millisecond cycle controlled by a special real-time clock that sends a 
signal to all participating computer systems34. This is about the only 
way the large number of computers can be kept in step. The operating 
system for the UNIV AC machines is a commercial version that is no 
longer supported by Sperry, so NASA has had to specifically contract 
for maintenance on the system to avoid having to change the rest of 
the software to match a new one35. Singer wrote the real-time operat­
ing system used on the Perkin-Elmer machines36. Despite the large 
number of programmers on Singer's Shuttle Simulator payroll (200+ 
of 611 people), it subcontracts with Perkin-Elmer for some software, 
creating a situation where the developers are removed from NASA 
managers by another layer of management, which has resulted in un­
satisfactory products37. In 1980, NASA's Robert Ernull, with years of 
experience in the on-board software division, was named head of the 
simulator division to help clear up problems with the complex 
simulators. He tried to reduce the throughput required of the com­
puters to 70% of the total capability to allow for changes. This did not 
help what he thought was a second major problem-lack of memory. 
Memories were so full any modifications caused a crisis38 . 

Aside from the more traditional Mission Simulators, NASA is 
beginning to use microcomputers to replace the expensive part-task 
trainers of the past. A system called Regency provides a programm­
able 64 by 64 spot touch screen. Detailed graphics of switches and in­
dicators can be displayed, and also component schematics, so that 
trainees can communicate with the teaching software by touching the 
screen in the appropriate place. The teaching software is based on 
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techniques developed for the PLATO system at the University of Il­
linois. Increased use of microcomputers and other small computers for 
more generalized training will come as the space program enters the 
Space Station era. Simulating large spacecraft will be financially im­
possible, but simulation of critical crew stations using software and 
graphics for flexibility will be possible. Given the present direction, it 
appears that some sort of generic trainer with its characteristics con­
trolled by software will be the mainstay of the training program, 
replacing the large computer complexes of the past and present. 
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ENGINEERING SIMULATORS 

While flight simulators are the glory of the simulation business, 
engineering simulations help make spaceflight possible. Many times 
highly innovative systems proved themselves in extremely accurate 
simulations. One example is the control moment gyro system used in 
attitude control of Skylab. A large simulator constructed at the Mar­
shall Space Flight Center gave engineers valuable data about the be­
havior and feasibility of the system, which was understood by few 
aside from its inventor. Also at Marshall was a simulation of the 
Shuttle's main engines. These first computer-controlled rocket motors 
run much hotter and closer to destruction than any predecessors. 
Software for the engine controllers can be tested and certified in the 
simulator. At Johnson Space Center and the Rockwell plant in 
Downey, California are full-scale engineering simulators of the entire 
Shuttle orbiter. Early in the program, engineers led by Kenneth 
Mansfield at Johnson used these simulators to work out preliminary 
concepts, flight techniques, and procedures development using func­
tional simulations (no flight hardware). After the installation of the ac­
tual hardware, changes to the individual hardware and software com­
ponents could be checked for integration with the remainder of the 
spacecraft in those simulators. Thus, engineering simulators provide 
engineers with help in requirements analysis, prototyping, verification 
of concepts, and integration testing. 

Simulation of components involved in rocket flight began in the 
late 1930s with the German development group at Peenemunde, 
where attitude control systems were simulated. In 1939, a one-axis 
mechanical simulator of the A-4 rocket's motion about its center of 
gravity provided valuable control data without the expenditure of test 
vehicles39. That device led conceptually to a more robust electronic 
analog simulation of the control system designed by Helmut Hoelzer 
and built under his direction by Otto Hirschler. Included in that 
simulator was an analog device to correct for the vehicle's lateral drift 
while in flight. Completed in 1941, the simulator was the most ad­
vanced analog computer built to that time40. 

Following World War II, the Peenemunde group brought the con­
cepts of simulation to the United States. Hoelzer became head of the 
Computation Laboratory at the Army Ballistic Missile Agency 
research site in Huntsville, Alabama. When NASA absorbed the 
Agency's Huntsville facilities in 1959, Hoelzer continued his work 
and gathered a powerful set of digital and analog computation devices 
at the Marshall Space Flight Center. So much simulation work needed 
to be done that Hoelzer developed a simulation system consisting of a 
set of general-purpose digital, analog, and hybrid computers that 
several projects could use. Usually consisting of a large analog device 
and supporting digital minicomputers, the hybrids modeled booster 
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flight characteristics and tasks such as payload loading, space tele­
scope pointing, attitude control problems, circuit design, and mission 
support41. One system, the SMK-23, modeled moving vehicles such 
as the lunar rover, providing television window views inside a closed 
control cockpit42. Besides this central facility, Marshall Space Flight 
Center also developed two large stand-alone simulators for special 
complex problems: the Skylab Attitude and Pointing Control 
Simulator and the Hardware Simulation Laboratory used to model the 
space Shuttle main engines. 

Skylab Simulators 

Prior to Skylab, the primary method of attitude control in a 
spacecraft was the use of reaction control system jets that burned liq­
uid fuels. With a mission profile of up to a year's worth of occupancy 
and experimentation, Skylab could hardly carry enough fuel to 
maneuver its bulk for that length of time. An alternative solution was 
a control moment gyro (CMG) system that was very innovative and 
complex. A redundant digital computer system provided commands to 
the system in orbit. To study the operation of the complete system, in­
cluding the computer and its attendant software, required the construc­
tion of a complete laboratory dedicated to the task. 

Three rooms of the Astrionics Laboratory at Marshall were set 
aside for the simulator. In the Black Room sat the hardware that simu­
lated the motion of the space station. The Green Room held the con­
trol devices and some of the computing equipment, with the 
remainder in the adjoining computer room. Primary computer for the 
simulator was a hybrid consisting of an XDS Sigma V digital com­
puter and Comcor Ci5000 and Ci550 analog computers. These drove 
the simulation of the orbital workshop and interfaced with the 
ATMDC which flew on the actual spacecraft. A SEL 840 digital com­
puter sent digital commands to the on-board computer43. 

Originally, the use of the simulator concentrated on mission plan­
ning and hardware and software verification tasks. Engineers expected 
to operate it less than half the working hours of a normal week. 
However, due to the severe hardware failures on the actual mission, 
the simulator reverted to 24 hours a day, 7 days a week operation. 
First the micrometeoroid shield and solar panels were damaged during 
ascent. This meant that the workshop had to be oriented in ways not 
set out in the requirements. For nearly 2 weeks, while Marshall 
prepared tools and techniques to effect repairs with the first crew 
aloft, the simulator tested attitude control maneuvers that would keep 
the workshop from excessive internal heating. Later failures, espe­
cially the loss of a CMG, were successfully modeled and solutions 
devised. As in the Apollo 13 flight, ground simulation of actual flight 
damage led to safe alternatives. 
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Space Shuttle Main Engine Simulator 

The main engine of the space Shuttle is another complicated 
device that needs its own simulator. The Hardware Simulation 
Laboratory is the primary site for verifying the design of the main en­
gines, testing the engine controller software, preparing for hardware 
changes such as new controllers, and modeling failures such as faulty 
valves and sensors that caused engine shutdowns on the pad and in 
flight during the Shuttle program. Begun in the early 1970s, by 1975 
the engine simulator became operational. At the heart of the first ver­
sion of the Laboratory were two Ci5000 analog computers and a SEL 
840 MP digital computer. The engine, acctuators, and sensors are 
simulated with the hybrid system. Actual engine control computers 
are mounted in the simulator44. 

Figure 9---4. A collage depicting the Hardware Simulation Laboratory at the Mar­
shall Space Center used for testing the Shuttle Main Engine Controllers. (NASA 
photo 331594) 
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Since Marshall was responsible for all the booster components of 
the Shuttle, it developed other devices that modeled those components 
in the largest of the active engineering simulators, the Shuttle 
Avionics Integration Laboratory. 

SAIL: Fully Operational Shuttle Skeleton 

The Shuttle Avionics Integration Laboratory, or SAIL, one of the 
largest engineering simulators ever built, sits in a big bay at the 
Johnson Space Center. A fully functioning skeleton of the Shuttle or­
biter, it contains all avionics components used on the real orbiter, 
totaling nearly 1,750 black boxes weighing 6,000 pounds45 . In fact, 
they are placed in exactly the same positions as in the actual 
spacecraft so that components can be certified and any changes made 
to the avionics can be tested. Also, software for a particular flight can 
be run to check for errors. Through the first six flights of the Shuttle 
program, the SAIL accounted for 241 errors found in the primary 
software and 196 errors in the backup software. For the first flight, 
SAIL operated for 644 shifts and since then has averaged 80 shifts in 
support of a mission. Just short of 350 contractors and NASA person­
nel manned the Lab in its operational phase. 

Planning and construction of the SAIL began in 1968, when the 
Shuttle Engineering Simulator first began operations. This simulator, 
still functioning after many modifications 15 years later, replicates a 
cockpit. Scene generators for one forward window and both rear and 
overhead windows, as well as four SEL minicomputers and a Control 
Data Corporation Cyber 74 mainframe, drive the simulator. Prelimi­
nary work on this simulator f ave experience that contributed to the 
SAIL, which started in 19724 . 

Until January of 1983, the SAIL itself consisted of a guidance and 
navigation test station; the Shuttle Test Station, which is the skeletal 
orbiter; the Marshall Mated Element System, which simulates the 
propulsion system; a ground standard interface unit, which sends com­
mands and acquires data from the SAIL for display; and a subset of 
the Launch Processing System. Since the avionics system is the only 
real hardware in the orbiter mock-up, the orbital maneuvering en­
gines, reaction control system, main propulsion, and other non­
avionics boxes must be simulated by computer software or analog 
devices. To preserve the exact signal timing, these simulators must, in 
some cases, be located farther from the spacecraft skeleton than the 
real equipment. The forward reaction control jets simulation boxes, 
for example, are over 10 meters from the spacecraft nose. Since Mar­
shall contributed 55 racks of electronics, and Kennedy Space Center 
sent the Launch Processing System subset, each center can use the 
SAIL to verify software written for equipment under their develop-
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Figure 9-5. Astronaut John 0 . Creighton in the cockpit of the Shuttle Avionics 
Integration Laboratory. (NASA photo S-79-39162) 

ment control, such as the engine controllers from Marshall and the in­
terfaces and selected test software from Kennedy47. 

SAIL operators can monitor tests from display control modules 
connected to the interface unit. The consoles have color monitors and 
individual processors used for fault detection. Aside from validating 
engineering changes and software, the SAIL is used for validating 
tests to be carried out later on the spacecraft while it is being prepared 
for flight48. 

An extensive hybrid computing center drove the SAIL and its at­
tendant simulators during its first decade. A pair of EAi 8800 analog 
computers simulated the landing gear, runway, and braking. A pair of 
7800s represented the aerosurfaces and rate gyros. These analog com­
puters were replaced with a pair of Gould SEL 32/8780 digital min­
icomputers in 1983. Other SELs provide a digital autopilot simula­
tion, equations of motion, radar altimeter, and other nonavionics 
functions49. Separate computers generate the window scenes. These 
are so much better than those done in the Shuttle Mission Simulator, 
especially in regard to the Remote Manipulator System, that crews 
prefer to use the Shuttle Engineering simulator in the SAIL for train-
ing when a mission requiring use of the arm is coming up50. 
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Since the Shuttle was the first manned spacecraft to fly without 
unmanned development flights , the SAIL' s importance cannot be 
minimized. By essentially replicating the entire spacecraft and its 
operations exactly as the spacecraft currently exists, the SAIL 
provides NASA and the astronaut crews confidence in the hardware 
and software for each mission. In its role, SAIL is the ultimate en­
gineering simulator. 
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Figure 9---6 . Image processing makes poss ible scenes from alien worlds such as 
this panorama of the Martian surface . (JPL P-17982) 

IMAGE PROCESSING 

Image processing is one area in which NASA, primarily through 
work done at JPL, clearly leads the field. Ironically, even though the 
production of high-quality images from space probes and Landsat 
earth orbiters has great scientific and public relations value, the con­
cept of digital image processing was not incorporated in the original 
planning of a number of early missions. Instead, it had to gain accep­
tance as a "tack-on" to the Ranger and Surveyor programs51 . Robert 
Nathan led the development of digital image processing in its early 
stages, and with the technical help of other JPL scientists, won for it a 
featured place on the planetary missions of the late 1960s and beyond. 
Of the early resistance, he later said that he "had to prove to [project 
management] each time what they needed" to get the most out of the 
first American pictures coming from space. 



288 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE 

Nathan came to the California Institute of Technology as a 
graduate student in 1952. He earned a Ph.D. in crystallography in 
1955 and soon found himself running CalTech's fledgling computer 
center, where he received a good grounding in the potential of digital 
computers. In 1959, he went to JPL to help develop imaging equip­
ment to map the moon. When he saw the Russian pictures of the far 
side of the moon, he thought he could do better and began developing 
digital techniques for image enhancement using a small NCR 102D 
computer. Nathan reasoned that analog equipment, such as television 
cameras, could only be controlled by hardware changes, just like an 
analog computer can only have its internal program changed by rewir­
ing or switching components. However, digital processing allows 
changes to be made with software, allowing a wider variety of 
enhancements52. 

Before an image can be processed, it must be put into digital 
form. Frederick Billingsley and Roger Brandt of JPL devised a Video 
Film Converter (VFC) that could transform analog video signals, such 
as those sent back by Ranger spacecraft, into digital data. While they 
supervised the construction of the device, John Morecroft of JPL used 
the NCR computer to begin programming processing algorithms. 
These events took place in 1963, and by the next year Howard Frieden 
had programmed the Laboratory's institutional IBM 7094 computer to 
process Ranger data. Success with Ranger images led the Surveyor 
project to use Nathan's techniques, as well as Mariner Mars 1964. By 
the Mariner Mars 1969 missions, the concept of digital image process­
ing was fully accepted. 

Why is image processing needed? Due to the resolution and 
design of the video cameras used to make the images, they must be 
processed in order to return the most information possible. The sur­
face of Mars is such a low-contrast object that without enhancements, 
features would be lost in the wash of monocolor53. Also, because the 
human eye cannot ad just to differences in illumination across a field 
of view, illumination must be normalized54. The cameras operate by 
taking an instantaneous view of the scene; the values of the light im­
pressed on the vidicon tube are then made into digital data. Since 
images are taken one after the other, very close together in time, 
residual images from prior "snapshots" affect the current view55 . 
These residual images must be removed, a technique that took several 
missions to perfect. Finally, noise from transmitting a signal over 
planetary distances must be accounted for. 

To see how such processing is done, the real-time display system 
used for the Mariner Mars l 971 orbital mapping mission provides a 
useful example. A UNIV AC MTC 1230 computer extracted 9-bit 
pixel data from the telemetry stream. A pixel is a single picture ele­
ment, or dot. The spacecraft had a camera capable of recording frames 
of 700 lines by 832 pixels, or 580,000 individual dots. Such large 
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numbers of pixels were only practical as interplanetary communica­
tion advanced. Mariner Mars 1964's 200 by 200 pixel imaging equip­
ment transmitted at the rate of 8 l/3rd bits per second. Thus, it took 
nearly one entire shift at a Deep Space Network station to record a 
single frame. At that data rate it would take over 1 week for a Mariner 
Mars 1971 frame! But by 1971, the data rate increased to 16,200 bits 
per second, giving a complete picture in 5 minutes and 40 seconds. 
Even these rates increased by over seven times in the next few years. 
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Figure 9-7 A. Image processing's decade of progress: Mariner Mars 1964 returns 
the first closeups of Mars ... . 
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Figure 9-78 . ... As the planetwide dust storm clears, Mariner Mars 1971 scans 
Nix Olympica in January, 1972 .. .. 
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Figure 9-7C. .. . Details from the Valles Marineris canyon taken by the Viking 
Orbiter in 1976. (JPL photos P-7875A; P-13074; P-17872) 
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Several techniques could be applied to the data by the computer. 
Contrast stretching helped increase the contrast of the single color 
Martian surface. Original values of the pixels ranged from O (black) 
to 255 (white). The computer truncated these to 6 bits, which yielded 
64 levels. Since humans can only discern about 25 levels of grayness, 
this was more than enough. By increasing the brighter grays toward 
the white end of the scale and decreasing the darker grays toward the 
black end, the contrast was increased5 . Illumination could also be 
normalized using the computers. A "high pass filter" corrected the 
value of the pixels by averaging the immediately surrounding 125 
pixels and then subtracting the running average from the value of the 
pixel57. Another process compensated for geometric distortion. 
Simply because of the way the cameras were made, there was distor­
tion in the image frames. Reference points marked on the image 
served to help distortion elimination algorithms properly square off 
the image. These techniques were also applicable to developing 
mosaic maps by taking images shot at oblique angles and flattening 
them out in any one of several projections58. Noise elimination could 
be done by assuming that any pixel exceeding a difference of 32 
levels of brightness from its neighbors was a spike and then changing 
the value of the spike to the average of its two immediate neighbors. 
From 20 to 10,000 spikes could be found on a single raw image, so 
without removal the image would be noticeably damaged59. 

Aside from the near-real-time imaging provided by the UNIVAC 
and other computers on later missions, long-term processing with a 
number of techniques is done in the Image Processing Laboratory at 
JPL. First established in 1965 with a new IBM 360/44 computer that 
lasted 10 years, the Processing Lab pioneered new imaging techniques 
and developed support software to implement them. Central to the 
success of image processing was the Video Information Communica­
tion and Retrieval language, or VICAR. Written in 1966 after a 
design by Stan Bressler and Howard Frieden, VICAR enabled users to 
define a pipeline of processes without having to use cumbersome job 
control language. For instance, VICAR could define an image file to 
be processed and then specify the type of processing to be performed 
on it in a sequential manner. Output from the stretching program 
could thus be directed to the input to the geometric transformation 
program. The existence of this language significantly increased the 
value of the imaging60_ 

By 1975, when a 360/65 replaced the older computer, the Image 
Lab did roughly half of its work on planetary imaging and half on 
earth resources work using Landsat images61 . Also, by that time 
numerous spinoffs from the program began to tum up in other fields, 
chief among them astronomy and medicine. Astronomers now use 
digital techniques to enhance their photographs of celestial objects in 
the same way spacecraft images are processed. Nathan left the 
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Figure 9-8. Increasing contrast enhances a Mars image. (JPL 511-4353) 
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planetary imaging to his colleagues in 1968, when he turned his atten­
tion to a series of grants from the National Institutes of Health to 
study applications of digital image processing to microscopy and 
medical diagnosis. Robert Selzer of JPL had applied the techniques to 
x-ray enhancement. For Nathan, with a background in x-ray crystal­
lography, this was a natural step. Unfortunately, by 1973 the govern­
ment canceled all fundamental research grants in the field and Nathan 
found himself without support and nearly without a JPL position62. 

Na than managed to hold on for a few more years at JPL on other 
projects until, in the late 1970s, he thought of a way to increase the 
speed of the then computer-time-hungry image-processing programs. 
With Mariner Mars 1971 it became possible to send images faster 
than they could be processed. Since then, the ratio between transmis­
sion time and processing time has gone way up in favor of transmit 
time. In general, it does not really matter, since instant images are not 
now a requirement, but for users of image processing other than 
planetary scientists, additional speed is attractive. Also, as the num­
ber of images has skyrocketed from Mariner Mars 1964' s 22 to 
literally tens of thousands in the Voyager and Galileo projects, time to 
process the images is of interest even to the most patient. The problem 
is that as the number of pixels has increased, the number of individual 
computations also increases. A 1,000 by 1,000 pixel image weighted 
35 by 35 times requires 1.225 billion multiplications63 ! If these are 
done in sequence, the amount of processing time would be formid­
able. 

To solve this problem, Nathan suggested putting 35 sets of 35 
multipliers in parallel on very large-scale integration (VLSI) chips. By 
doing that, the amount of calculations is reduced by 1,225 to 1. 
Recently, he has begun design of a set of VLSI chips that will speed 
up the geometry or reprojection operations64. Basically, the weighting 
algorithm is encapsulated in a single chip as a unit of hardware, rather 
than as software. Logic in hardware executes faster than logic in 
software because all 1,225 multipliers are operating simultaneously in 
par.allel rather than one at a time serially as in a central processor. 
Nathan's chips have been plugged into Digital Equipment Corporation 
VAX 11/780 computers. When the computer is executing an image­
processing program and reaches the point where it wants to.,.do the al­
gorithm on the chip, the computer "calls" the chip just as though it 
were calling a software subroutine. 
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Figure 9-9A. Mosaics combine detailed images into detailed maps: a Martian 
desert .... 
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Figure 9-98 . .... Volcanic Io .. .. 
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Figure 9-9C. .... Heavily cratered Callisto. (JPL photos 211-4704; P-21278; 
P-21746) 

Nathan sees his invention not only as the solution to a problem in 
image processing but also as the beginning of a new future in comput­
ing. Using this technique, special-purpose computers with a lot of 
logic embodied in hardware could easily outstrip the existing systems 
in speed and accuracy. In some ways, it would be like electronic 
analog computers, but better in that the rearrangement of components 
would be simpler. 

It is fitting to end on this note, as Nathan's application of com­
puters to fulfill a need in space exploration mirrors the entire story of 
NASA's use of computers. He approached his tasks in the late 1950s 
and early 1960s as a pragmatist. He had some computing background, 
as well as grounding in other fields, so he could see the possibilities of 
applications. He used equipment usually behind the state of the art but 
got beyond the state-of-the-art results with it. And, finally, he repays 
computing by finding one way to improve it on the path to solving yet 
another problem. Nathan himself said that "NASA is not to be given 
credit for initiating advances in image-processing technology, but 
NASA has supported the grass roots initiatives." In general, that is 
true. NASA never asked for anything that could not be done with the 
current technology. But in response, the computer industry sometimes 
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pushed itself just a little in a number of areas. Just a little better 
software development practices made on-board software safe, just a 
little better networking made the Launch Processing System more ef­
ficient, just a little better operating system made mission control 
easier, and just a little better chip makes image processing faster. 
NASA did not push the state of the art, but nudged it enough times to 
make a difference. 



Epilogue: Themes in NASA's 

Computing Experience 
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Running throughout the individual histories of American space flight 
computer systems are five themes that encapsulate NASA's intentions 
and experiences. Developing and evolving over the last quarter cen­
tury, they promise to dominate NASA's use of computers for space 
flight well into the future. The themes are: the need for real time sys­
tems, the use of redundancy to maintain reliability and safety, the 
choice of off-the-shelf equipment wherever possible, the adoption of 
distributed processing, and adherence to the principles of software en­
gineering in system development. 

Real-Time Systems 

NASA had no choice but to become a leader in the development 
of real-time systems, beginning with the decision to use computers to 
support manned and unmanned flights. Including a computer on-board 
spacecraft further sealed NASA's fate as a developer and user of em­
bedded computer systems--computers within larger systems replacing 
or enhancing existing hardware. Therefore, it is in this field of com­
puting that NASA has had its greatest impact. 

Contractors working on NASA's real-time systems have been 
able to benefit from what they learned in the process of completing 
their contract obligations. For example, an immediate application of 
techniques used in the Mercury Monitor was IBM's System 360 
operating system. Later, experience with fly-by-wire systems quickly 
spread to civilian and military applications. Within 10 years of the 
first digital fly-by-wire aircraft flight, airliners using the technology 
were in prototype. As computers continue to shrink in size and in­
crease in power, the applications of real-time computing will grow 
enormously. 

Reliability and Safety Through Redundancy 

NASA has achieved increasing levels of reliability through a con­
current increase in the levels of redundancy. Ground systems always 
had an active backup. On-board systems acquired them as size and 
performance improvements made it possible. The use of computers 
running in parallel, working on the same calculations, made necessary 
the development of redundancy management techniques. Thus, again, 
NASA pioneered an area which was as yet poorly developed. 
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Proven Equipment 

Even though NASA led the way in the development and use of 
some aspects of modem computing, one area in which innovation was 
purposely avoided was hardware. Acting in the belief that existing 
equipment is inherently more reliable and less risky than new, 
custom-designed computers, NASA sought to acquire proven proces­
sors wherever possible. As a result, flight systems are often years be­
hind the current state-of-the-art. Nevertheless, they can complete the 
missions for which they were purchased. In long-term programs, such 
as the Shuttle, processors are being replaced by newer (but not the 
newest) equipment where possible. 

Distributed Processing 

Partly as a result of safety considerations, partly for convenience, 
and partly because different organizations often contribute subsystems 
to the same spacecraft, there is a continuing trend toward the use of 
distributed computing both in flight and on the ground. Most new 
NASA computer systems are functionally distributed. On an un­
manned spacecraft, for instance, separate computers handle command 
interpretation, data acquisition and attitude control. Other examples 
include the Shuttle Launch Processing System and the Shuttle itself, 
which has computers on the main engines as well as other com­
ponents. Again, improved processors will make it cheaper and easier 
to continue this trend in the future. 

Software Engineering 

Software engineering has always been a big part of NASA's busi­
ness, even in the era before 1968 when the term did not yet exist. In 
recent years, it has become a central focus of activity. NASA has 
developed an Agency-wide software development standard and made 
it available to the various Centers. Short courses on software en­
gineering topics are being taught routinely. The Jet Propulsion 
Laboratory has established a software resource center. Goddard 
Space Flight Center regularly sponsors a software engineering con­
ference. Conferences have been held to get an early start on the use of 
the the Ada programming language in the Space Station project. Ob­
viously, NASA is committed to improvement and high quality in this 
field, as more and more functions on space flights are taken over by 
computers. 
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In all, NASA has very effectively adapted its operations to the 
Computer Age. Computers, frankly, make useful spaceflight possible. 
Even though a spacecraft could theoretically be placed in orbit using a 
World War II tilt-table missile guidance system and mechanical 
clocks, landing safely on the moon, flying within kilometers of the 
outer planets, and landing on runways after descending from space 
would all be unlikely happenings with the old technology. As Man 
begins the era of permanent presence in space, his partner will be mil­
lions of bits flashing in a sea of transistors, a helpmate in the dis­
covery of the universe. 
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Bibliographic Note 

The detailed references to sources given with each numbered note in 
the text serve as the primary record of the evidence used in writing 
this volume. This essay provides a general summary of the sources 
used and describes the method of locating and evaluating them. As the 
volume is a history of technology rather than an institutional history, 
the burden of the written evidence lies in technical reports, software 
documentation, training manuals, and feasibility studies rather than 
memoranda and executive orders. However, the latter sources often 
provide the time sense and structure that so quickly fades from an 
engineer's mind as he goes on to his next project. Because NASA's 
involvement in computer operations during the 1960s and 1970s mir­
rored the stumbling discovery of software engineering principles by 
other organizations, interviews not only with managers but program­
mers and contract liasons in both NASA and contractor offices are a 
major contribution to my understanding of the flow of events and their 
impact on later decisions and developments. Thus, the sources include 
the basic mix found in other NASA histories: written institutional 
records and oral interviews, with the addition of an extensive list of 
technical material. 

Identification of source materials was conducted in several 
cycles. First, a comprehensive search through standard references, 
such as The Applied Science and Technology Index, was made to iden­
tify secondary sources that dealt with NASA's use of computers. The 
period surveyed was 1945 to 1981. Articles were found in journals 
such as Electronics, Journal of Spacecraft and Rockets, Journal of 
Guidance and Control, and various IBM, American Institute of 
Aeronautics and Astronautics, and American Federation of Infor­
mation Processing Societies publications. This search revealed that 
even though NASA is critically dependent on computers for 
spaceflight operations, and that even though massive amounts of 
material have been written on the space program in general, relatively 
little has been published in public journals or in books on spaceflight 
specifically treating the use of computers. Most of what has been 
published is short and far from comprehensive. In books about space 
projects heavily dependent on computers, such as NASA's own 
Chariots for Apollo, generally nothing is said about the configuration, 
programming, or operation of those computers. Thus, the general 
public, even the technically sophisticated public, is largely in the dark 
about the specifics of NASA's computer use. That, of course, is one 
reason why this volume is needed. 

The identification of primary source materials came next. Thanks 
to a Faculty Research Grant from Wichita State University, I was able 
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to make a preliminary visit to the Johnson Space Center while prepar­
ing my contract proposal. This visit provided access to the RECON 
bibliographic retrieval system that NASA uses. RECON is especially 
valuable in this subject area because key words are rather liberally ap­
plied to each item stored: anything remotely to do with computers had 
a "computer" key word. Therefore, search keys could be developed 
such as "Apollo*Computers," and items with both those key words 
could be separated from the mass of material on Apollo. The RECON 
search netted over 1,000 items, of which about 25% were rejected 
based on their abstracts or because the other associated key words in­
dicated that the item was primarily concerned with another subject, 
with only passing reference to computing. The remainder were physi­
cally examined in order to eliminate those that actually did not have 
pertinent materials. This process of reading the remaining sources 
and doing the interviews turned up a number of new primary sources. 
The bulk of these sources are software and hardware specifications, 
operations reports, flight training manuals, and spacecraft systems 
familiarization manuals, which are not indexed either in standard 
bibliographies or RECON. 

Most items in the NASA archives at the various centers are not 
listed in RECON, so memoranda and other such unpublished items 
were discovered the "old-fashioned" way: by physically going through 
the files. My contract provided for visits to Johnson Space Center, 
Kennedy Space Center, Marshall Space Center, the Jet Propulsion 
Laboratory, Dryden Flight Research Center, Goddard Space Center, 
and NASA Headquarters. Archives do not exist at either Marshall or 
Goddard, so individuals provided whatever new sources were gained 
at those places. In each of the other centers, a serious perusal of the 
materials relating to computer usage was done. At Johnson, the ar­
chives transferred to the Woodson Library of Rice University were 
also consulted. 

The tour of the various NASA facilities demonstrated that those 
with full-time historians or archivists had the most useful archives. 
That is, of course, obvious, but it is interesting to contrast the situation 
at, say, Kennedy versus that at Marshall. Marshall has not had an ar­
chivist or historian since the early 1970s. There is no central 
repository. The only way information could be located was by finding 
division chiefs in the areas to be researched and then depending on 
them to help identify the people who had experience with the actual 
program. Those people could then be interviewed and some had kept 
copies of appropriate documentation. Others had not. For example, the 
entire story of the Saturn launch vehicle preflight checkout system is 
in danger of being lost. The people who built it are nearing federal 
retirement, they have thrown out almost all of the documentation, and 
their memories are clouded by the other projects in which they have 
been involved in the last 20 years. At Kennedy, even though a lot of 
interviews were conducted, the main source of information was the 
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well-kept library and archives, which included a technical documents 
section. There the bulk of the story of the Shuttle Launch Processing 
System, the successor to the Saturn preflight checkout system, can be 
reconstructed from specifications, development reports, and user 
manuals. The point is that most of NASA will soon be in the state that 
Marshall is in. Johnson has lost its full-time historian, and the archives 
are maintained part-time by administrative personnel, with some items 
transferred to the Woodson Library. The latter facility has no provi­
sion for extensive xeroxing and is closed-shelf, two crippling defects 
for the historian with limited time on-site. 

With no one at the various centers to choose what should be 
saved, documents are being lost at a prodigious rate. It is true that 
much paper generated by NASA is not needed for later historical 
research, but there is no apparent system of sifting out the material 
that has potential for later use. At the Jet Propulsion Laboratory, 
where files are regularly collected for archiving, there is no active 
control of what is sent to the records center. Some boxes contained or­
ganized, indexed files. Others looked as though someone had simply 
emptied their desk drawers into them; they contained such items as 
old copies of the employees' newsletter amidst notes and memos in no 
particular order. Additionally, project managers can choose to delete 
materials and thus prevent historians from gaining a balanced perspec­
tive. 

Personnel assigned as history liasons at each NASA center, even 
if they had no historical experience, were unfailingly helpful and 
cooperative. They are mentioned and thanked individually in the Ack­
nowledgments. By contacting them ahead of time, I was able to obtain 
the names of initial contacts, which led me to the large number of very 
candid interviewees whose collective memory adds so much to this 
book. They are listed at the end of this note. I was also able, through 
the individual efforts of interviewees, to obtain entry to areas nor­
mally restricted to the public. In that way I was able to see firsthand 
what I was writing about. There is no substitute for seeing the com­
puters installed and operating and for looking at and using the crew 
interfaces. In that way, the true scale of things is established in the 
mind. 

The remainder of this bibliographic note is a topic-by-topic sum­
mary of the main sources. 

THE GEMINI DIGITAL COMPUTER 

The most useful written source for the hardware section of the . 
chapter on Gemini is the NASA Project Gemini Familiarization 
Manual, Volume 2, published by McDonnell Corporation in 1965. 
This manual contains a detailed hardware description of the Gemini 
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digital computer, its location in the spacecraft, and drawings of the 
user interfaces. For the software development cycle and contents of 
the Gemini software loads, Project Gemini: A Technical Summary, 
(NASA CR-1106, 1968) by P. W. Malik and G. A. Souris, is the most 
comprehensive. Ivan Ertel, then of the Manned Spacecraft Center 
History Office, conducted extensive interviews with IBM personnel 
who worked on the Gemini computer during a visit to the Owego, 
New York plant in April of 1968. These interviews are transcribed 
and available at Johnson Space Center. They were very useful in iden­
tifying development problems and procedures. Lastly, interviews with 
Gene Ceman and John Young provided information about the system 
from the user standpoint. 

THE APOLLO COMPUTER SYSTEMS 

Sources for this chapter were primarily technical reports issued 
by the MIT Instrumentation Lab, memos on file at the Johnson Space 
Center, and some very illuminating interviews. The best hardware 
description of the Block II computer is in R. Alonso and 
A. L. Hopkins, The Apollo Guidance Computer (NASA-CR-118183, 
August 1963). An introduction to developing software for the com­
puter is B. I. Savage and A. Drake, AGC4 Basic Training Manual 
(MIT, January 1967). Copies of these are available at Johnson Space 
Center. For NASA's view of the hardware and software difficulties in 
developing the onboard computer, the files of Howard W. Tindall are 
the most helpful. These are also at Johnson. The best interview 
sources for this chapter are John R. Garman of JSC and Stan Mann, 
formerly of JSC. Both were involved in the Apollo software develop­
ment effort and later in the Shuttle program. Both were extremely can­
did and very informative. Transcribed interviews of David Hoag and 
Ralph Ragan of MIT were also helpful. Astronaut users Vance Brand, 
Gene Ceman, and John Young gave good insights in their interviews. 
For the Abort Guidance Section, the best source is P. M. Kurten, 
Apollo Experience Report: Guidance and Control Systems-Lunar 
Module Abort Guidance System (NASA-TN-D-7990, Johnson Space 
Center, Houston, TX, July 1975). 

THE SKYLAB COMPUTER SYSTEM 

The Skylab chapter is overwhelmingly based on two excellent 
sources, both produced by IBM Corporation. They are the Design and 
Operational Assessment of Skylab ATMDC/WCIU Flight Hardware 
and Sojiware(IBM No. 74W-00103, May 9, 1974) and the Skylab 
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Reactivation Mission (IBM No. 79W-0005, September 12, 1979). The 
Skylab hardware and software development was an operation largely 
local to Huntsville, Alabama, where IBM had a continuing corporate 
presence since the early 1960s when work on the computer systems 
for the Saturn launch vehicles began. These two sources are detailed 
histories of the development and use of the computer system in both 
the primary Skylab mission and the reactivation mission. They are 
quite frank, documenting both the first-time successes and needed res­
tarts, although obviously proud of the highly reliable record of the 
system. By the time I reached Huntsville, the IBM office had closed, 
but some ATMDC programmers were still on-site working on 
Spacelab. By now, those few are scattered elsewhere. One, John 
Copeland, was kind enough to be interviewed and lent the reactivation 
documentation. Bill Chubb and Jim McMillion of Marshall 
Spaceflight Center were also very good sources on the computer sys­
tem. Steve Bales of Johnson Space Center was able to give a perspec­
tive on the system from the flight controller's angle and was espe­
cially helpful regarding the first 2 weeks of the primary mission be­
fore the crew arrived. 

THE SHUTTLE DATA PROCESSING SYSTEM 

At the time this volume was being written, the Shuttle was an on­
going project. Therefore, abundant primary source materials in the 
form of actual requirements and design documents, program code, and 
managers involved in the day-to-day production of the hardware and 
software were available. Additionally, the astronauts have fresh 
memories, and the artifacts described in the chapter can be actually 
seen and touched. I decided to try to base this chapter on these sources 
as much as possible, plus my personal experiences in using the equip­
ment and software in simulators. Thus, there are a great number of 
references to interviews ( of which roughly 35 hours were done) and to 
current documentation. Despite this plethora of sources, some things 
could not be settled. An example would be the question of who 
thought up the eventual scheme used in redundancy management. No 
one .could name a specific person or a time. Everyone asked about the 
subject said "it just evolved," or "no one person thought it up," both of 
which are true, but frustrating! 

NASA STANDARD SPACECRAFT COMPUTER-I 

Since the ongmation and development of this computer took 
place at one place, Goddard Spaceflight Center, it was relatively 
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simple to find materials and persons. Ann Merwarth, Bill Stewart, and 
John Azzolini were the key informants in describing the design and 
capabilities of this device. Stewart led me to a documents distribution 
point where I was able to get copies of Merwarth 's guide to the execu­
tive. A fine source of information is an article in the September 1984 
issue of Communications of the ACM, authored by Merwarth, Stewart, 
and others, which tried to show the evolution of the system from its 
beginnings in the mid- l 960s. A chapter on this computer, which was 
written for an early draft of the volume was later deleted because it 
was too much a restatement of previously published materials. 

COMPUTERS ON DEEP SPACE PROBES 

The Jet Propulsion Laboratory has three methods of archiving 
documentation. One is the "Vellum File," located in the basement of 
the Library and containing on microfilm all technical documentation 
used in projects. It is possible to obtain hard copy of critical docu­
ments, which I did when told of their existence by my informants. The 
Library itself contains indexes of publications written by IPL person­
nel, wherever published and holds copies of most of those in its col­
lection. A third source, and one very critical for historians, is a central 
depository that contains memos and other unpublished documentation 
from the project offices and permanent section offices. Materials in 
this archive are arranged by JPL section number and stored in boxes. 
This collection is very erratic in quality. Almost all the materials cited 
in Chapters 5 and 6 were found in one of these three locations. 

If the section on Galileo contains omissions, it might be because 
the project director refused to let me examine his and his chief 
deputy's office files. No reason was given. In the face of the existence 
of the actual documents, I thought it was foolish to speculate on any 
matters possibly contained within them, as a later historian can ex­
amine the materials after they are retired-assuming, that is, that they 
are not destroyed beforehand. 

Personal contacts at the Lab were among the most satisfying I had 
in all my travels. Engineers at JPL are more introspective and more 
history conscious than others I have met. Their help is reflected in the 
actual notes to Chapters 5 and 6. 

EVOLUTION OF LAUNCH PROCESSING 

Documentation for this chapter was hard to come by, both be­
cause the information was scattered among Johnson, Marshall, and 
Kennedy Space Centers, and because pre-Shuttle primary sources at 
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both Marshall and Johnson had been destroyed. However, the current 
Launch Processing System is heavily documented as to function be­
cause it is still operating. Also, Kennedy preliminary studies such as 
the Space Shuttle Launch Operations Study are in archives, and 
published summaries by IBM tended to be historical in nature. There­
fore, the present System is easy to describe. For specifics of origin, 
though, I am again indebted to my informants, particularly Thomas 
S. Walton, who lived through the entire era at Kennedy, Jim Lewis of 
Marshall, Frank Byrne, the genius behind the common data buffer, 
and Henry Paul, who headed the development effort. A short 
manuscript history by Bill Bailey of Kennedy and an interview with 
him were also very helpful. 

MISSION CONTROL 

Fortunately, a fair amount of original source material is available 
on the subject of mission control. Documentation for the Mercury 
Control Center software system is contained in detailed IBM hand­
books such as the "Goddard Monitor System," supplied by John Mor­
ton. He, J. Perry Chambers, and Ray Mazur were excellent sources of 
information on Goddard 's Spaceflight Center's role both in manned 
and unmanned mission control. Philco's "IMCC Systems and Perfor­
mance Requirements" study and IBM's proposal for the Gemini and 
Apollo mission control centers are the best sources for what was in­
stalled at the then Manned Spacecraft Center. Interviews with Lyn 
Dunseith and James Stokes helped considerably with that era. Shuttle 
mission control information is primarily based on interviews with Dub 
Pollen, Fred Riddle, and Gene Campbell of IBM and a publication by 
S. E. James of that company. Researchers interested in unmanned 
mission control of lunar and planetary probes should consult the final 
reports of the various Mariner, Viking, Ranger, Surveyor, and 
Voyager projects, usually issued as Jet Propulsion Laboratory tech­
nical reports. Each contains a detailed description of control con­
siderations. George Gianopolis, Richard Moulder, Lloyd Jennings, 
Frank Singleton, Carl Johnson, and Don Royer, all of JPL, each con­
tributed informative interviews for this section. 

SIMULATIONS AND IMAGE PROCESSING 

Again, interviews are the backbone of my understanding any 
materials analyzed for this chapter. Jim Raney, Bob Emull, and Ken 
Mansfield of Johnson Space Center provided both knowledge and 
materials related to mission and engineering simulators. Jack Lucas 
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and his staff at Marshall helped with the engineering simulators lo­
cated there. Finally, Bob Nathan of JPL, founder of image processing, 
and his colleague Al Zobrist clarified the complex world of digital im­
aging. Almost all written materials used as sources for this chapter 
were either given to me by these informants, or they directed me to 
them. The monograph Digital Processing of Remotely Sensed 
Images, by Johannes G. Moik (NASA SP-431), is a good reference for 
NASA's work in this field. 
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Interview List 

Note: Unless identified otherwise, all persons on this list were NASA 
employees at the time they were interviewed. Locations are also in­
dicated at the time of the interview. 

AARON, JOHN, Johnson Space Center, June 17, 1983. 

ALDRICH, ARNOLD, Johnson Space Center, June 13, 1983. 

AZZOLINI, JOHN, Goddard Spaceflight Center, July 2, 1984. 

BAILEY, WILLIAM, Kennedy Space Center, June 30, 1983. 

BALES, STEVEN, Johnson Space Center, May 31, 1983. 

BIEGERT, PAMELA, Kennedy Space Center, June 30, 1983. 

BLIZZARD, EDGAR, Jet Propulsion Laboratory, May 29, 1984. 

BOGAN, JACK, IBM, Kennedy Space Center, June 29, 1983. 

BORNCAMP, FRANZ, Jet Propulsion Laboratory. 

BRADFORD, CLIFFFORD, Marshall Space Center, June 20, 1983. 

BRAND, VANCE, Johnson Space Center, June 2, 1983. 

BULKLEY, R.C., IBM, Kennedy Space Center, June 27 and 29, 
1983. 

BRUCKNER, BOBBY, Kennedy Space Center, June 30, 1983. 

BYRNE, FRANK, Kennedy Space Center, June 29, and July 8, 1983. 

CAMPBELL, GENE, IBM, Houston, June 13, 1983. 

CERNAN, GENE, telephone interview from Houston, November 7, 
1983. 

CHAMBERS, J. PERRY, Goddard Spaceflight Center, June 28, 1984. 

CHARLEN, WILLIAM, Jet Propulsion Laboratory, May 18, 1984. 
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CHUBB, WILLIAM, Marshall Space Center, June 22, 1983. 

CLAYTON, ELDON, Johnson Space Center, June 1, 1983. 

COPELAND, JOHN, IBM, Marshall Space Center, June 23, 1983. 

COX, KENNETH, Johnson Space Center, June 14, 1983. 

DEESE, SAMUEL, Jet Propulsion Laboratory, telephone interview, 
January 31, 1985. 

DEETS, DWAIN, Dryden Flight Research Center, May 25, 1984. 

DELAUNE, CARL, Kennedy Space Center, July 5, 1983. 

DEMING, JAMES E., Kennedy Space Center, July 6, 1983. 

DUNSEITH, LYNWOOD, Johnson Space Center, June 2 and 9, 1983. 

EISENMAN, DAVID, Jet Propulsion Laboratory, May 21, 1984. 

ERICKSON, JOHN, Johnson Space Center, June 14, 1983. 

ERNULL, ROBERT, Johnson Space Center, June 16, 1983. 

FOY, LYNNE, Johnson Space Center, June 16 and 17, 1983. 

GARMAN, JOHN R., Johnson Space Center, May 25, and June 1, 
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GIANOPOLIS, GEORGE, Jet Propulsion Laboratory, June 4, 1984. 

GREENBERG, EDWARD, Jet Propulsion Laboratory, May 30, 1984. 
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HARTSFIELD, HENRY, Johnson Space Center,June 2, 1983. 

HEDDINS, FREDERICK, IBM, Kennedy Space Center, June 27 and 
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HINSON SHIRLEY, Johnson Space Center, June 16, 1983. 

HOELZER, HELMUT, Huntsville, Ala., June 24, 1983. 

HUGHES, BRAD, Kennedy Space Center, July 5, 1983. 
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HUGHES, FRANK, Johnson Space Center, June 2, 1983. 
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JOHNSON, CARL, Jet Propulsion Laboratory, May 23, 1984. 

JOHNSON, DONALD, Jet Propulsion Laboratory, May 16, 1984. 

JORDAN, FRANK, Jet Propulsion Laboratory, May 31, 1984. 

KILLINGBECK, LYNN, IBM, Houston, June 7, 1983. 

KOHL, WAYNE, Jet Propulsion Laboratory, telephone interview, 
January 31, 1985. 

KOPF, EDWARD H., Jet Propulsion Laboratory, May 18, 1984., 
telephone interview, January 31, 1985. 

LANIER, RONALD, Johnson Space Center, June 16, 1983. 

LEE, B. GENTRY, Jet Propulsion Laboratory, June 1, 1984. 

LEMON, RICHARD, Jet Propulsion Laboaratory, May 29, 1984. 

LEWIS, JAMES, Marshall Space Center, June 20, 1983. 

LINEBERRY, EDWARD, Johnson Space Center, June 2, 1983. 

LOCK, WILTON, Dryden Flight Research Center, May 24, 1984. 

LOUSMA, JACK, telephone interview from Houston, July 5, 1983. 

LUCAS, JACK, Marshall Space Center, June 21, 1983. 

MACINA, ANTHONY, IBM, Houston, June 7, 1983. 

MALM, RICHARD, Jet Propulsion Laboratory, May 31, 1984. 

MANN, STANLEY, Johnson Space Center, June 6 and 8, 1983. 

MANSFIELD, KENNETH, Johnson Space Center, June 1, 1983. 

MATTOX, RUSSELL, Marshall Space Center, June 23, 1983, 
telephone interview, November 16, 1984. 

MAZUR, RAYMOND, Goddard Spaceflight Center, June 28, 1984. 
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McMILLION, JAMES, Marshall Space Center, June 22, 1983. 

MERWARTH, ANN, Goddard Spaceflight Center, July 3, 1984. 

MILLER, BRUCE, Kennedy Space Center, July 5, 1983. 

MITCHELL, WALTER, Marshall Space Center, June 23, 1983. 

MORECROFf, JOHN, Jet Propulsion Laboratory, May 29, 1984. 

MORTON, JOHN, Goddard Spaceflight Center, June 27, 1984. 

MOULDER, RICHARD, Jet Propulsion Laboratory, May 21, 1984. 

NATHAN, ROBERT, Jet Propulsion Laboratory, May 30, 1984. 

OTAMURA, ROY, Jet Propulsion Laboratory, May 29, 1984. 

PALIKOWSKY RAYMOND, Singer, Houston, June 10, 1983. 

PANCIERA, ROBERT, Marshall Space Center, June 20, 1983. 

PARRISH, ALBERT, Kennedy Space Center, June 28, 1983. 

PARTEN, RICHARD, Johnson Space Center, June 3 and 16, 1983. 

PAUL, HENRY, Kennedy Space Center July 7, 1983. 

PENDLETON, THOMAS, Johnson Space Center, June 9, 1983. 

PENOVICH, FRANK, Kennedy Space Center, July 1, 1983. 

PETYNIA, WILLIAM, League City, TX, June 8, 1983. 

POLLEN, DUB, IBM, Houston, June 13, 1983. 

RAINES, GARY K., telephone interview from Houston, November 1, 
1985. 

RANDALL, JOSEPH, Marshall Space Center, June 20, 1983. 

RANEY, JAMES, Johnson Space Center, May 31, 1983. 

RICE, RICHARD, Jet Propulsion Laboratory, May 29, 1984. 

RIDDLE, FREDERICK, IBM, Houston, June 13, 1983. 
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SMITH, GEORGE, IBM, Kennedy Space Center, June 27 and 29, 
1983. 

STEARNS, JANE, Kennedy Space Center, June 30, 1983. 

STEW ART, WILLIAM, Goddard Spaceflight Center, July 10, 1984. 

STOKES, JAMES, Johnson Space Center, June 14, 1983. 

STORY, SCOTT, Ford Aerospace, Johnson Space Center, June 16, 
1983. 

STOTT, RUSSELL, Jet Propulsion Laboratory, May 16, 1984. 

SULLIVAN, WILLIAM, Johnson Space Center, June 14, 1983. 

SWEARINGEN, CHARLES, Huntsville, AL, June 21, 1983. 

TINDALL HOW ARD W., telephone interview from Washington, 
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VICK, H.G., Marshall Space Center, June 21, 1983. 

VINZ, FRANK, Marshall Space Center, June 21, 1983. 
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WILLBANKS, JAMES, IBM, Kennedy Space Center, June 29, 1983. 
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YOUNG, JOHN, telephone interview from Johnson Spaceflight Cen­
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Appendix I: Glossary Of Computer Terms 

Accumulator---The register in the central processing unit of a 
computer used to store the current results of calculations. 

Algorithm---A step-by-step solution to a problem that is the basis for 
writing the code that will enable the computer to solve it. 

Analog Circuit---An electrical circuit that models the behavior of a 
real object or force, providing a nondigital means of calculation. 

Analog Computer---A machine that computes by modeling objects 
and forces using either mechanical or electrical means. 

Assembly Language---A low-level programming language for 
computers that express algorithms in statements consisting of 
mnemonics representing actions and numbers representing addresses. 
For example, the statement "ADD A, 7FFF" tells a computer to add 
the contents of location 7FFF (a hexadecimal number) to the contents 
of the accumulator and leave the result in the accumulator. The 
specific mnemonics for assembly languages may be different for 
different processors but are closely related. Programs written in 
assembly languages, although conservative of machine resources and 
quite fast, are much more difficult to write and maintain than those 
written in high-level languages such as FORTRAN, Pascal, and 
HAL/S. 

Asynchronous---Occurrences happening at no set time. Asynchronous 
interrupts mean that signals to a computer to start a specified process 
may come at any time. 

Backup Program---A computer program shorter and with less 
functionality than the primary program that performs only critical 
functions in case the primary program or the hardware in which it 
resides fails. 

Bandwidth---The amount of information that can be transferred in a 
discrete amount of time. The higher the bandwidth, the more 
information. 

Batch Processing---A method of executing programs on a computer 
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that reserves resources for the use of a particular program and releases 
them upon completion. Older batch systems could process only one 
program at a time. 

Binary Object Code---The result of an assembler processing an 
assembly language program or a compiler processing a high level 
language program. It consists of binary numbers in the machine 
language of the specific computer on which the program is to run. 

Bit---A binary digit, representing either a one or a zero. 

Breadboard---A prototype of a computer or other electronic device 
built by the design group to test the device before it is packaged for 
production. 

Bubble Memory---A type of nonvolatile computer memory using 
materials that can retain a specific magnetic polarity when electrical 
power is cut off. The polarity determines whether a one or zero is 
being stored. 

Bujfer---A cache of memory used to store information temporarily 
during transfer operations. It is usually used to ad just for differences 
in operating speed between devices. 

Buffer Register---A register used to temporarily store information in 
transit to another device. 

Bug---Common term for an error in a computer program or hardware. 

Bus---An interconnection device that can be used to speed up 
information transfer (as when a bus made up of multiple wires carries 
the· bits of an entire computer word in parallel) and to act as a 
connector for multiple devices (as when several devices that do not 
need to transmit simultaneously time-share the use of the bus for 
intercommunication). Also used to refer to heavy-duty electrical 
power cables or bars supplying power to many devices. 

Byte---A collection of bits, commonly eight. 

Central Processor---The portion of a computer that contains the 
control circuits and does the actual calculations. 

CMOS---Complimentary metal-oxide silicon circuits, characterized by 
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low-power requirements, tolerance of wide variation in voltages, and 
susceptibility to damage from discharges of static electricity. 

CMOS Processor---A microcomputer built of CMOS circuits. 

Coding---The act of writing a program for a computer. 

Compiler---A computer program that accepts statements of a high­
level language as input and generates machine code that will execute 
those statements as output. 

Condition Code---A message several bits in length used to 
communicate the physical status of one device to another device. 

Contiguous Memmy Locations---Addresses in a machine memory 
located adjacent to one another. 

Core Memmy---A type of computer memory constructed of a series of 
two-dimensional planes containing networks of wires with ferrite 
rings called "cores" at their intersections. The magnetic polarity of the 
cores can be changed by electrical pulses. Each core stores 1 bit of 
information. Core memory is nonvolatile; when power is cut off, it 
does not lose information. Destructive-readout core memory loses the 
information stored in a core when the core is read, so a temporary 
register must be used to intermediately store the information before 
writing it back to its original location as it is simultaneously sent to 
other parts of the computer. Nondestructive-readout core memory can 
be read without the information being changed. 

Core Rope---A type of core memory that stores entire computer words 
rather than individual bits. Each core in a core rope is permanently 
charged to represent a "one." A number of wires equal to the number 
of bits in a word is weaved through the cores. When a bit within a 
word is to represent a one, its wire is connected to a core. Bits 
representing zeroes are not connected. Thus, by selecting the correct 
core and sensing which wires represent ones and which zeroes, the 
word can be reconstructed. More than one word can be attached to a 
core by adding more wires to the rope. Core rope, once constructed, 
can only be read. 

Core Storage---Another name for core memory. 

Core Transistor Logic---Circuits made up of discrete transistors used 
to form the control unit in the central processor of a computer. 
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Cycle Time---The length of time it takes for a computer to do a 
fundamental operation, such as reading a word from memory into the 
central processor. Some instructions, such as multiply, take several 
cycles. 

Data Flow Diagram---A software design tool that uses circles to 
represent operations and arrows to represent data movement. It is used 
to determine the ordering of processes and input and output 
requirements. 

Data Formatters---Hardware or software that takes raw data from 
devices and puts it into a uniform format for transmission, usually 
adding some special error detection bits. 

Data W ord---A computer word containing only data, not instructions. 

Demultiplexer---A device that receives data transmitted on a bus and 
routes it to the correct device. 

Digital Circuit---A circuit constructed to handle discrete units of 
information that can represent ones and zeroes. 

Digital Computer---A calculating device using digital circuits, usually 
consisting of a central processing unit, memory, and input and output 
devices. 

Diode Transistor Logic Integrated Circuit---A type of miniaturized 
digital circuit used to construct logic units in the central processor of a 
computer. 

Dirfct Addressing---Using the absolute address of a memory location 
to access data within it. For example, in a hypothetical machine with a 
word size of 4 bits, up to 16 memory locations can be directly 
addressed, simply by matching them one for one with the 16 numbers 
4 bits can represent. Thus, memory location 1011 is the twelfth 
location in the memory. Since it is often necessary to have more 
memory than the number of locations a single word can represent, 
indirect addressing schemes must be devised. The 4 bit computer can 
indirectly represent a memory location by using two words; one word 
can indicate which bank of 16 words to access, the second word can 
indicate which of the 16 addresses in that bank to read. 
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Direct Memory Access---Reading or writing to a memory location in a 
computer without passing the information through the central 
processing unit for disposition. 

Discrete Component---A component containing a single entity, such 
as a transistor, as opposed to containing many entities, such as an 
integrated circuit with thousands of transistors. 

Disk Drive---A type of mass storage device in which bits are 
represented by magnetized areas on a plane, or disk, covered with a 
suitable material of the same type used for magnetic tape. A disk drive 
may have one or many disks. 

Double Precision---Vsing two computer words to represent a number 
instead of one. 

Drum Mem01y---A type of mass storage device in which the material 
(similar to material used to make magnetic tape) that contains the 
information is placed on a rotating drum. 

Emulator---A device that can be programmed to replicate the logic 
and functions of another device and operate at the same speed. 

Erasable Mem01y---Memory in which information can be overwritten 
by new information. 

Event Word---A word of information containing code to activate 
devices or functions. 

File---A collection of related information, such as a computer 
program or imaging data, which can be thought of as a unit. 

Firmware---Software stored in read-only memory devices used to 
control logic flow in a computer. Changing the firmware changes the 
nature of the computer. 

FLred Memo,y---Memory that can only be read. 

Fixed Point---A method of representing numbers in a computer in 
which the decimal point is permanently fixed. Therefore, numbers 
used in calculations must be properly scaled relative to the location of 
their decimal point or the results will be meaningless. Such scaling is 
usually left to the programmer. 
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Flat Packs---Collections of integrated circuits packaged in modules 
for use in a computer. 

Flip-Flop---A logic device that can change from containing a one to a 
zero and vice-versa depending on inputs. Flip-flops are often used in 
the central processing unit of a computer. 

Floating Point---A method of storing numbers in a computer in which 
the location of the decimal point is stored with the values of the 
individual places. 

Flowchart---A method of program design in which algorithms are 
represented by specific two-dimensional shapes and connecting 
arrows. Each shape represents a specific logical act. For example, a 
diamond indicates a true/false decision. 

Full Word---All the bits of a computer's word size. 

Gate---A logic device. For example, an "AND Gate" returns the result 
of a Boolean AND operation on its inputs. 

General-Pwpose Register---A register in the central processing unit 
of a computer not assigned to a specific task but that can be 
dynamically required to act as an accumulator, program counter, or 
index register. 

Half Word---One half of the bits of a computer's word size. 

Hard-Wired Logic Circuits---Logic implemented in hardware, as 
opposed to implementation in software. 

Hard-Wiring---Pennanently representing logic in hardware. 

Hard Logic---Logic permanently represented in hardware. 

Hardware---Physical components of a computer system or other 
device, such as memories, registers, and control logic circuits. 

Hexadecimal---Base 16. One-digit numbers include O through 9 and A 
through F. 
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High-Level Language---A language in which algorithms can be 
represented in a series of structured, formal statements using selected 
easily recognizable words from a natural language. For example, "IF 
VAL VE_POSITION = 2 THEN SET FUEL_R.,AG TO TRUE" is a 
high-level language statement. 

Image Processing---Using computers to operate on the digital 
information that represents images to enhance its value for specific 
purposes. Most images are represented by collections of 8-bit "gray 
scale" values, which contain a number ranging from 0 to 255 
indicating the level of darkness in one picture element, or dot, in an 
image. Image processing works on these 8-bit values to increase 
contrast, translate oblique images to vertical images, and emphasize 
certain colors. 

lmaging---The process of acquiring images using vidicon tubes and 
digital circuits. 

Index Register---A register in the central processing unit of a 
computer that contains the value of the memory bank currently being 
accessed. 

Instruction Set---The list of instructions that a computer can execute. 
It varies from a few to several hundred depending on the computer. 

Instruction Word---A word in a computer containing the bits 
representing an instruction and an address on which the instruction is 
to operate. 

Integrated Circuit---An electronic circuit contammg hundreds, 
thousands, or millions of components, such as transistors, and used for 
a specific purpose, such as logic or memory. 

Interactive Processing---Executing computer programs so that the 
user can actively send information to the program and receive 
information from it while the program is running. 

lnte,face---The connection between two devices for the exchange of 
data. 

lnte1face Table---A collection of information containing instructions 
for connecting devices so that data can be exchanged. 
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Inte,preter---A computer program that executes statements written in 
a high-level language one at a time. 

Interrupt Stack---Storage of interrupts so that they can be handled in a 
last-in first-out fashion. 

Interrupt-Driven System---A computer that is programmed to execute 
processes on demand, the demand taking the form of signals sent from 
other devices or itself that cause processes of lower priority to halt 
execution and be replaced by processes of higher priority. If the 
interrupt is of a lower priority than the current process, it is saved for 
later execution. 

Kilobyte---One thousand twenty-four (1,024) 8-bit bytes. Abbreviated 
"Kb" or, more commonly, "K." 

Listing---The content of a computer program, often used to refer to the 
printed result of sending a program through a compiler. 

Logic Channels---Hardware that represents logic and through which 
data flows for processing. 

Logic Circuit Board---A board containing electrical connections into 
which circuits are plugged representing the logic of a device. 

Logic Gate---See Gate. 

Machine Code---The representation of instructions as a series of bits, 
which cause the computer to execute the specified actions. Machine 
code is idiosyncratic to a particular type of computer. 

Machine Cycle---See Cycle Time. 

Machine Time---The amount of time a computer takes to execute a 
program or function. 

Macro---A subroutine in assembly language that can be invoked by 
name. 

Magnetic Tape---A mass storage device in which bits are represented 
in areas on a magnetic surf ace. 
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Main Memory---The memory of a computer used for both reading and 
writing operations, and of a faster type than secondary storage 
devices, such as magnetic tape or disk. Main memory is often made 
from core or semiconductor devices. 

Mainframe Computer---A large, fast computer system capable of 
supporting hundreds of individual users, usually with a long word 
size, millions of words of main memory, and many peripherals. 

Medium-Scale lntegration---Integration of several thousand 
transistors or other devices on a single chip. Abbreviated "MSI." 

Megabyte---One million 8-bit bytes. Abbreviated "Mb" or, more 
commonly, "M." 

Microprocessor---A small computer built of integrated circuits, often 
on a single chip. Usually a microprocessor will support a single user 
or function. 

Microcode---The programs used to create firmware. 

Microsecond---One millionth of a second. 

Millisecond---One thousandth of a second. 

Minicornputer---A computer sized between a microprocessor and a 
mainframe computer, capable of supporting from one to several dozen 
users or tasks. 

Mnemonics---Short groups of letters representing instructions in an 
assembly language. The mnenomic for "decrement the number in the 
specified register by one and branch to another address if the number 
is zero" is "DBZ." 

Modularization---A technique for creating large computer programs 
based on the principle of "divide and conquer." Each module of a 
large program performs one task, can be entered at only one point, and 
exited at only one point. For example, the "BOOST THROTTLING 
TASK" module of the Shuttle on-board software handles the throttling 
of the main engines during the ascent phase of a mission. It is 
scheduled to execute many times each second. By isolating the 
function to this one module, it can be tested more easily and also 
reused in software loads for many Shuttle flights. 
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Multiplexer--,-A device that controls the time-sharing of a bus so that 
many devices can send information over the same interconnection. 

Multitasking---A method of using computer resources so that more 
than one program can be in the process of execution at one time. The 
operating system of the computer will do calculations for one program 
while another is using the printer, for instance. 

Nanosecond---One billionth of a second. 

Networking---The process of interconnecting several computers 
together so that they can share data and programs. 

Noise---Stray electromagnetic signals that may or may not interfere 
with data transmission and calculations. Noise may be generated 
locally, as when devices that leak electromagnetic radiation are placed 
next to one another, or from radiation fields in space. 

NOR Gate---A type of logic gate that executes a Boolean OR 
operation on its inputs and then complements the result (reverses the 
value) before outputting it. 

Object Code---See Binary Object Code. 

Octa/---Representation of numbers in base eight. Octal digits range 
from O through 7. 

One's Complement---A method of storing binary numbers in which 
each bit in a word is complemented (reversed in value). The one's 
complement of 101 is 010. 

Operation Code---That part of an instruction word that contains the 
bits that represent the specific mnemonic to be executed. 

Parallel Data---Data transmitted in several bits at once. 

Parameter---Data made available as input or output to a module or 
procedure. In general, the current value of specific information, such 
as fuel remaining, angle of flight, or re-entry time. 

Parity---A method of ensuring accurate data transfer. The number of 
ones or zeroes in a specific computer word is kept either even or odd 
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by the addition of a changeable "parity bit." If the device is using 
even parity based on the number of ones, or if the number of ones in 
the word is odd, then the parity bit is set to one. When the transfer to 
another device is complete, that device examines all incoming words 
for even parity. If it detects odd parity, it requests a retransmission of 
the data that failed the parity test. 

Parity Bit---See Parity. 

Peripheral Device---Hardware associated with a computer used for 
input, output, or memory functions, such as disk drives, printers, 
terminals, and card readers. 

Pixel---Short for picture element. One dot of a digital image. 

Plated-Wire Mem01y---A type of nonvolatile computer memory using 
areas of wires plated with material that can be magnetically polarized 
to store bits. Its function and advantages are similar to core memory. 

Primary Memory---See Main Memory. 

Prima,y Storage---See Main Memmy. 

Procedural Language---A computer language that can represent 
algorithms, such as FORTRAN, Pascal, or Ada. 

Processor---Alternative term for computer. 

Propagation Time---The amount of time it takes for a signal to get 
from one part of a device to another, or to another device. 

Pseudocode---A program design tool using structured English to 
represent algorithms. It has the advantage of being easily 
understandable and independent of the syntax of a particular computer 
language. 

Radiation-Hardened Chips---Integrated circuits that have been 
protected from the effects of radiation, either by shielding, decreasing 
the density of components, or both. 

Random Access Mem01y---A computer memory in which data can be 
written to or read from any location directly. 
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R ead---The process of moving information from a storage device to 
some other place. 

Read Only Memory---A type of computer memory that can only be 
read from, not written to, such as core rope. 

Real-Time Processing---A type of processing in which the computer 
accepts or initiates continuous asynchronous inputs and outputs. 

Redundant Circuits---Sections of hardware replicated to increase 
reliability. 

Register---A storage location containing a set of bits. Registers in 
memory contain data words or instruction words, registers in the 
central processing unit of a computer contain data, instructions, the 
bank of memory currently being accessed, the location of the next 
program step, and intermediate results of calculations. 

Seconda,y Mem01y---Mass storage such as tapes or disks, usually 
slower than main memory. 

Seconda,y Storage---See Seconda,y Memo,y. 

Semiconductor---Name 
semiconducting metals 
semiconductor. 

for the 
such as 

electronic 
silicon. 

devices made of 
A transistor 1s a 

Sense lines---The wires in a core or core rope memory that sense the 
change in polarity during a read operation on the core and transmit the 
value of the core to a register. 

Sequencer---A hardware device that commands other devices 
according to a fixed time or event-initiated sequence. 

Serial Access---Transmission of information one bit at a time. 

Serial Data---See Serial Access. 

Sign Bit---A bit of a computer word reserved for indicating the sign of 
a number. 

Signed Two's Complement---Storage of the value of a number m 
two's complement form with an associated sign bit. 
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Simulator---A device or software that replicates the functions of 
another device, though not necessarily at the same speed or in exactly 
the same way. 

Single Precision---Representing the value of numbers using one 
computer word. 

Soft Logic---The representation of logic in software. 

Software---Part of a computer or other device that is the representation 
of algorithms of functions and problem solutions and that is easily 
changeable. 

Software Engineering---The creation of software according to 
engineering principles; emphasizing proper specification, design, 
development, accuracy, and reliability. 

Solid-State Computer---A computer built wholly out of solid-state 
devices such as transistors and integrated circuits as opposed to 
vacuum tubes. 

Spike---A portion of the storage medium on a magnetic storage device 
such as a tape or disk ruined by an excessive electrical discharge or 
other event, preventing that area from being used for reading or 
writing. 

State Vector--- 'The current position of a spacecraft in three dimensions 
plus time. 

Status Variable---A parameter indicating the current state of data 
processed by a module, either reliable or corrupted. For example, if a 
calculation within a module cannot be done because of insufficient or 
damaged data, a status variable can be set to a specified value and sent 
to the main program indicating that a failure has occurred and, often, 
what type of failure. 

Stored Command Processor---One of the virtual machines of the 
Galileo spacecraft command and data computers that executes stored 
commands. 
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Structured Macros---A pseudo-high-level language made by naming 
routines written in assembly language after statements in a typical 
high-level language. These routines can then be invoked by name. 
Thus, an IF-THEN statement can be represented by an assembly 
language macro which accepts as its parameters the information to be 
tested and what to do after the result of the operation is known. 

Subroutine---A software module that is part of a larger program, often 
repeated many times during the execution of the program. 

Subroutine Linkages---Code that collects and connects subroutines 
together for execution. 

Sum\lvord---The result of adding the current values of specified 
commands together. Used to check against sumwords of other 
computers operating redundantly on the same processes. 

Superminicomputer---A minicomputer with the speed and accuracy 
characteristics of a mainframe. 

Telemet,y---Signals sent from a spacecraft to the earth containing data 
gathered or generated by experiments and flight hardware. 

Time-Sharing System---A method of allocating computer resources so 
that a number of processes can be executing simultaneously. 

Time-Slice Method---A time-sharing or multiprocessing method in 
which each currently executing process is given a discrete length of 
time to use machine resources. At the end of that time, its execution is 
temporarily suspended and the next process in line is activated for a 
discrete length of time. Eventually, all current processes are serviced 
and the original interrupted program can pick up where it left off, 
beginning the cycle again. 

Transfer Register---A register used for temporary storage of data, 
such as data read from a core memory, before it is sent to the device 
that requested it. 

Transistor-Transistor Logic---A type of integrated circuit for 
representing logic in hardware. 

Two's Complement---A method of storing binary numbers that first 
complements (reverses) each bit, and then adds one to the result. For 
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example, the two's complement of 101 is 011. This is useful for 
"subtracting by adding." To subtract a two from a five, the five (101) 
is added to the one's complement of two (110), with the carry past the 
left-most bit discarded. The result is 011, or three. 

Uplink---Sending signals from the ground to a spacecraft. 

Uplink Telemet,y---See Uplink. 

User Friendliness---A term relating to the degree of ease in the use of 
a computer system. 

Ve,y Large-Scale Integration---Combining millions of components on 
a single chip. Also "VLSI." 

Virtual Machine---A system of managing machine resources so that 
many users have the impression that each has the full attention of the 
computer when in actuality it is rapidly servicing the processing needs 
of all of them. See Virtual Mem01y. 

Virtual Mem01y---A system of memory management in which small 
segments of a program or data are brought from secondary mass 
storage into main memory on demand. For example, if a programmer 
is examining a very large program on an interactive terminal, the code 
for one page of the program is in real memory, with the rest on a disk 
drive. If the programmer moves to a different portion of the code, the 
computer automatically retrieves the correct segment of the code from 
secondary storage and places it in main memory. ln this way, many 
users can be serviced with a main memory much smaller than 
secondary storage, each having the impression that large amounts of 
main memory are available _to them. The speed of moving information 
from main memory to secondary storage is such that it is not usually 
noticeable. 

Voter Circuit---A circuit in a device that has multiple identical logic 
paths, which compares the results of calculations and outputs the 
value that the majority of the input circuits carried. In triple modular 
redundant circuits, three logic paths are examined by voter circuits at 
frequent intervals in the machine. 

Word---A single unit of information in a computer, made up of a 
number of bits. Small microprocessors often have 8-bit words; large 
mainframe computers, up to 64-bit words. 
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Write---The act of placing data in a storage device. 



Appendix II: HAL/S, 
A Real-Time Language for Spaceflight 

HAL/S is a high-level programming language commissioned by 
NASA in the late 1960s to meet the real-time programming needs of 
the Agency. At the time, programs used on board spacecraft were ei­
ther written in assembly languages or in interpreted languages. The 
former make programs difficult to write and maintain, and the latter 
are insufficiently robust and slow. Also, future systems were expected 
to be much larger and more complex, and cost would be moderated by 
the use of a high-level language. 

Since NASA directed the development of the language from the 
start, it influenced the final form it took and specifically how it 
handled the special needs of real-time processing. Statements com­
mon to other high-level languages such as FORTRAN and PL/1 were 
put in HAL. These included decision statements such as IF and loop­
ing statements such as FOR, DO, and WHILE. NASA added to the 
list of statements several specifically designed to create real-time 
processes, such as WAIT, SCHEDULE, PRIORITY, and TER­
MINATE. The objective was to make HAL quickly understandable to 
any programmer who had worked in other languages and to give a 
variety of tools for developing the new real-time programs. To make 
the language more readable by engineers, HAL lists source in such a 
way as to retain traditional notation, with subscripts and superscripts 
in their correct position, as contrasted with other languages, which 
force such notation onto a single level (see Fig. II-1.) 

In addition to new statements, HAL provided for new types of 
program blocks. Two of these specific to real-time processing are 
COMPOOL and TASK. "Compools" are declarations of data to be 
kept in a common data area, thus making the data accessible to more 
than one process at a time. It was expected that several processes 
would be active at once and that many data items would need to be 
dynamically shared. Task blocks are programs nested within larger 
programs that execute as real-time processes dependent on one of the 
most powerful HAL statements, SCHEDULE. 

Scheduling the execution of specific tasks was simplified by the 
syntax of HAL. Fig. II-2 shows the final page of the procedure STAR­
TUP, written for use on the Galileo spacecraft attitude control com­
puters, containing the master scheduling for the entire program. Note 
that the components of the SCHEDULE statement are the task name, 
start time, priority, and frequency. The statement "SCHEDULE 
ERROR0 ON RUPT0 PRIORITY(22);" tells the operating system to 
execute the task ERROR0 when an interrupt named RUPT0 occurs 
with a relative priority of 22. A differ_ent form of the SCHEDULE 
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statement is "SCHEDULE RGl PRIORITY(12), REPEAT EVERY 
6./90," which initiates the task handling the highest frequency rate 
group and repeats it 15 times per second. The statement TER­
MINATE cancels a specified task upon a designated interrupt or time. 

HAL did not have the widespread use NASA had hoped for when 
the language was designed. Although the Shuttle on-board programs 
are exclusively in HAL, the Galileo attitude control system is the only 
other flight project to make significant use of the language. Other 
projects, though instructed to use HAL, found reasons to avoid it, al­
though the Deep Space Network applied it to some ground software. 
In late 1985, NASA announced that the language of choice for the up­
coming Space Station project would be Ada. Commissioned by the 
Department of Defense in the late 1970s to serve as a standard for all 
contractor software development, Ada includes real-time constructs 
pioneered by HAL such as task blocks, scheduling, and common data. 
The announcement made NASA the first nonmilitary agency to use 
Ada. Ada was adopted because commerical compilers were available 
and because the DoD's insistence on its use meant that it would be 
around for a long time. It appears that HAL will be phased out, des­
tined to join the hundreds of other dead computer languages. 

More information on the HAL/S language is contained in the fol­
lowing sources: 

Intermetrics, Inc., HALIS-360 Compiler System Specification, 
Version IR-60-7, February 23, 1981. 

Intermetrics, Inc., HALIS Language Specification, Version 
IR-542, September 1980. 

Intermetrics, Inc., HALIS Programmer's Guide, Version IR-63-5, 
December 1981. 

Ryer, Michael J., Programming in HAL/Slntermetrics, Inc., 
Cambridge, MA, 1978. 
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M: general: 
M: COMPOOL; 
M: DECLARE num vehiclea 
M: STRUCTURE veh atate: 
M: 1 time SCALAR, 
M : 1 poa VECTOR 
M: 1 v VECTOR, 
M: 1 accel VECTOR; 
M: STRUCTURE vehicle: 
M: 1 atatua, 

Figure 11-1 

CONSTANT(lO) ; 

M: 2 nav atate veh_atate-STROCTURE, 
M : 2 maaa SCALAR, 
M: 2 electrical_ayatema BIT(l2), 
M: 2 computer_ayatema BIT(S) 
M: 1 com_info , 
M: 2 pilot_name CBARACTER(30) , 
M: 2 call_lettera CBARACTER(lO), 
M : 2 receive_frequency INTEGER; 
M: DECLARE ahip vehicle-STRUCTURE(num_vehicles) LOCK(l), 
M: coord_trana MATRIX, 
M: possible_collision EVENT LATCHED INITIAL(OFF), 
M: nav_cycle EVENT, 
M: guid_cycle EVENt; 
M: CLOSE general; 

M: read accel: 
M: PROCEDURE ASSIGN(loc) REENTRANT; 
M: DECLARE loc veh state-STRUCTURE(num_vehicles) ; 
M: DECLARE a BIT(30) AUTOMATIC; 
M: DO FOR TEMPORARY veh = l TO num_vehicles; 
E: 
M: CALL get_accel(veh) ASSIGN(a); 
M: loo.time RUNTIME; 
S: veh 
E: * 

APPENDIX II: BALIS 395 

M: loc.accel coord trans VECTOR(SCALAR(a ,a ,a )); 
S: veh; 10 AT l 10 AT 1 10 AT 21 
M: END; 
M: CLOSE read_accel; 

M: gnd_startup: 
M: PROGRAM; 
M: STRUCTURE state: 
M: l time SCALAR, 
M: 1 poa VECTOR, 
M: l v VECTOR, 
M: 1 accel VECTOR; 
M: DECLARE old_time ARRAY(num_vehiclea) SCALAR, 
M: state state-STRUCTURE(num_vehiclea), 
M: old_accel ARRAY(num_vehicles) VECTOR, 
M: t ARRAY(num_vehiclea) SCALAR; 
M: DECLARE collision check FUNCTION BOOLEAN; 
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M: CALL Kalman; 
M: CALL new_state ; 
E : 

Figure 11-1 (Continued) 

M: IF collision check THEN 
M: DO; 
C: inform all interested processes of collision threat . 
M: SET possible_collision; 
M: SCHEDULE fast_nav IN 2 PRIORITY(35), 
M: REPEAT EVERY 2 UNTIL 10 FLOOR(RUNTIME / 10) + 9 ; 
M: END ; 
M: ELSE 
M: RESET possible_collision ; 

M: fast nav : 
M: TASK; /*perform a fast intermediate update of the state vectors*/ 
M: [t] = {time} - [old_time] ; 
E : + 
M: CALL read_accel ASSIGN({state}); 
C : 
E : 

Update the entire array of position vectors and velocity vectors . 
2 

M: {pos} {pos} + {v} [t] + . 25 ({accel} +[old_accel]) [t] ; 
E : 
M: {v) = {v) + . 5 ({accel} + [old_accel)) [t]; 
M: CALL new_state ; 
M: CLOSE fast_nav ; 

M: new state: 
M: PROCEDURE ; / *internal procure to update the state vectors*/ 
M: [old_time] = {time} ; 
E : 
M: [old_accel] {accel} ; 

M: UPDATE ; 
E : 

/ *use update block to access shared data incontrolled manner*/ 

+ + 
M: {ship . status . nav_state} = {state} ; 
M: CLOSE ; 

M: collision check: 
M: FUNCTION BOOLEAN ; / *check if any pair o f vehicles i s too clo se together* / 
M: DELCARE too close SCALAR INITIAL(SOOO) ; 
M: DO FOR TEMPORARY veh = 1 TO num-vehicles ; 
M: DO FOR TEMPORARY other= veh 1 TO num_vehicles ; 
E : 
M: 
S : 
M: 
M: 

IF ABVAL(pos 
veh ; 

RETURN TRUE ; 
END ; 

M: END ; 
M: RETURN FALSE ; 
M: CLOSE collision check; 

M: Kalman : 

- pos < t oo close THEN 
other ; 

M: PROCEDURE; 
C : 

/ *perform a sophisticated but slow navigation algorithm*/ 

C : 
C: 
M: CLOSE Kalman ; 

M: CLOSE nav; 

ORIGL JAL _ AGE IS 

OF: POOR QUALITY 
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C 

C 

C 

Figure 11-2 

SCHEDULE THE ERROR INTERRUPT SERVICE ROUTINE, 'RTI OPT' . 

C 112 CORRECTION #12 
C 113 PROB 76 
C 

C 

C 

C 

C 

C 

C 

SCHEDULE ERRORF ON FAILURE PRIORITY(23); 
SCHEDULE ERRORO ON ROPTO PRIORITY(22); 
SCHEDULE ERRORl ON RUPTl PRIORITY(21); 

SCHEDULE THE RTI INTERRUPT SERVICE ROUTINE, 'RTI OPT' . 

SCHEDULE RTI_ROPT ON ROPT4 PRIORITY(20); 

SCHEDULE THE STAR INTERRUPT SERVICE ROUTINE, 'STAR ROPT' . 

SCHEDULE STAR ROPT ON ROPT5 PRIORITY(l.6); 
C 
C SCHEDULE TBE 33.33 MS. RATE-GROUP, 'RGO' 
C 

C ITB PROB #128: TEMPORARY CHANGE FOR RGO 
C FSW #210: 33 MSEC RATE GROUP AND SAFERATE VALUE 

SCHEDULE RGO PRIORITY(l3), REPEAT EVERY 3/90 
C 

C 

C 

C 

C 

C 

SCHEDULE THE 66.66 MS. RATE-GROUP, 'RGI' 

SCHEDULE RGI PRIORITY ( 12) , REPEAT EVERY 6 . / 90 

SCHEDULE THE 133.3 MS. RATE-GROUP, 'RG2' 

SCHEDULE RG2 PRIORITY(ll), REPEAT EVERY 12./90.; 
C 

C 

C 

SCHEDULE THE 666.67 MS . RATE-GROUP, 'RG3' 

SCHEDULE RG3 PRIORITY(8), REPEAT EVERY 2./3 . ; 
C 

C 

C 
C 

SCHEDULE THE RAM CHECKSUM FOCTION TO RON CONTINUOUSLY 
(ONLY FOR AIAC NOT FOR FONSIM) 

A SCHEDULE CHKSOM PRIORTY(l); 
CLOSE STARTUP; 

02880000 
02890000 
02900000 
02910000 
02911000 
02912000 
02920000 
02930000 
02940000 
02950000 
02960000 
02970000 
02980000 
02990000 
03000000 
03010000 
03020000 
03040000 
03050000 
03051000 
03052003 
03060003 
03070000 
03090000 
03100000 
03110000 

03120000 
03130000 
03140000 
03150000 

03160000 
03170000 
03180000 
03190000 
03200000 
03210000 
03220000 
03230000 
03240000 



Appendix III: GOAL, 
A Language for Launch Processing 

GOAL is a high-level language that uses the terminology of test en­
gineers to write tests and procedures to certify that a Shuttle vehicle is 
ready for launch. When the first automated preflight checkout 
programs were written in the mid- l 960s, Marshall Space Flight Cen­
ter originated ATOLL, a special high-level language for use in prepar­
ing test procedures. GOAL superseded that language in the early 
1970s. 

Fig. III-1 is a segment of a GOAL program used to safe various 
spacecraft systems if a NOGO condition causes the final countdown 
to be suspended. Note that names of data items held in common in the 
Launch Processing System appear within brackets, <>, and data local 
to the program is named between parentheses, (). Statements familiar 
to high-level programming language users, such as READ, IF-THEN­
ELSE, and LET, have similar functions in GOAL. Additional state­
ments, such as VERIFY, make it possible for the engineers to test 
whether valves or switches are set properly or whether a value is 
within a specified range. SET permits switches to be activated. 

Although seemingly highly structured, GOAL allows engineers to 
frequently repeat the most common error of their peers using 
FORTRAN: excessive unconditional jumps such as the one on line 
2030, making it difficult for someone to read and modify the program. 
Whereas in older versions of FORTRAN it was necessary to create 
structures such as those found between lines 2026 and 2039 to handle 
multiple statements in the THEN and ELSE blocks of a selection 
structure, later versions of the language and GOAL itself (see lines 
1980 through 1988) permit multiple lines of code to be included 
within the blocks. Therefore, the GOTO statements are often used 
less to create structure than to provide a "quick fix" when the logic of 
the program needs expanding. 

GOAL is used both at the Kennedy Space Center and Vandenberg 
Air Force Base in launch processing systems and is expected to last 
for the duration of the Shuttle program. 

Further information about GOAL is contained in the following 
documents: 

IBM Corporation, Launch Processing System Checkout, Control 
and Monitor Subsystem Detailed Software Design Specifications, 
Book 2, Part 1: GOAL Language Processor, KSC-LPS-IB-070-2, pt. 
1, release S33, Cape Canaveral, FL, June 3, 1983. 

IBM Corporation, Launch Processing System Checkout, Control, 
and Monitor Subsystem: GOAL On-Board Inte1face Language , KSC­
LPS-OP-033-4, release S33, Cape Canaveral, FL, April 27, 1983. 



400 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE 

RECORD 
1951 
1952 
1953 
1954 
1955 
1956 
1957 
1958 
1959 
1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 
2000 

Figure III-I 
GOAL LANGUAGE PROCESSOR SOURCE INPUT LISTING 

SOURCE RECORD 

SEND INTEGER <N012INTGR> TO CONSOLE <GOXARM>; 

$ SEND NOTIFICATION OF "OK TO START GOX ARM EXTEND" 
VIA REMOTE COMM INTERRUPTS TO ECS CONSOLE . $ 

RECORD TEXT (BFS PASS LOB 
LINE 5 COLUMN 46 INVERT WHITE; 

READ <NGPCLMCNFG>, 
<V9802408Cl>, 

) TO <PAGE-B> 

<V90Q8001Cl> AND SAVE AS (LOB), (BFS), (PASS); 

VERIFY <SGPCAREAl> IS ON AND <SGPCFIDAl> = 21, 
BEGIN SEQUENCE; 

IF (PASS) = 102, 
RECORD (PASS) TO <PAGE-B> LINE 5 COLUMN 60 INVERT RED; 

ELSE 
RECORD (PASS) TO <PAGE-B> LINE 5 COLUMN 60 INVERT GREEN; 

END SEQUENCE; 

ELSE 
RECORD (PASS) TO <PAGE-B> LINE 5 COLUMN 60 INVERT WHITE; 

VERIFY <SGPCAREA2> IS ON AND <AGPCFIDA2 IS BETWEEN 12 AND 13, 
BEGIN SEQUENCE; 

IF (BFS) =102, 
BEGIN SEQUENCE; 

ASSIGN (BFS SAFING) = ON; 
RECORD (BFS) TO <PAGE-B> LINE 5 COLUMN 50 INVERT RED; 

END SEQUENCE; 
ELSE 

RECORD (BFS) TO <PAGE-B> LINE 5 COLUMN 50 INVERT GREEN; 

END SEQUENCE; 

ELSE RECORD (BFS) TO <PAGE-B> LINE 5 COLOMN 50 INVERT WHITE; 

RECORD (LOB) TO <PAGE-B> LINE 5 COLOMN 69 INVERT GREEN; 

INHIBIT PROGRAM LEVEL INTERRUPT CHECK FOR <PFPK2> 
<PFPK3> 
<PFPK5>; 

LET (APONOGO) O; 



RECORD 

2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 
2010 
2011 
2012 
2013 
2014 
2015 
2016 
2017 
2018 
2019 
2020 
2021 
2022 
2023 
2024 
2025 
2026 
2027 
2028 
2029 
2030 
2031 
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Figure 111-1 (Continued) 
GOAL PROCESSOR SOURCE INPUT LISTING 

SOURCE RECORD 

IF (GLS EVENT COMPLETED) IS GREATER TRAN 
(ET SRB RSS IGN SA TO ARM) $ -04 : 58 $ 
THEN GO TO STEP 5150; $ PRIMARY SAFING $ 

$ IMMEDIATE SAFING OF 
SRB IGN S/A DEVICE REQUIRED?$ 

IF (GLS EVENT COMPLETED) IS GREATER THAN 
(FWD CMD DCDR PWR OFF) $ -10 SEC$ 

THEN GO TO STEP 5103; 

LET (C3ERR) = O; 

VERIFY <N03IS091E> IS ON, GO TO STEP 5103; 

RECORD TEXT (CMD DECODERS PWR ON) 
TO <PAGE-B> 
LINE 5 COLUMN O YELLOW; 

SET (PWR OP AFT CMD DECODER) FUNCTIONS TO ON; 

DELAY 0.5 SEC ; 

SET (PWR OP FWD CMD DECODER) FUNCTIONS TO ON; 

IF (C3ERR) IS NOT EQUAL TOO THEN GO TO STEP 5102 ; 

MODIFY <PAGE-B> LINE 5 COLUMN O TO COLUMN 22 GREEN ,: 

GO TO STEP 5103 ; 

2032 STEP5102 RECORD (CMDERR GSE) 
2033 TO <PAGE-B> 
2034 LINE 5 COLUMN 23 RED ; 
2035 
2036 STEP5103 IF (GLS EVENT COMPLETED ) IS GREATER TRAN 
2037 (FWD MDM LOCKOUT) $ -35 SEC$ 
2038 THEN GO TO STEP 5107 ; 
2039 
2040 VERIFY <N03IS100E> IS ON , GO TO STEP 5107 ; 
2041 
2042 
2043 
2044 
2045 
2046 
2047 
2048 
2049 
2050 

LET (3CERR) = O; 

RECORD TEXT (UNLOCK SRB FWD MDMS) 
TO <PAGE-B> 
LINE 6 COLUMN O YELLOW; 

UNLOCK SRB MOM FOR <B75K3065XL> CRITICAL; 

UNLOCK SRB MDM FOR <B75K3066XL> CRITICAL; 



Appendix IV 

Mariner Mars 1969 

Flight Program 



Figure IV-1 

This segment of a Mariner programmable sequencer flight program is given 
as an example of the sort of flexiblility gained by adding a memory to the 
system. The first segment, the Executive, is only seven lines, yet it 
essentially controlled the software. The remaining code demonstrates a 
typical subroutine. The entire length of this program was 128 lines. 

LOC OPC A/TDGII 8/EVBNT sncs OPC 

*CON l!IXECUT:IVE ROUTINE 
*COM 

0 CLJ 35 102 EXCO CLJ 
1 DSJ 126 104 BXCl DSJ 

2 DHJ 125 31 l!XC2 DHJ 
3 DHJ 11 8 l!XC3 DHJ 
4 CLJ 256 12 ICCC4 CLJ 
5 CLJ 2 18 ICCC5 CLJ 
6 HLT 368 4811 1!:XC6 HLT 

*COX 
*COM l!:lfD 01!' CR'O'I SI!: CHAIN 
*CON 

7 ROJ 2 3 l!:lfDC ROJ 
*CON 
*CON c:c=Ic S'O'BROtJTIHB l!'OR Y1 ICVBHTS 

*CON 
8 TAB 10 11 CYOl TAB 
II ONJ 0 4 CY02 ONJ 

10 OJI.TA **** 288 CY03 DATA 
11 OJI.TA **** 288 CY04 DATA 

*COM 
*CON 1!:NABLII: l!'JI.R 1!:NCO'O'HTER*l!:NTRY PT. 
*COX 

20 JI.DD 48 112 on:o JI.DD 
21 JI.DD 27 1011 on:l JI.DD 
22 TAB 211 711 TAB 
23 TAB 30 84 TAB 
24 CLJ 16 20 CYl!:0 CLJ 

25 DJI.J 71 26 CYl!:2 DJI.J 
26 DJI.J 611 68 CYB3 DJI.J 
27 OJI.TA 0 8 on:3 DATA 
28 OJI.TA 5 0 on:4 DATA 
211 =J **** 43 ons CTJ 
30 OJI.TA **** 451 Ol!'J:6 DATA 

*COM 

A/TDII!: 8/ZVENT 

36 REQJC 

0V ROJl 
LCJll CROl 
CY04 CYOl 

256 RTOl 
2 RDIN 

368 4811 

EXC2 l!:XC3 

CY03 CY04 
0 l!'XC4 

l!'ILL 0024 
l!'ILL 0024 

IS CYl!:O 

Ol!'E4 CZll 
01!'1!:3 CZ14 
01!'1!:5 CGC6 

01!'1!:6 CGD4 
16 01!'1!:0 

CTR4 CYl!:3 
=R2 CTRl 

0 0200 
5 0 000 
l!'ILL ROJO 
l!'ILL 3007 

7 WORDS) 

( 11 

ABORT+ltXTRJI. l!'B+NAA TESTS, SI.BlfS 
OV,K/C,OPT R TUT, TV PIC CTR 
CR'O'ISB AND POST BNCO'O'NTl!:R BVBN"?S 
Yl CYCLIC GBNBRJI.TOR 
RXAOOOT Tll:XT, NJ' NOif SIJUf JEVKNTS 
Tl!.ST l!'OR l!NltNT ADDRESS REA.DIN 
!:ND 01!' SCAif 

END CR'O'ISII: Sll:QOUCII: 

&NTRY----Rl!:LOJI.D CYCLIC TIKI!: 
RET'O'RH TO l!:DC'O'TIVB PROGRAM 
CYCLIC TIKI!: STORA.GB 
CO'O'NTING LOCATION l!'OR Ql ENENLlt 

WORDS) 

JI.DD 5HRS TO TIMS 01!' Nl(2) 
JI.DD 1!'3 l!:Vl!:NT TO CZ14 EVENT TIKB 
MOD CYCLII: Gl!!N l!'OR OPT R(CTR) 
MOD CYCLII: Gll:N l!'OR OPT 1!'11:(ZVEN'l') 
TEST l!'OR OPTIONAL 1!'11:(DC-32) 
'O'PDATII: CYCLII: G&NERJI.TOR (1!:VBNT) 
'O'PDATII: CYCLII: <ZNl!:RJI.TOR ( COIJNTl!:R) 
STORA.CZ l!'OR 1!'3 l!NltNT (OPTION) 
TIME STORAGII: l!'OR OPTIONAL Fl: SHl!'T 
CO'O'NT l!'OR OPTIONAL R PICTIJ1Ul!S 

OJI.TA l!'OR OPTIONAL R PICT'O'Rl!:S 
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