
NASA Contractor Report 182505

Computers in Spaceflight

The NASA Experience

James E. Tomayko

CONTRACT NASW-3714
MARCH 1988

(NASA-CR-182505) COlfPUTERS IN S·PACEPLlGHT:
THE NASA EXPERIENCE (Wichita State Univ.)
409 P. LIMIT USGA

N/\5/\

X88-10180 -

Unclas
B 3 /6 0 : 0 1 30 1 86

NASA Contractor Report 182505

Computers in Spaceflight

The NASA Experience

James E. Tomayko

Wichita State University
Wichita, Kansas

Prepared for
National Aeronautics and Space Administration
under Contract NASW-3714

N/\51\
National Aeronautics
and Space Administration

Scientific and Technical
Information Division

1988

Table of Contents

Foreword vii

Preface ix

Acknowledgements xi

Computing and Spaceflight: An Introduction 1

Part I: Manned Spacecraft Computers

Introduction to Part One 7

Chapter One:
The Gemini Digital Computer: First Machine in Orbit.. 9

Chapter Two:
Computers On Board The Apollo Spacecraft.. 27

Chapter Three:
The Skylab Computer System .. 65

Chapter Four:
Computers in the Space Shuttle Avionics System 85

Part II: Computers On Board Unmanned Spacecraft

Introduction to Part Two ... 135

Chapter Five:
From Sequencers to Computers: Exploring the Moon
and the Inner Planets ... 139

Chapter Six:
Distributed Computing On Board Voyager and Galileo 171

Patt Three: Ground Based Computers for Space Flight Operations

Introduction to Part Three 205

Chapter Seven:
The Evolution of Automated Launch Processing 207

Chapter Eight:
Computers in Mission Control. 241

Chapter Nine:
Making New Reality: Computers in Simulations
and Image Processing ... 269

Epilogue:
Themes in NASA's Computing Experience 299

Source Notes 303

Bibliographic Note 363

Appendix I: Glossary of Computer Terms 377

Appendix II: HAL/S, A Real-Time Language for Space Flight.. 393

Appendix ill: GOAL: A Language for Launch Processing 399

Appendix IV: Mariner Mars 1969 Flight Program 403

Foreword

The Editors have taken the unusual step of devoting an entire Supple­
ment volume of the Encyclopedia to a single topic: "Computers in
Spaceflight: the NASA Experience." The reason will hopefully be­
come apparent upon reading this volume. NASA's use of computer
technology has encompassed a long period starting in 1958. During
this period, hardware and software developments in the computer field
were progressing through successive generations. A review of
spaceflight applications of these developments offers a panoramic in­
sight into almost two decades of change in the computer industry and
into NASA's role.

NASA's role is summarized at the conclusion of this volume:
"NASA never asked for anything that could not be done with

the current technology. But in response, the computer industry
sometimes pushed itself just a little in a number of areas. Just a
little better software development practices made onboard
software safe, just a little better networking made the Launch
Processing System more efficient, just a little better operating
system made mission control easier, just a little better chip makes
image processing faster. NASA did not push the state of the art,
but nudged it enough times to make a difference."

This report could not be compressed to typical article size without
destroying its usefulness and interest. We trust that the readers will
find this work to be as fascinating as did the editors.

Allen Kent

James G. Williams

Preface

NASA's use of computers in spaceflight operations is a very impor­
tant and large topic. Any attempt to tell the complete story of the
people, calculating machines, and computer programs involved in
spaceflight would fill many volumes, if, in fact, it could be told at all.
The book you are about to read is a subset of all that could be said.
This is the explanation of why some things appear here and others do
not, and why the book is organized as it is.

When Monte Wright, then director of the NASA History Office,
and I first discussed the outline for this project in 1981 and 1982, it
seemed that he thought NASA had had a terrific impact on the
development of computer technology. Many others shared his view,
reasoning that since NASA used computers more extensively than al­
most any other organization, the Agency must have prodded the com­
puter industry by making challenge after challenge to its computer
contractors. One good reason, then, for writing a book on NASA's use
of computers was to study the impact of NASA's demands. At the
time, I did not know enough to hypothesize one way or another.

Obviously, the book required limits. Since the use of computers
in administrative work paralleled that of private industry, and since
the chief technological advances occurred in the flight program, we
agreed to limit the project to an examination of computer systems
used in actual spaceflight or in close support of it. Computers and sys­
tems used in administration and in aeronautical and other research not
directly related to spaceflight were ignored.

Despite these restrictions, the amount of material and the number
of systems involved remained enormous. Any thought of a
chronological history had to be abandoned, because keeping the
various threads running in order and in parallel was too difficult. In­
stead, I wrote a topical history, each chapter dealing with either a
specific program, such as the Gemini or Apollo onboard computers, or
a closely related set of systems, such as launch processing or mission
control. This episodic organization made it possible to adapt the writ­
ing of the book to the present state of the subject area, and also to
NASA's structure. One disadvantage to this approach is that, at first
glance, the book has the appearance of a serial description of systems
with no obvious relationship to one another. In fact, the decision to or­
der the three major parts of the book as they are was strictly arbitrary.
And yet, this organization actually reflects reality. Nearly all the sys­
tems described here were developed independently, by different
teams, at different sites. Continuity occured only when a series of sys­
tems were built under the auspices of a single center, such as the
Gemini, Apollo, and Shuttle systems through the Johnson Space

x COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Flight Center. In the rare instances that some technological exchange
occurred, it is highlighted. Despite the independent development of
the various systems, some common problems and experiences
provided threads with which to bind the chapters. These are presented
in the Introduction and developed throughout the book where they
apply.

By nature, the subject of computers is technically intensive. Many
times things must be discussed that require concentration on the
design and engineering attributes of a system. Often the main charac­
ters in this history are the machines themselves, and not their creators.
A glossary of computer terms and frequent explanatory material in the
text should be enough to help those not familiar with computers to un­
derstand the story. Additionally, technical material too important to
be left out of this history but not crucial to following the flow of
events is set apart in boxes. I have retained the technical material in an
attempt to fulfill the second objective of the NASA internal history
program:

Thoughtful study of NASA history can help agency managers
accomplish the missions assigned to the agency. Understanding
NASA's past aids in understanding its present situation and il­
luminates possible future directions.

Hopefully, my choice of the level of the material does not interfere
with the first objective, which is the wide "dissemination of infor­
mation concerning its activities and the results thereof." I believe that
at this time a book on this subject that is more expository than in­
terpretive in nature is of greater use to the agency and the historical
community. No one before me had waded through this material, there­
fore, much of my job was the identification of the best sources and the
recording of the most useful experiences. Now that this groundwork
has been done, more selective and incisive histories can be written.

One final note: often in corporations and government agencies in­
dividual achievement is buried within the institution. NASA is no ex­
ception. It was exceedingly difficult to get people both in the agency
and in contractor organizations to identify who did what, or even take
personal credit where appropriate. Wherever I was able to assign
responsibility, I did so, but, unfortunately, those instances seem less
common than the times I had to credit the development to the institu­
tion. Hopefully those who are not mentioned but should have been can
take pride that their collective achivements are now part of history.

James E. Tomayko

Pittsburgh, Pennsylvania

April, 1987

Acknowledgements

No author can fool himself into thinking that his work is entirely of
his own making. In a project of this size and length, many people,
both within NASA and outside it, contributed mightily or it would
never have been either finished or of its present quality.

In the NASA History Office, Sylvia D. Fries as Director was a
great help not only in accommodating several schedule changes but in
actively critiquing early chapters. Her best management decision was
assigning Michal McMahon as the editor. He treated the volume as his
own and spent many hours turning turgidity into something resem­
bling smooth text. Monte Wright, former Director, is to be thanked for
granting the contract in the first place, and Edward C. Ezell, for his
help in Houston during the proposal phase when he was head of the
History Office at the Johnson Space Center.

At The Wichita State University, my department chair, Mary
Edgington, tried to keep excessive demands from overwhelming me
during the 3 years I was funded under the contract. Lawrence Smith of
the research office took care of the paperwork. Five assistants helped
at one time or another in the research or writing phase. Dana Hamit
acted as keeper of the bibliography for a year, and created the initial
data bases I used while writing. Kim Allen took over from her and
prepared the final version of the notes from the first three chapters, as
well as acting as first editor. Linda Manfull brought the bibliographic
data base into final shape and did the notes for Chapter Four. Maria
Dreisziger helped with the notes for Chapters Five and Six, and iden­
tified terms for the glossary. Tamera Klausmeyer typed the notes for
Chapters Seven through Nine, as well as finishing identifying terms
for the glossary.

In my travels during the research phase I was privileged to meet
and work with a large number of NASA and contractor personnel.
Those listed in the bibliographic note as granting interviews usually
shared rare materials from their files as well. Some were asked to do
technical reviews of individual chapters or sections of chapters to help
eliminate as many errors of fact and interpretation as possible. Those
who did this double duty included Bill Bailey, Ed Blizzard, Frank
Byrne, Bill Chubb, Sam Deese, Dwain Deets, Bob Ernull, Jack Gar­
man, Ray Hartenstein, Helmut Hoelzer, Carl Johnson, Ted Kopf, Ken
Mansfield, Russ Mattox, Ann Merwarth, Bob Nathan, Henry Paul,
Dick Rice, Bill Stewart, Tom Taylor, Bill Tindall, Chuck Trevathan,
Paul Westmoreland, John Wooddell, and John Young.

At each site individuals opened doors for me and found office
space where none was available. I want to especially thank Wanda
Thrower of Johnson Space Center, Bob Sheppard of Marshall Space

xii COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Flight Center, Harriet Brown and Mike Konjevich of Kennedy Space
Center, and Andrew Danni of the Jet Propulsion Laboratory for their
hospitality. Frank Penovich of Kennedy was especially helpful in ob­
taining a tour of the Shuttle facilities.

After the termination of the actual contract, I spent a year and a
half at the Software Engineering Institute (SEI) located at Carnegie­
Mellon University. The SEI was kind enough to permit use of their
equipment to assist in preparing the final drafts of the manuscript. My
assistants Katherine Harvey and Suzanne Woolf did yeoman work
editing and formatting the text for laser printing.

My thanks also goes to my wife, who lovingly never let me give
up.

A final, required, word from our sponsor: This work was mostly
done under NASA Contract NASW-3714.

Computing and Spaceflight:

An Introduction

2 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

When the National Aeronautics and Space Administration came into
existence in 1958, the stereotypical computer was the "UNIVAC," a
collection of spinning tape drives, noisy printers, and featureless
boxes, filling a house-sized room. Expensive to purchase and operate,
the giant computer needed a small army of technicians in constant at­
tendance to keep it running. Within a decade and a half, NASA had
one of the world's largest collections of such monster computers, scat­
tered in each of its centers. Moreover, to the amazement of anyone
who knew the computer field in 1958, NASA also flew computers in
orbit, to the moon, and to Mars, the latter machines running un­
attended for months on end. Within another 10 years the giant ground­
based mainframe would be supplanted by clusters of medium-sized
computers in spaceflight operations, and the single on-board computer
would be replaced by multiple machines. These remarkable changes
mirror developments in the commercial arena. Where there were giant
computers, small computers now do similar tasks. Where there were
no computers, such as on aircraft or in automobiles, computers now
ride along. Where once the only solution was the large, centralized
computing center, distributed computers now share the load.

Since NASA is well known as an extensive user of computers­
mainly because spaceflight would not be possible without them­
there is a common sense that at least part of the reason for the rapid
growth and innovation in the computer industry is that NASA has
served as a main driver due to its requirements. Actually, the situation
is not so straightforward. In most cases, because of the need for
reliability and safety, NASA deliberately sought to use proven equip­
ment and techniques. Thus, the agency often found itself in the posi­
tion of having to seek computer solutions that were behind the state of
the art by flight time. However, in other cases, some use of nearly
leading edge technology existed, mostly for ground systems, but oc­
casionally when no extensively proven equipment or techniques were
adequate in a flight situation. This was especially true on unmanned
spacecraft, because the absence of human pilots allowed greater
chances to be taken. Thus generalizations cannot be made, other than
that there was no conscious attempt on the part of NASA in its flight
programs to improve the technology of computing. Any ways in
which NASA contributed to the development of computer techniques
were side effects of specific requirements.

NASA uses computers on the ground and in manned and un­
manned spacecraft. These three areas have quite different require­
ments, and the nature of the tasks assigned to them resulted in varying
types of computers and software. Thus, the impact of NASA on com­
puting differs in extent as a result of the separate requirements for
each field of computer use, which is one reason why the three fields
are considered in separate parts of this volume.

Computers are an integral part of all current spacecraft. Today
they are used for guidance and navigation functions such as rendez-

COMPUTING AND SPACEFLIGHT: AN INTRODUCTION 3

vous, re-entry, and mid-course corrections, as well as for system
management functions, data formatting, and attitude control.
However, Mercury, the first manned spacecraft, did not carry a com­
puter. Fifteen years of unmanned earth orbital and deep space mis­
sions were carried out without general-purpose computers on board.
Yet now, the manned Shuttle and the unmanned Galileo spacecraft
simply could not function without computers. In fact, both carry many
computers, not just one. This transition has made it possible for cur­
rent spacecraft to be more versatile. Increased versatility is the result
of the power of software to change the abilities of the computer in
which it resides and, by extension, the hardware that it controls. As
missions change and become more complex, using software to adjust
for the changes is much cheaper and faster than changing the
hardware.

On-board computers and ground-based computers store data and
do their calculations in the same way, but they handle processes and
input and output differently. A typical ground computer of the early
1960s, when the first computers flew on manned spacecraft, would
process programs one at a time, right after each other. This sort of
processing, in which the entire program must be loaded into memory
and data must be available in discrete form, is called "batch." Over
time, computer systems were changed to make them more efficient
than batch computing allowed. In a batch process, if the computer is
doing a calculation, the input and output devices are idle. If it is using
a peripheral device, the calculating circuits are not used. One way to
improve on efficiency of the batch process would be to develop an
operating system for computers that could permit one program to use
resources currently unneeded by another program. Another method is
to limit each program to a fraction of a second running time before
going on to the next program, running it for a fraction and then going
on until the original program gets picked up again. This cyclic, time­
sliced method permits many users to be connected to the computer or
many jobs to run on the computer in such a way that it appears that
the machine is processing one at a time. The computer is so fast that
no one notices that his or her job is being done in small segments.
Each of these methods presupposes that data for the program are
available and processed, and then the program stops. So even though
lots more programs are run through the system in a period of time,
each is still handled as a batch process. When the computer runs
through all the processes waiting for execution, it stands idle.

Spacecraft computers operate in a radically different processing
environment. They are in "real-time" mode, handling essentially
asynchronous inputs and outputs and continuous processing, similar to
a telephone operator who does not know on which line the next call
will come. For example, computers used for controlling the descend­
ing Shuttle can hardly process commands to the aerodynamic surfaces
in batch mode. The spacecraft would go out of control or at least lose

4 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

track of where it was if data were only utilized in small bunches. The
requirement for real-time processing leads to other requirements for
spacecraft computers not normally found on earth-based systems.
Software must not "crash" or have an abnormal end. If the software
stops, the vehicle ceases to be controllable. Hardware must also be
highly reliable, or reliability can be obtained through redundancy. If
the latter course is chosen, overhead in the form of redundancy
management hardware and software will be high. Memories must be
nonvolatile in most applications, so if power is lost then the program
in storage will not disappear. Since modern semiconductor, random­
access memories are usually volatile, older technology memories such
as ferrite core continue to be used on spacecraft. Weight, size and
power are other considerations, just as with all components on a
spacecraft.

Even though both manned and unmanned spacecraft have similar
requirements, until very recently they could not use the same com­
puters. No computer with sufficient calculating capability to control
the Shuttle flew on an unmanned spacecraft. Conversely, the Shuttle
computers are so large and power hungry they would overwhelm the
power supply of a deep space probe. Modem powerful microproces­
sors make it possible to overcome these deficiencies, but systems
described herein predate most microprocessor technology. Also, com­
puters on manned spacecraft are oriented toward relatively short-term
missions lasting up to a few weeks (which will change in the Space
Station and Mars Mission eras). Computers on unmanned earth orbital
missions and deep space probes need to run reliably for years, yet
must have low power requirements. Even though both need to be
trustworthy, the different mission conditions dictate how reliability is
to be attained.

NASA's challenge in the 1960s and 1970s was to develop com­
puter systems for spacecraft that could survive the stress of a rocket
launch, operate in the space environment, and thus provide payloads
with the increased power and sophistication needed to achieve in­
creasingly ambitious mission objectives. NASA found itself both en­
couraging new technology and adapting proven equipment. In manned
spacecraft the tendency was to use what was available. On unmanned
spacecraft innovation had a freer hand.

In contrast, NASA's ground computer systems reflected the need
for large-scale data processing similar to many commercial applica­
tions, but in a real-time environment, until recently not normally a re­
quirement of business computing. Therefore, commercially available
computers could be procured for most of the ground-based processing,
with any innovation confined to software that handled the real-time
needs. Preflight checkout, mission control , simulations, and image
processing all have used varying combinations of standard mainframe
and minicomputers. So NASA's impact on computing driven by
ground support requirements was largely in the area of operating sys-

COMPUTING AND SPACEFLIGHT: AN INTRODUCTIONS

terns and other software and not as much in hardware, whereas many
of the on-board computers had to be custom built. Some of the
software innovations needed on the ground have naturally had greater
impact on the wider world than those made for on-board computers.
The techniques of software development learned by NASA while do­
ing both flight and support programming have advanced the state of
the art of software engineering, which comprise the management and
technical principles that make it possible to build large, reliable
software systems.

Even though the requirements and solutions to computing
problems in the manned on-board, unmanned on-board, and ground
arenas are different, several common themes bind the three together.
In nearly all cases, NASA managers failed to adequately allow for
system growth, often causing expensive software and hardware ad­
ditions to be made to meet scaled-down objectives. More positively,
recent developments are designed to enable proven computer systems
and techniques to fly or support more than one mission, reducing the
costs associated with customized solutions. Also, there is a continuing
reliance on multiple smaller computers operating in a network as op­
posed to large single computers, enabling task distribution and more
economical means of ensuring reliability. This last trend also under­
scores the dependence on communications that has characterized
NASA's far-flung flight operations since the beginning. These themes
appear in varying strengths throughout the stories of the individual
projects.

Regardless of NASA 's impact on computing, its many uses of
computing technology from 1958 on provide valuable examples of the
growth in power, diversity, and effectiveness of the applications of
computers. The late 1950s marked the beginning of the computer in­
dustry as an indispensable contributor to American science and busi­
ness. NASA's insatiable desire to make the most of what the industry
could offer resulted in many interesting and innovative applications of
the ever-improving technology of computing.

Figure A: The first manned spaceflight program to use computers continuously in all
mission phases was Apollo. Here mission controllers watch computer-driven displays
while astronauts explore the lunar surface after a computer-controlled descent.

PRECED ING PAGE BLANK NOT FILMED

Part One:

Manned Spacecraft Computers

In the first 25 years of its existence, NASA conducted five manned
spaceflight programs: Mercury, Gemini, Apollo, Skylab, and Shuttle.
The latter four programs produced spacecraft that had on-board digital
computers. The Gemini computer was a single unit dedicated to
guidance and navigation functions. Apollo used computers in the
command module and lunar excursion module, again primarily for
guidance and navigation. Skylab had a dual computer system for at­
titude control of the laboratory and pointing of the solar telescope.
NASA's Space Shuttle is the most computerized spacecraft built to
date, with five general-purpose computers as the heart of the avionics
system and twin computers on each of the main engines. The Shuttle
computers dominate all checkout, guidance, navigation, systems
management, payload, and powered flight functions.

NASA's manned spacecraft computers are characterized by in­
creasing power and complexity. Without them, the rendezvous tech­
niques developed in the Gemini program, the complex mission
profiles followed in Apollo, the survival of the damaged Skylab, and
the reliability of the Shuttle avionics system would not have been pos­
sible.

When NASA began to develop systems for manned spacecraft,
general-purpose computers small and powerful enough to meet the re­
quirements did not exist. Their development involved both commer­
cial and academic organizations in repackaging computer technology
for spaceflight.

1

The Gemini Computer:

First Machine in Space

10 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Project Mercury was America's first man-in-space effort. The
McDonnell-Douglas Corporation developed the Mercury spacecraft in
the familiar bell shape. It was barely large enough for its single oc­
cupant and had no independent maneuvering capability save attitude
control jets. Its orbital path was completely dependent on the accuracy
of the guidance of the Atlas booster rocket. Re-entry was calculated
by a real-time computing center on the ground, with retrofire times
and firing attitude transmitted to the spacecraft while in flight. There­
fore, it was unnecessary for the Mercury spacecraft to have a com­
puter, as all functions required for its limited flight objectives were
handled by other systems.

Gemini both continued the objectives of the Mercury program
and served as a test bed for the development of rendezvous techniques
critical to lunar missions 1. At first glance, the Mercury and Gemini
spacecraft are quite similar. They share the bell shape and other
characteristics, partially because Gemini was designed as an enlarged
Mercury and because the prime contractor was the same for both craft.
The obvious difference is the presence of a second crew member and
an orbital maneuvering system attached to the rear of the main cabin.
The presence of a second crewman meant that more instrumentation
could be placed in Gemini and that more experiments could be per­
formed, as an extra set of eyes and hands would be available.
Gemini's maneuvering capability made it possible to practice rendez­
vous techniques. The main rendezvous target was planned to be the
Agena, an upper stage rocket with a restartable liquid-propellant en­
gine that could be launched by an Atlas booster. After rendezvous
with an Agena, the Gemini would have greatly increased maneuvering
capability because it could use the rocket on the Agena to raise its or­
bit.

Successful rendezvous required accurate orbital insertion, com­
plex catch-up maneuvering, finely tuned movements while making the
final approach to the target, and guidance during maneuvers with the
Agena. Safety during the critical powered ascent phase demanded
some backup to the ascent guidance system on the Titan II booster
vehicle. The Gemini designers also wanted to add accuracy to re-entry
and to automate some of the preflight checkout functions. These
varied requirements dictated that the spacecraft carry some sort of ac­
tive, on-board computing capability. The resulting device was the
Gemini digital computer.

The Gemini computer functioned in six mission phases:
prelaunch, ascent backup, insertion, catch-up, rendezvous, and re­
entry. These requirements demanded a very reliable, fairly sophis­
ticated digital computer with simple crew interfaces. IBM built such a
machine for the Gemini spacecraft.

By the early 1960s, engineers were searching for ways to
automate checkout procedures and reduce the number of discrete test
lines connected to launch vehicles and spacecraft. Gemini's computer

ORIGINAL PAGE IS
OF POOR QUALI'ril THE GEMINI DIGITAL COMPUTER 11

Figure 1-1. First orbital rendezvous: Gemini VI keeps station after using its on­
board computer to maneuver to position near Gemini VII. (NASA photo
S-65-63175)

did its own self checks under software control during the prelaunch
phase. It also accepted parameters needed for the flight during the last
150 minutes before launch2. During ascent, the computer received in­
formation about the velocity and course of the booster so that it would
be ready to take over from the Titan's computers if they failed.
Switch-over could either be automatic or manual. The computer could
then issue steering and booster cutoff commands to the Titan3. Even
if the updated parameters were not necessary to boost guidance, they
were useful in the calculation of additional velocity needed after the
Titan's second-stage cutoff to achieve the proper orbit. That velocity
difference was displayed to the crew so that they could use the
spacecraft's own propulsion system to reach insertion velocity4.

12 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Rendezvous operations required an on-board computer because
the ground tracking network did not "cover" all parts of the Gemini
orbital paths. Thus, it would be impossible to provide the sort of con­
tinuous updates needed for rendezvous maneuvers. For example,
Gemini XI was planned as a first-orbit Agena rendezvous, with some
of the critical maneuvers conducted outside of telemetry range5. That
same mission also featured a fully computer-controlled re-entry,
which resulted in a splashdown 4.6 kilometers from the target6. In
computer-controlled descents, the roll attitude and rate are handled by
the computer to affect the point of touchdown and re-entry heating.
The Gemini spacecraft had sufficient lift capability to adjust the land­
ing point up to 500 miles on the line of flight and 40 miles laterally
respective to the line of _flight. Five minutes before retrofire, the com­
puter was placed in re-entry mode and began to collect data. It dis­
played velocity changes during and after the retrofire. During the time
the spacecraft traveled from an altitude of 400,000 feet to when it
reached 90,000 feet, the computer controlled actual attitude 7.

HARDWARE

IBM Corporation received the contract for the Gemini digital
computer on April 19, 1962, amounting to $26.6 million. It provided
for the construction of the on-board computer and for integration with
other spacecraft systems8. The first machine was in its final testing
phase by August 31, 1963, and IBM delivered the last of 20 such
machines by December 19659. Engineers at IBM believe that the
main reason why their company received the contract was the success­
ful development of a core memory used on the Orbiting Astronautical
Observatory 10. One of them, John J. Lenz, said that the contract for
Gemini came just at the right time. The best of the engineering teams
of the IBM Federal Systems Division plant in Owego, New York were
between assignments and were put on the project, increasing its
chance for success.

Restrictions on size, power, and weight influenced the final form
of the computer in terms of its components, speed, and type of
memory. The shape and size of the computer was dictated by the
design of the spacecraft. It was contained in a box measuring 18.9
inches high by 14.5 inches wide by 12.75 inches deep, weighing 58.98
pounds 11 . An unpressurized equipment bay to the left of the Gemini
commander's seat held the computer, as well as the inertial guidance
system power supply and the computer auxiliary power supply. The
machine consisted of discrete components, not integrated circuits 12.
However, circuit modules that held the components were somewhat
interchangeable. They were plugged into one of five interconnection

... n1fUD(011\l"JIT lf,Qt(Alt»

THE GEMINI DIGITAL COMPUTER 13

ORICE'-.J\L PAGE IS
OE POOR QUALITY

Figure 1-2 . Locations of key components of the Gemini Guidance System. (From
McDonnell Corp., Gemini Familiarization Manual)

boards, and it took 510 of the modules to build the logic section
alone 13. The computer had no redundant circuits, which meant that
failures in the computer canceled whatever activity needed to be con­
trolled by it. For example, a failure in the power switch three quarters
of the way through the Gemini IV mission caused cancellation of the
planned computer-controlled re-entry. It was possible to fly the
Gemini computer without a backup because whatever the computer
did erroneously could be either abandoned (such as rendezvous) or
handled, albeit more crudely, in other ways (such as re-entry using
Mercury procedures).

The machine had an instruction cycle of 140 milliseconds, the
time it required for an addition. Multiplication took three cycles, or

14 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

420 milliseconds, with division reqmnng double that time14. The
arithmetic bit rate was 500 kilocycles, and the memory cycle rate half
that15. The computer was serial in operation, passing bits one at a
time, which explains the relatively slow processing speeds, slower
than some vacuum tube computers such as the Whirlwind. Also, its
fixed decimal point arithmetic unit design limited the precision of the
calculations but greatly reduced complexity. The Gemini digital com­
puter used ferrite cores for its primary memory. Core memories store
one bit in each ferrite ring by magnetizing the ring in either a clock­
wise or counterclockwise direction. One direction means a one is
stored and the opposite direction is a zero. Each core is mounted at a
perpendicular crossing of two wires. Thousands of such crossings are
in each core plane, consisting of rows of wires running up and down
(the x wires) and others running left and right (they wires). Therefore,
to change the value of a bit at a specific location, half the voltage re­
quired for the change is sent on each of two wires, one in the x direc­
tion and one in the y direction. This way only the core at the intersec­
tion of the two wires is selected for change. All the others on the same
wires would have received only half the required voltage. By the use
of a third wire it is possible to "sense" whether a selected core is a one
or a zero. In this way, each individual core can be read.

The ferrite core memory in the Gemini computer had a unique
design. It consisted of 39 planes of 64 by 64-bit arrays, resulting in
4,096 addresses, each containing 39 bits. A word was considered to be
39 bits in length, but it was divided into three syllables of 13 bits. The
memory itself divided into 18 sectors. Therefore, it was necessary to
specify sector and syllable to make a complete address. Instructions
used 13 bits of the word, with data representations of 26 bits. Data
words were always stored in syllables O and 1 of a full word, but in­
structions could be in any syllable. This means that up to three in­
structions could be placed in any full word, but only one data item
could be in a full word l 6.

The arithmetic and logic circuit boards and the core memory
made up the main part of the Gemini computer. These components in­
terfaced to a plethora of spacecraft systems, most of which were con­
cerned with guidance and navigation functions. This system was the
Gemini digital computer through the Gemini VII mission. Beginning
with Gemini VIII, the computer included a secondary storage system,
which had impact on the spacecraft computer systems built by IBM
and flown on the Skylab and Shuttle.

During the 1950s and well into the 1960s, the most ubiquitous
method of providing large secondary storage for computers was the
use of high-speed, high-density magnetic tape. By 1980, tape was
used mainly to store large blocks of data unneeded on a regular basis
or to mail programs and data between sites. Disk systems have con­
siderably faster access times and have rapidly increased in storage

OR1CL i 1\ L r AGE 1S
OF POOR QUALITY

THE GEMINI DIGITAL COMPUTER 15

Figure 1-3. Cores like these were used in Gemini's memory. (IBM photo)

capacity, rivaling or even exceeding tape, and thus supplanting it in
common use. In 1962, disk systems were large, expensive, and far
from fully reliable. When the software for the Gemini computer
threatened to exceed the storage capacity of the core memory, IBM
proposed an Auxiliary Tape Memory to store software modules that
did not need to be in the computer at lift-off. For example, programs
that provided backup booster guidance and insertion assistance would
be in the core memory for the early part of the flight. The re-entry
program could be loaded into the core shortly before it was needed,
thus writing over the programs already there. This concept, fairly
common in earth-bound computer usage, was a first for aerospace
computing.

IBM chose the Raymond En~ineering Laboratory of Middletown,
Connecticut to build the device1 . The unit weighed 26 pounds and
filled about 700 cubic inches of space in the adapter module of the
Gemini spacecraft18. The tape memory increased the available storage
of the Gemini computer by seven and one-half times with its capacity
of 1,170,000 bits. Programs loaded from the tape would fill syllables 0

16 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

; , '

Figure 1-4. Layout of the Gemini Digital Computer core memory. (From
McDonnell Corp., Gemini Familiarization Manual)

01 IGINAL PAGE IS
OE POOR QUALITY,

THE GEMINI DIGITAL COMPUTER 17

and 1 of the core memory locations19. It took 6 minutes to load a
program from the tape drive into core20.

NASA's natural insistence on high reliability in manned
spaceflight operations challenged the computer industry of the early
1960s. Tape error rates were 1 bit in 100,000 and IBM wanted to raise
this rate to 1 bit in 1,000,000,00021 . The method used was to triple
record each program on the tape, pass each set of three corresponding
bits through a voter circuit, and send the result of the vote to the core
memory22. This scheme was later used on the Shuttle.

Gemini Vill was the first mission with the Auxiliary Tape
Memory on board. Shortly after a successful rendezvous with an
Agena, the combined spacecraft began to spin out of control. Mission
Control decided to disengage the Agena and bring the Gemini down,
as large amounts of attitude control thruster fuel had been wasted try­
ing to regain control of the spacecraft. Thus, the first attempt to load a
program from the tape was made while the spacecraft was spinning.
Even though the Auxiliary Tape Memory design parameters specified
low vibration levels,23 the re-entry program was successfully loaded
and used in the subsequent descent.

IBM obtained this sort of reliability beyond the original specifica­
tions as a result of an extensive testing program. For example, the
Auxiliary Tape Memory had failed prequalification vibration tests, so
IBM added a brass flywheel and weights on the tape reels to increase
stabilization24. This ensured a successful program load under adverse
conditions. There were also problems with transistors shorting out due
to loose particles too small to be seen on x-rays but which shook loose
during acceleration25. Increased cleanliness in manufacturing was one
solution to this problem.

The only in-flight failure of a computer component was on the
48th revolution of the Gemini IV mission, when astronaut James
McDivitt tried to update the computer in preparation for re-entry. The
machine would not tum off, and it could not be used for the planned
"lifting bank" re-entry26. IBM could not duplicate the failure on the
ground, but the manufacturers did install a manual switch that
bypassed the failure for Gemini v27.

SOFTWARE

In 1962, hardware was still the pacing factor in computer applica­
tions. Everything associated with computers- processors, memories
and input/output (1/0) peripherals- was expensive. Many considered
software development an incidental part of the overall applications of
computing. Specialists wrote most of the software, usually in arcane
assembly languages. FORTRAN, a high-level language, had only

18 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 1- 5. Auxiliary Tape Memory in test. (IBM photo)

[)RIGINAL PAGE rs
OF, POOR OP \ T 'TV

THE GEMINI DIGITAL COMPUTER 19

been available for a few years. Although its use in technical applica­
tions was rapidly spreading, it was still considered too inefficient for
use on computers like the Gemini digital computer. Many thought its
compiler-produced machine code to be less effective in utilizing
machine resources than machine language programs written by
humans. Experts therefore developed applications programs for
Gemini using the tiny set of 16 instructions that the computer could
execute28. This sort of programming was considered to be more of an
art than a science. Whereas the design and construction of computer
hardware followed conventional engineering principles, software
development was largely haphazard, undocumented, and highly
idiosyncratic. Many managers considered software developers to be a
different breed and best left alone. This concept of software is a myth,
and although it persists in some companies and with some people
today, by and large software is now considered as an engineered
product, little different from a rocket engine or computer.

Although the term "software engineering" did not come into com­
mon use until 1968, programmers had applied its basic tenets to both
large and small software projects for at least 15 years. Software en­
gineering has evolved as programmers learned which techniques
worked, which did not, and what actually occurred in the development
of software products. The SAGE (Semi-Automatic Ground
Environment) air defense system29, the IBM 360 operating system30,
and NASA's requirements for both spacecraft software and ground­
based software were instances of major software projects that directly
contributed to the evolution of software engineering.

Software engineers recognize that software follows a specific
development cycle, from formal specification of the product, through
the design and coding of the actual program, and then to testing of the
product and postdelivery maintenance. This cycle lasts for many years
in the case of programs such as operating systems, or a short period of
time in the case of specialized, single-use programs. During this
development process, strict standards of documentation, configuration
control, and managing changes and the correction of errors must be
maintained. Also, breaking down the application into smaller, poten­
tially interchangeable parts, or modules, is a primary technique. Com­
munication between programming teams working on different but in­
terconnected modules must be kept clear and unambiguous. It is in
~ese ~eas that NASA has had the greatest impact on software en­
gmeermg.

Development of the Gemini software was a learning experience
for both NASA and IBM. It was, of course, the first on-board software
for a manned spacecraft and was certainly a more sophisticated sys­
tem than any that had flown on unmanned spacecraft to that point.
When the time came to write the software for Gemini, programmers
envisioned a single software load containing all the code for the flight,

20 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

with new unique programs to be developed for each mission31 . Soon
it became obvious that certain parts of the program were relatively un­
changed from mission to mission, such as the ascent guidance backup.
Designers then introduced modularization, with some modules be­
coming parts of several software loads.

Another reason for modularization is the fact that the programs
developed for Gemini quickly exceeded the memory available for
them. Some were stored on the Auxiliary Tape Memory until needed.
The problem of poor estimation of total memory requirements has
plagued each manned spacecraft computer system. In the case of
Gemini, changed requirements and attempts to squeeze the programs
into the allotted space resulted in nine different versions of the
software32. The different versions were referred to by the name
"Gemini Math Flow."

Tracing the development of the math flows shows how identify­
ing new functions caused initial memory estimates to be wrong and
how the project handled changes. Math Flow One consisted of just
four modules: Ascent, Catch-up, Rendezvous, and Re-entry. Math
Flow Two was proposed to add orbital navigation and re-entry in­
itialization, but it caused the overall load to exceed the memory size
and the Gemini program office canceled the additions33 . This version
of the software flew on spacecraft II in January 1965. By Math Flow
Four, the re-entry initialization program had been successfully added,
but the load took up 12,150 of 12,288 available words. The plan had
been to use this program on spacecraft III and others, but a NASA
directive of February, 1964 changed the guidance logic of the re-entry
mode to a constant bank angle rather than a proportional bank angle
and constant roll rate. Math Flow Five incorporated this change, but it
filled the memory and was scrubbed in favor of a modified Math Flow
Three on spacecraft III and IV, followed by Math Flow Six containing
some changes on spacecraft V through vn34. The final version, Math
Flow Seven, was used on spacecraft VIII through XII, all of which in­
corporated the Auxiliary Tape Memory. It had six program modules
with nine operational modes. The six program modules of Math Flow
Seven were Executor, Prelaunch, Ascent, Catch-Up, Rendezvous, and
Re-Entry35. The Executor routine selected other routines depending
upon mission phases.

The specification procedure for the software required
McDonnell-Douglas to prepare the Specification Control Document
(SCD). This was forwarded to the IBM Space Guidance Center in
Owego, which developed a FORTRAN program to validate the
guidance equations. The use of simulations such as the FORTRAN
program was endemic to the Gemini software effort and was later ap­
plied to software development for other spacecraft computers.

Gemini used three levels of simulations, beginning with the
equation-validation system. The second was a man-in-the-loop

THE GEMINI DIGITAL COMPUTER 21

simulation to help define 1/0 requirements, procedures, and displays.
The third level was a refined digital simulation to determine the per­
formance characteristics of the software, useful in error analysis. This
third level was carried out in the Configuration Control Test System
(CCTS) laboratory, which contained a Gemini computer and crew in­
terfaces. This Mission Verification Simulation (MYS) ensured that the
guidance system worked with the operational mission program. Fur­
ther tests of the software were done at McDonnell-Douglas and at the
pad36. NASA and IBM emphasized program verification because
there was no backup computer or backup software. The verification
process and the tools developed for it were later applied to military
projects in which IBM became involved37.

Even if the software is perfect, errors may occur because of tran­
sient hardware or software failures during operation due to power
fluctuations or unforeseen demands on real-time programs. Some of
these can be spotted by diagnostic subroutines interleaved in the
software and used for fault detection38. Such routines were put in the
Gemini software and are now a part of all IBM computer systems.

The software produced during the Gemini program was highly
reliable and successful. Techniques of specification development,
verification, and simulations developed for Gemini were later applied
to other IBM and NASA projects. NASA was certainly better
prepared to monitor software development for the much more difficult
Apollo program.

CREW INTERFACES TO THE GEMINI DIGITAL COMPUTER

Gemini's digital computer had three sets of interfaces: the
computer's controls, the Manual Data Insertion Unit (MDIU), and the
Incremental Velocity Indicator (IVI). The controls consisted of a
mode switch, a start button, a malfunction light, a computation light,
and a reset switch. The mode switch had seven positions for selection
of one of the measurement or computation programs. The start button
caused the computer to run the selected program loaded in its
memory. The reset switch caused the computer to execute its start-up
diagnostics and prepare itself for action. The MDIU consisted of two
parts: a 10-digit keyboard and a 7-digit register. The first two digits of
the register, a simple odometerlike rotary display, were used to in­
dicate a memory address. Up to 99 such logical addresses could be ac­
cessed. The remaining five digits displayed data. Errors caused all
zeroes to appear. Negative numbers were inserted by making the first
digit a nine; the other digits contained the value. The IVI displayed
velocity increments required for, or as a result of, a powered
maneuver. It had three-digit feet-per-second displays for each of
forward-and-back, up-and-down, and left-to-right axes39.

22 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

cp 6

0 + 0 7n@io ADDRESS

~ [3_] [fil @] CT] ~ [ill ®GJ~[§] ® 4 5 1~
I

~OJ~~ i (±) ®

ENTER
0 0 0 7 ~ 2 0 [ERO 0

LEGEND

ITEM NOMENCLA TUtlE PURPO SE

CD
DISPLAY ADDRE SS ANO ME \I AG[; Es 1T TO CC MPUTEA DURING

A0 ;)OESS ,:..;;0 ME SSA G E :> 1SnAv 0 : VICES EN TER O PE RAT ION , DIS PL AY > DCR EI S S[NT TO , '-NO ME SSA G E
REC EIVED FROM CO MPVT E, Dc<l"-G RE•DOL'T C•PERAT IO"'

CD EN TER ?Ul n --o UTT O N SWITCH
PROVIDt \ MEAN i f ~ C• •J;iraC, ~ot l l AG E $ENT TO CCM PUTT1
DURING ENf ER O PEA>T ION TO H S'.C'.l!ED , N MEMO RY,

0 CLE Ai P \.:l « ➔UTTON SWI TCH
PR OVl 0£S 1¥'t ANS f ~ CAUSl,._ G A'.JDij f \S AN O .MESSAG E I ET
UP ! Y MOK TO &E C LE ARED C R : "' NC ELED.

0 ~(AD vVT PUS'1 -<! UTT ON SWI !CH
PR OVIDES .WANS FC,A C IU\ IN G MESS AG E ;c 8E i EA0 ou r
O F COMPUTE R ANO DISPLA YED BY MES SAG E DISPLAY DEVICES.

CD P"N A: 1PCw t ~l TCGG LE.)WI T(t-i PR O VIDE S MEANS Fc)R CON IRC LLI NG •-rLtCATION Of
POWER TO MOK ANO MOR

0
PRO VIDE MEA ,-<S <Q! CAL! \ IN G >()()RE SS AND MESSA G E TO

D• fA INSER T P,: SH-& UTTCN \ :, ITCHES BE SEN T TC COMP UTER ANO TC lE ~S P'. AY EO l Y ADDR ESS
A"-0 MESSAGE DISPLAY DE V'(ES .

Figure 1-6. Manual Data Insertion Unit. (From McDonnell Corp. , Gemini
Familiarization Manual)

ORIGINAL PAGE IS
DE I~OOR QUALITY

I TEM

CD
0
0
0
0
©
CD
©
0
@

®
@

cp
\
\

THE GEMINI DIGITAL COMPUTER 23

0

000

L
I

10

R
\

ON
I

UP
\

LEGEND

N OME-....c~ : utE PUltPOS[

r- w;, · ~('," 'NA.~01 0 11:E(T ION INDICA TION L,\MP iNDICA.Tf'j Tl-'I AT PLUS X. ;).)(IS VEL0ClfY IS 1NSL;f,: 1,:1e r .

FOAW .l. il:J ~.),FT , 1sPLA Y D(V:C E
INDICATES A.MOUNT OF tr--.:S L'fH..::l ~N T VELO: nv F0 " PL U'i
C R. MINUS X .t\XIS

L (L[Fn DIRECT ION l"J Dl(AIION LAM P IN DI CATES THAT MI NUS Y AX IS VEL OCITY IS INS UF FICI ENT .

LEFT ~ICHT DISPU. Y DEVIC E
IN0IC.,HES I\MOUNT OF 1NSU FFl(lf r-.T VEl0:ITY F("IR PL US
OR MINI JS Y <'\X IS

i.: \~IGHT) Jlllt(T ION INOl(ATION LA.MP IN0\(.l,,as T'"4AT PL US Y ~,(1$ \o ElQCITY t'i INSU FF t(l (l"Jf

UP-DOWN DISPLAY DE VICE
1ND l~ ATES A.~()U(',.j J OF INS VFF ICIEN T VElCO: •T'Y FOQ
PLUS QA: MINUS Z .),,.1(15 .

UP 0IU:CTIO"" INi::>ICATIQN LAMP IN0IC .ATES TH AT MINUS Z AX IS '✓HOC I TY IS l NS UFF ICENT

ON ! DO WN) 0lltECTIO!',,j INO!•:ATIQN LAM P INDICATE S H-, A.r PLUS Z A. XIJ VEL OCITY IS IN SUH l(lf...._.t

ON-U P 1c;,av SvllT (I-,
PR OVIDES vf 4. NS ~OR MANU 4LL Y)t.f'l' ING UP;:_ " ·'(;)
\' f.LC C IT 'i 1::rnOR c ~, UP-DC W."',J OIS PLA V '.)£ '.'I(~

L~ RQT4P.'f SV/1 TC.r! PROVIC[S Mt~NS Fat W.. ,"-IL•4.LLV HTT ING UP 'r o.1, ,-(l)
VELOCirY ER!l: 0 11: O N LEF ! ..i11C,MT DISP LA Y 0£ '✓ 1(E

•F T...;wo.i cr•.il " s·.-w ,rr:r-1
PRCVI OES ME .:.t lS FO ~ MA.NIJA LLY,6.lTTING L.: i' ~ J\ (tS
v H OC 1 TY EUCR O N FOIW"-RO-AFT DIS PLAY Of -. :.,:[

4.,=f 0111:ECTIC N 1~ 0t (..\.f :0"" L~MP INDl(A.TES TH~T MIN lJ S X ~XIS VHQCIT"I" 1$ INS UH l(IE~ T

Figure 1-7. Incremental Velocity Indicator. (From McDonnell Corp., Gemini
Familiarization Manual)

24 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

On a typical mission the computer would be in operation during
ascent as the backup to the booster. On orbit, if no powered
maneuvers were imminent, it could be shut down to save electrical
power. Due to the nature of core memory, programs and data stored
magnetically in the cores would not disappear when the power was
off, as in present day semiconductor memories. This made it possible
to load the next set of modules, if necessary, from the Auxiliary Tape
Memory, enter any needed · parameters, and then shut down the
machine until shortly before its next use. It took 20 seconds for the
machine to run its start-up diagnostics upon restoration of power.
After the diagnostics ran successfully, the current program load was
ready for use, all parameters intact.

GT-IV was following such a procedure in preparing for re-entry
on June 7, 1965. The computer was placed in the RNTY mode, and
the crew received and entered updated parameters given to them when
they were in contact with the ground stations. But when they tried to
turn the machine off, the manual on/off switch did not function. The
power had to be cut off by another means, and the re-entry handled
manually40.

Using the computer for catch-up and rendezvous was a relatively
simple task. The difference between catch-up and rendezvous is that
catch-up maneuvers are executed to put the spacecraft into position to
make an orbit-change maneuver. After the orbit change the spacecraft
is prepared to rendezvous with the target41 . Crews began the catch-up
by entering the ground-calculated rendezvous angle desired into ad­
dress 83. The rendezvous angle indicated how much farther along in a
360-degree orbit the rendezvous was to take place. For example, if the
crew desired rendezvous one-third orbit ahead, 12000 was entered
into address 83 using the MDIV. The interval at which the pilot
wanted to see updates was then entered in address 93. For example, if
04000 was entered, the computer would display on the IVI any re­
quired velocity changes at 120 degrees from the rendezvous point (the
start), 80 degrees to go, and 40 degrees to go. If the IVI indicated that
the. computer had calculated that such a rendezvous was possible
within the designated fuel limits, the astronauts pressed the ST ART
button and the IVI displayed the first set of velocity differentials. The
pilot then fired the thrusters until the displays were all at zero
(Astronaut John Young reported that there was a tendency to
"overshoot" in trying to bum to zero42.). After that, nothing was done
unless the next update indicated a need for more velocity
adjustments43 . The astronauts also did paper-and-pencil calculations
of the velocity changes as a backup by using special nomographs
based on time and angles to the target44. These backup calculations
were compared with the ground-calculated solution as well as the
computer solution. However, the figures computed on-board were
considered the primary solution for the terminal-phase intercept

THE GEMINI DIGITAL COMPUTER 25

maneuver45. In the rendezvous mode, the radar would feed infor­
mation to the computer, which used it to calculate the velocity adjust-
ments needed for final approach46.

These examples of the use of the computer on a typical flight
demonstrate that it was a relatively straightforward assistant in
guidance and navigation. It permitted the Gemini astronauts to be in­
dependent of the ground in accomplishing rendezvous from the
terminal-phase intercept maneuver to station keeping, a valuable re­
hearsal for the lunar orbit rendezvous required for the Apollo
program. The astronauts participated in both the hardware and
software design of the computer and its interfaces, and they were able
to go to Owego and be put in the man-in-the-loop simulations. By
flight time, like everything else in the cockpit, use of the computer
was second nature.

THE IMPACT OF THE GEMINI DIGITAL COMPUTER

The Gemini Digital Computer was a transitional machine. Dale
F. Bachman of IBM characterized it as the "last of a dying breed. It
was an airborne computer, ruggedized, special purpose, and slow"47.
Nonetheless, its designers claim an impressive list of firsts:

• The first digital computer on a manned spacecraft.

• The first use of core memory with nondestructive
readout. The machine was designed in an era of rotating
drum memories, its designers considered it a step
forward48.

• IBM's first completely
computer49.

silicon semiconductor

• The first to use glass delay lines as registers50.

• Technologically advanced in the area of packaging
density51 .

• The first airborne or spaceborne computer to use an
auxiliary memory52.

Development of the Gemini computer helped IBM in significant
ways. It contributed more than anything else to the hardware and
software of the 4Pi series of computers53. This series eventually
produced the computer used on Skylab and the AP-101 used in the
Shuttle. It also helped to develop IBM's reputation for delivering reli­
able and durable spacebome hardware and software54. One Gemini
computer restarted successfully after being soaked in salt water for 2

26 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

weeks. Another used system went on to NASA's Electronics Research
Laboratory in Boston for use on vertical and short takeoff and landing
projects55. Coupled with IBM's involvement in the real-time comput­
ing centers used to monitor Mercury and Gemini missions, the com­
pany established itself as a major contributor to America's space
program as it had been to the military research and development ef­
fort. Out of early military work came computer systems such as the
Harvard Mark I, the 701, and SAGE computers used in air defense.
However, even though identification with the space program has been
maintained through several high-visibility projects, no significant
commercial hardware products resulted as spinoffs.

For NASA, Gemini and its on-board computer proved that a reli­
able guidance and navigation system could be based on digital com­
puters. It was a valuable test bed for Apollo techniques, especially in
rendezvous. However, the Gemini digital computer itself was totally
unlike the machines used in Apollo. With its Auxiliary Tape Memory
and core memory, the Gemini computer was more like the Skylab and
Shuttle general purpose computers. It is in those systems where its im­
pact is most apparent.

2

Computers on Board

the Apollo Spacecraft

28 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

THE NEED FOR AN ON-BOARD COMPUTER

The Apollo lunar landing program presented a tremendous managerial
and technical challenge to NASA. Navigating from the earth to the
moon and the need for a certain amount of spacecraft autonomy dic­
tated the use of a computer to assist in solving the navigation,
guidance, and flight control problems inherent in such missions. Be­
fore President John F. Kennedy publicly committed the United States
to a "national goal" of landing a man on the moon, it was necessary to
determine the feasibility of guiding a spacecraft to a landing from a
quarter of a million miles away. The availability of a capable com­
puter was a key factor in making that determination.

The Instrumentation Laboratory of the Massachusetts Institute of
Technology (MIT) had been working on small computers for
aerospace use since the late 1950s. Dr. Raymond Alonso designed
such a device in 1958-19591. Soon after, Eldon Hall designed a com­
puter for an unmanned mission to photograph Mars and retum2. That
computer could be interfaced with both inertial and optical sensors. In
addition, MIT was gaining practical experience as the prime contrac­
tor for the guidance system of the Polaris missile. In early 1961,
Robert G. Chilton at NASA-Langley Space Center and Milton
Trageser at MIT set the basic configuration for the Apollo guidance
system3. An on-board digital computer was part of the design. The
existence of these preliminary studies and the confidence of C. Stark
Draper, then director of the Instrumentation Lab that now bears his
name, contributed to NASA's belief that the lunar landing program
was possible from the guidance standpoint.

The presence of a computer in the Apollo spacecraft was justified
for several reasons. Three were given early in the program: (a) to
avoid hostile jamming, (b) to prepare for later long-duration
(planetary) manned missions, and (c) to prevent saturation of ground
stations in the event of multiple missions in space simultaneously4.
Yet none of these became a primary justification. Rather, it was the
reality of physics expressed in the 1.5-second time delay in a signal
path from the earth to the moon and back that provided the motivation
for a computer in the lunar landing vehicle. With the dangerous land­
ing conditions that were expected, which would require quick decision
making and feedback, NASA wanted less reliance on ground-based
computing5. The choice, later in the program, of the lunar orbit ren­
dezvous method over direct flight to the moon, further justified an on­
board computer since the lunar orbit insertion would take place on the
far side of the moon, out of contact with the earth6. These considera­
tions and the consensus among MIT people that autonomy was
desirable ensured the place of a computer in the Apollo vehicle.

Despite the apparent desire for autonomy expressed early in the

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 29

program, as the mission profile was refined and the realities of build­
ing the actual spacecraft and planning for its use became more im­
mediate, the role of the computer changed. The ground computers be­
came the prime determiners of the vehicle's position in three­
dimensional space "at all times" (except during maneuvers) in the
missions 7. Planners even decided to calculate the lunar orbit insertion
bum on the ground and then transmit the solution to the spacecraft
computer, which somewhat negated one of the reasons for having it.
Ultimately, the actual Apollo spacecraft was only autonomous in the
sense it could return safely to earth without help from the ground8.

Even with its autonomous role reduced, the Apollo on-board
computer system was integrated so fully into the spacecraft that desig­
ners called it "the fourth crew member"9. Not only did it have naviga­
tion functions, but also system management functions governing the
guidance and navigation components. It served as the primary source
of timing signals for 20 spacecraft systems10. The Apollo computer
system did not have as long a list of responsibilities as later spacecraft
computers, but it still handled a large number of tasks and was the ob­
ject of constant attention from the crew.

MIT CHOSEN AS HARDWARE

AND SOFTWARE CONTRACTOR

On August 9, 1961, NASA contracted with the MIT Instrumen­
tation Lab for the design, development, and construction of the Apollo
guidance and navigation system, including software. The project
manager for this effort was Milton Trageser, and David Hoag was the
technical director 11 . MIT personnel generally agree that they were
chosen because their work on Polaris proved that they could handle
time, weight, and performance restrictions and because of their pre­
vious work in space navigation 12. In fact, the Polaris team was moved
almost intact to Apollo13. Despite their experience with aerospace
computers, the Apollo project turned out to be a genuine challenge for
them. As there were no fixed specifications when the contract was
signed, not until late 1962 did MIT have a good idea of Apollo's
requirements 14. One of the MIT people later recalled that

If the designers had known then [1961] what they learned later,
or had a complete set of specifications been available ... they
would probably have concluded that there was no solution with
the technology of the early l 960s 15.

Fortunately, the technology improved, and the concepts of computer
science applied to the problem also advanced as MIT developed the
system.

JO COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

NASA's relationship with MIT also proved to be educational.
The Apollo computer system was one of NASA's first real-time, large
scale software application contracts 16. Managing such a project was
completely outside the NASA experience. A short time after making
the Apollo guidance contract, NASA became involved in developing
the on-board software for Gemini (a much smaller and more control­
lable enterprise) and the software for the Integrated Mission Control
Center. Different teams that started within the Space Task Group, later
as part of the Manned Spacecraft Center in Houston, managed these
projects with little interaction until the mid-1960s, when the two
Gemini systems approached successful completion and serious
problems remained with the Apollo software. Designers borrowed
some concepts to assist the Apollo project. In general, NASA person­
nel involved with developing the Apollo software were in the same
virgin territory as were MIT designers. They were to learn together
the principles of software engineering as applied to real-time
problems.

THE APOLLO COMPUTER SYSTEMS

The mission profile used in sending a man to the moon went
through several iterations in the early 1960s. For a number of reasons,
planners rejected the direct flight method of launching from the earth,
flying straight to the moon, and landing directly on the surface. Be­
sides the need for an extremely large booster, it would require flaw­
less guidance to land in the selected spot on a moving target a quarter
of a million miles away. A spacecraft with a separate lander would
segment the guidance problem into manageable portions. First, the en­
tire translunar spacecraft would be placed in earth orbit for a revolu­
tion or two to properly prepare to enter an intercept orbit with the
moon. Upon arriving near the moon, the spacecraft would enter a
lunar orbit. It was easier to target a lunar orbit window than a point on
the surface. The lander would then detach and descend to the surface,
needing only to guide itself for a relatively short time. After comple­
tion of the lunar exploration, a part of the lander would return to the
spacecraft still in orbit and transfer crew and surface samples, after
which the command module (CM) would leave for earth.

With a lunar orbit rendezvous mission, more than one computer
would be required, since both the CM and the lunar excursion module
(LEM) needed on-board computers for the guidance and navigation
function. The CM's computer would handle the translunar and tran­
searth navigation and the LEM' s would provide for autonomous land­
ing, ascent, and rendezvous guidance.

NASA referred to this system with its two computers, identical in
design but with different software, as the Primary Guidance, Naviga-

COMPUTERS ON BOARD THE APOLLO SPACECRAFf 31

tion, and Control System (PGNCS, pronounced "pings"). The LEM
had an additional computer as part of the Abort Guidance System
(AGS), according to the NASA requirement that a first failure should
not jeopardize the crew. Ground systems backed up the CM computer
and its associated guidance system so that if the CM system failed, the
spacecraft could be guided manually based on data transmitted from
the ground. If contact with the ground were lost, the CM system had
autonomous return capability. Since the lunar landing did not allow
the ground to act as an effective backup, the LEM had the AGS to
provide backup ascent and rendezvous guidance. If the PGNCS failed
during descent, the AGS would abort to lunar orbit and assist in ren­
dezvous with the CM. It would not be capable of providing landing
assistance except to monitor the performance of the PGNCS. There­
fore the computer systems on the Apollo spacecraft consisted of three
processors, two as part of the PGNCS and one as part of the AGS.

EVOLUTION OF THE HARDWARE:

Old Technology versus New: Block I and Block I Designs

The computer envisioned by MIT's preliminary design team in
1961 was a shadow of what actually flew to the moon in 1969. There
always seem to be enough deficiencies in a final product that the
designers wish they had a second chance. In some ways the Apollo
guidance computer was a second chance for the MIT team since most
worked on the Polaris computer. That was MIT's most ambitious at­
tempt at an "embedded computer system," a computer that is intrinsic
to a larger component, such as a guidance system. Although the
Apollo computer started out to be quite similar to Polaris, it evolved
into something very different. The Apollo guidance computer had two
flight versions: Block I and Block II. Block I was basically the same
technology as the Polaris system. Block II incorporated new technol­
ogy within the original architecture.

Several factors led from the Block I design to Block II. NASA's
challenges to the MIT contract and the decision to use the rendezvous
method instead of a direct ascent to the moon were decisive. A third
factor related to reliability. Finally, the benefits of the new technology
influenced the decision to make Block II.

Before NASA let the contract to MIT, but after it was known that
the Instrumentation Laboratory would be accorded "sole source"
status, several NASA individuals began studying ways to consolidate
flight computer development. In June 1961, Harry J. Goett of God­
dard Space Flight Center recommended that the computers needed for
the Orbiting Astronomical Observatory (OAO), Apollo, and the
Saturn launch vehicle be the same. He cited an IBM proposal for $5

32 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

million to do just that17. On the same day Goett's recommendation,
RCA proposed the use of a 420-cubic-inch computer with only an 80-
watt power consumption and 24-bit word size as a general-purpose
spacebome computer18. This proposal got nowhere and NASA's
Robert G. Chilton challenged Goett's idea, showing that the expected
savings would not materialize. Even though the projected cost of the
Apollo computer would decrease to $8 million from $10 million, the
OAO development costs would rise from $1.5 million to $5 million 19.
Ironically, in the same month, Ramon Alonso from MIT met with
Marshall Space Flight Center personnel about the use of the Apollo
computer in the Saturn. 20 Although MIT got the Apollo contract and
IBM got the contract for the Saturn computer, the idea of a duplicate
system did not die. Two years later, when the deficiencies of the
Polaris-based system were obvious and the solutions offered by the
new technology of the Block II version still unproved, David
W. Gilbert, NASA manager for Apollo guidance and control,
proposed replacing the MIT machine with the one IBM was building
for Satum21 . It did not occur because Gilbert wanted NASA to accept
the reprogramming costs, and the existing configuration of the IBM
computer would not fit in the space allotted for it in the CM.
Nevertheless, MIT would still have to deal with NASA misgivings
about the hardware design as late as May 1964, when Maj. Gen.
Samuel C. Phillips, deputy director of the Apollo Program, reported
on a meeting to discuss the use of the triple modular redundant Saturn
launch vehicle computer in Apollo22.

The decision to have a separate CM and the LEM influenced the
transition to Block II by providing a convenient dividing point in the
Apollo program. The early Apollo development flights were to use
the CM only. Later flights would include the LEM. Since Block I
design and production had already proceeded, planners decided to use
the existing Block I in the unmanned and early manned development
flights (all relatively simple earth-orbital missions) and to switch to
Block II for the more complex combined CM-LEM missions23 .

Reliability was another force behind Block II. During early plan­
ning for the guidance system, redundancy was considered a solution
to the basic reliability problem. Designers thought that two computers
would be needed to provide the necessary backup; however, they
dropped this scheme for two reasons. The ground had primary respon­
sibility for determining the state vector (the position of the craft in
three-dimensional space) in translunar, lunar orbit, and transearth
flight24. Moreover, none of the variations of the two-computer or
other redundancy schemes could meet the power, weight, and size
requirements. 25 One way to provide some measure of protection is to
make the computer repairable in flight. The Block I design, due to its
modularity, could be fixed during a mission that carried appropriate
spares. At any rate, its predicted mean time between failures (MTBF)

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 33

was 4,200 hours, about 20 times longer than the longest projected
mission26. But Block I's repair capability became a negative factor
when sealing the computer began to be considered more important to
reliability than the ability to repair it27. Aside from packaging, over­
all malfunction detection was improved in the Block II design, further
increasing reliability28.

The most important reason for going to Block II was the
availability of new technology. The Block I design used core transis­
tor logic. It had several disadvantages:

• It could not be complemented, a very important basic
operation in computer arithmetic that changes a one to a
zero or vice versa.

• It had the characteristic of "destructive readout," in which
a datum read from a flip-flop using core transistor logic
loses the datum; that forces the inclusion of a circuit to
rewrite the datum if it is to be retained after the read
cycle.

• Memory cycle time could not be fixed: in Block I it was
an average of 19.5 milliseconds, which was quite slow for
computers at .the time, and the varying cycle caused
timing problems within the machine29.

These disadvantages led MIT to begin studying, as early as 1962,
the possible use of integrated circuits (ICs) to replace core transistor
circuits. I Cs, so ubiquitous today, were only 3 years old then and thus
had little reliability history. It was therefore difficult to consider their
use in a manned spacecraft without convincing NASA that the ad­
vantages far outweighed the risks.

To accomplish this, the MIT team chose a direct-coupled transis­
tor logic (DCTL) NOR gate with a three-input element,30 consisting
of three transistors and four resistors. NOR logic inverts the results of
applying a Boolean OR operation to the three inputs. It took nearly
5,000 of these simple circuits to build an Apollo computer. Using a
variety of circuits would have simplified the design since the com­
ponent count would have been reduced, but by using the NOR alone,
overall simplicity and reliability increased31 . Also, the time it took the
machine to cycle became fixed at 11. 7 milliseconds, a double bonus in
that speed increased and cycle time was consistent32.

Aside from these advantages, MIT believed that the lead time to
the first flight would permit reliability to be established and the cost of
the I Cs to come down33. At the time, the production of such circuits
was low, and they were more expensive than building core transistor
circuits. To place the production rate in perspective, MIT chose the
NOR ICs in the fall of 1962 and by the summer of 1963, 60% of the

34 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

total U.S. oufut of microcircuits was being used in Apollo prototype
construction3 . This is one of the few cases in which NASA's require­
ments acted as a direct spur to the computer industry. When MIT
switched to ICs, it kept the Apollo computer as "state of the art" at
least during its design stage. It would be hopelessly outdated tech­
nologically by the time of the lunar landing 7 years later, but in 1962,
using the new microcircuits seemed to be a risk. This view is con­
tested by one member of the MIT team, who later said that the deci­
sion "wasn't bold; it was just the easy thing to do to get the size and
power and other requirements"35.

With the ICs fully incorporated in the Apollo computer and the
transition from Block I to Block II complete, NASA possessed a
machine that was more up to date technologically. It had double the
memory of the largest Block I, more 1/0 capability, was smaller, and
required less power.36 Besides, it was also more reliable, which was,
as always, the major consideration.

THE APOLLO GUIDANCE COMPUTER: HARDWARE

Overall Configuration and Architecture

The Apollo Guidance Computer was fairly compact for a com­
puter of its time. The CM housed the computer in a lower equipment
bay, near the navigator's station. Block II measured 24 by 12.5 by 6
inches, weighed 70.1 pounds, and required 70 watts at 28 volts DC.
The machine in the lunar module was identical.

Crew members could communicate with either computer using
display and keyboard units (DSKY, pronounced "disky"). Two
DSKY s were in the CM, one on the main control panel and one near
the optical instruments at the navigator's station. In addition, a "mark"
button was at the navigator's station to signal the computer when a
star fix was being taken. A single DSKY was in the lunar module. The
DSKYs were 8 by 8 by 7 inches and weighed 17.5 pounds. As well as
the DSKY s, the computer directly hooked to the inertial measurement
unit and, in the CM, to the optical units.

The choice of a 16-bit word size was a careful one. Many scien­
tific computers of the time used 24-bit or longer word lengths and, in
general, the longer the word the better the precision of the calcula­
tions. MIT considered the following factors in deciding the word
length: (a) precision desired for navigation variables, (b) range of in­
put variables, and (c) the instruction word format37. Advantages of a
shorter word are simpler circuits and higher speeds, and greater preci­
sion could be obtained by using multiple words. 38. A single precision
word of data consisted of 14 bits, with the other 2 bits as a sign bit
(with a one indicating negative) and a parity bit (odd parity). Two ad-

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 35

jacent words yielded "double precision" and three adjacent, "triple
precision." To store a three-dimensional vector required three double
precision words39. Data storage was as fractions (all numbers were
less than one)40. An instruction word used bits 15-13 (they were
numbered descending left to right) as an octal operation code. The ad­
dress used bits 12-1. Direct addressing was limited, so a "bank
register" scheme (discussed below) existed to make it possible to ad­
dress the entire memory41.

The Apollo computer had a simple packaging system. The com­
puter circuits were in two trays consisting of 24 modules. Each
module had two groups of 60 flat packs with 72-pin connectors. The
flatpacks each held two logic gates42. Tray A held the logic circuits,
interfaces, and the power supply, and tray B had the memory, memory
electronics, analog alarm devices, and the clock, which had a speed of
one megahertz43. All units of the computer were hermetically
sealed44. The memory in Block II consisted of a segment of erasable
core and six modules of core rope fixed memory. Both types are dis­
cussed fully below.

The Apollo computer used few flip-flop registers due to size and
weight considerations45, but seven key registers in the computer did
use flip-flops:

• The accumulator, register 00000, referenced as "A".

• The lower accumulator, 000001, "L".

• The return address register, 000002, "Q".

• The erasable bank register, 000003, "EB".

• The fixed bank register, 000004, "FB".

• The next address, 000005, "Z".

• The both bank register, 000006, "BB" (data stored in EB
and FB were automatically together here)46.

The use of bank registers enabled all of the machine's memory to
be addressed. The largest number that can be contained in 12 bits is
8,192. The fixed memory of the Apollo computer contained over four
times that many locations. Therefore, the memory divided into
"banks" of core, and the addressing could be handled by first indicat­
ing which bank and then the address within the bank. For example,
taking the metaphor "address" literally, there are probably hundreds of
"100 Main Street" addresses in any state, but by putting the ap­
propriate city on an envelope, a letter can be delivered to the intended
100 Main Street without difficulty.

The computer banks were like the cities of the analogy. The eras­
able bank register held just 3 bits that were used to extend the direct

36 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

addressing of the erasable memory to its "upper" region, and the fixed
bank register held 5 bits to indicate which core rope bank to address.
In addition, for the addresses needing a total of 16 bits, a "super bank
bit" could be stored and concatenated to the fixed bank data and the
address bits in the instruction word47. This scheme made it possible to
handle the addressing using a 16-bit word, but it placed a greater bur­
den on the programmers, who, in an environment short of adequate
tools, had to attend to setting various bit codes in the instructions to
indicate the use of the erasable bank, fixed bank, or super bank bit.
Although this simplified the hardware, it increased the complexity of
the software, an indication that the importance of the software was not
fully recognized by the designers.

To further reduce size and weight, the Apollo computer was
designed with a single adder circuit, which the computer used to up­
date incremental inputs, advance the next address register, modify
specified addresses, and do all the arithmetic48 . The adder and the 16
1/0 channels were probably the busiest circuits in the machine.

Memory

The story of memory in the Apollo computer is a story of increas­
ing size as mission requirements developed. In designing or purchas­
ing a computer system for a specific application, the requirements for
memory are among the most difficult to estimate. NASA and its com­
puter contractors have been consistently unable to make adequate
judgments in this area. Apollo's computer had both permanent and
erasable memory, which grew rapidly over initial projections.

Apollo's computer used erasable memory cells to store inter­
mediate results of calculations, data such as the location of the
spacecraft, or as registers for logic operations. In Apollo, they also
contained the data and routines needed to ready the computer for use
when it was first turned on. Fixed memory contained programs that
did not need to be changed during the course of a mission. The cycle
times of the computer's memories were equal for simplicity of
operation49.

MIT's original design called for just 4K words of fixed memory
and 256 words of erasable (at the time, two computers for redundancy
were still under consideration)50. By June 1963, the figures had
grown to l0K of fixed and lK of erasable51 . The next jump was to
12K of fixed, with MIT still insisting that the memory requirement for
an autonomous lunar mission could be kept under 16K52! Fixed
memory leapt to 24K and then finally to 36K words, and erasable
memory had a final configuration of 2K words.

Lack of memory caused constant and considerable software

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 37

development problems, despite the increase of fixed memory 18 times
over original estimates and erasable memory 16 times. Part of the
software difficulties stemmed from functions and features that had to
be dropped because of program size considerations, and part because
of the already described addressing difficulties. If the original desig­
ners had known that so much memory would be needed, they might
not have chosen the short word size, as a 24-bit word could easily
directly address a 36K bank, with enough room for a healthy list of in­
struction codes.

One reason the designers underestimated the memory require­
ments was that NASA did not provide them with detailed specifica­
tions as to the function of the computer. NASA had established a need
for the machine and had determined its general tasks, and MIT
received a contract based on only a short, very general requirements
statement in the request for bid. The requirements started changing
immediately and continued to change throughout the program.
Software was not considered a driving factor in the hardware design,
and the hardware requirements were, at any rate, insufficient.

The actual composition of the memory was fairly standard in its
erasable component but somewhat unique in its fixed component. The
erasable memory consisted of coincident-current ferrite cores similar
to those on the Gemini computer, and the fixed memory consisted of
core rope, a high-density read-only memory using cores of similar
material composition as the erasable memory but of completely dif­
ferent design. MIT adopted the use of core rope in the original Mars
probe computer design and carried it over to the Apollo53 Chief ad­
vantage of the core rope was that it could put more information in less
space, with the attendant disadvantages that it was difficult to
manufacture and the data stored in it were unchangeable once it left
the factory (see Box 2-1).

38 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box 2- l: Core Rope: A Unique Data Storage Device

Each core in an erasable memory could store one bit of information,
and each core in the core rope fixed memory could store four words of
information. In the erasable memory, cores are magnetized either clock­
wise or counterclockwise, thus indicating the storage of either a one or a
zero. In fixed memory, each core functions as a miniature transformer,
and up to 64 wires (four sets of 16-bit words) could be connected to each
core. If a wire passed through a particular core, a one would be read. If a
particular wire bypassed the core, a zero would be read. For example, to
store the data word 1001000100001111 in a core, the first, fourth, eighth,
and thirteenth through sixteenth wires would pass through that core, the
rest would bypass it . A 2-bit select code would identify which of the four
words on a core was being read, and the indicated 16 bits would be sent
to the appropriate register54. In this way, up to 2,000 bits could be stored
in a cubic inch55.

The computer contained core rope arranged in six modules, and
each module contained 6,144 16-bit words56. The modules further
divided into "banks" of 1,024 words. The first two banks were called the
"fixed-fixed memory" and could be directly addressed by 12 bits in an
instruction word. The remaining 34 were addressable as described in the
text, using the 5-bit contents of the fixed bank register and the 10 bits in
an instruction word57.

The use of core rope constrained NASA's software developers.
Software to be stored on core rope had to be delivered months before
a scheduled mission so that the rope could be properly manufactured
and tested. Once manufactured, it could not be altered easily since
each sealed module required rewiring to change bits. The software not
only had to be finished long in advance, but it had to be perfect.

Even though common sense indicates that it is advantageous to
complete something as complex and important as software long be­
fore a mission so that it can be used in simulators and tested in various
other ways, software is rarely either on time or perfect. Fortunately for
the Apollo program, the nature of core rope put a substantial amount
of pressure on MIT's programmers to do it right the first time. Unfor­
tunately, the concept of "bug"-free software was alien to most
programmers of that era. Programming was a fully iterative process of
removing errors. Even so, many "bugs" would carry over into a
delivered product due to unsophisticated testing techniques. Errors
found before a particular system of rope was complete could be fixed
at the factory58, but most others had to be endured. Raytheon, the sub­
contractor that built the ropes, could eliminate hard-wiring errors in­
troduced during manufacture by testing the rope modules against the

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 39

1 () 1 l 1 0 C,

I) ,:, l .1 j 1 rJ

0 0 C J. 1 C ()

0 0 0 0 1 1 ,, R,:,
- - - - - ~ -

-- r ~ ,_ -

- ,- - ---
- -

,_ -
S[ll:Ci - ~ f-- f- -

l
Figure 2-1. This diagram shows the principle behind core rope . Suppose that the
data shown above the cores in the drawing is to be stored in the specific core.
Thus I 000 is stored in the fust core on the left by attaching the top wire from the
select circuit to the core and bypassing it with the next three wires. When that
core is selected for reading, the wire attached to the core will indicate a "one"
because all cores in a rope are permanently charged as ones; the wires bypassing
the core will indicate zeroes .

delivery tape of the programs. The company built a device to do
this59.

Production Problems and Testing

Development and production of the Apollo guidance, navigation,
and control system reflected the overall speed of the Apollo program.
Design of the system began in the second quarter of 1961, and NASA
installed a Block I version in a spacecraft on September 22, 1965.
Release of the original software (named CORONA) was in January
1966, with the first flight on August 25, 196660. Less than 3 years
after that, designers achieved the final program objective. Even
though fewer than two dozen spacecraft flew, NASA authorized the
building of 75 computers and 138 DSKYs. Fifty-seven of the com­
puters and 102 of the crew interfaces were of the Block II design61 .
This represents a considerable production for a special-purpose com­
puter of the type used in Apollo. The need to quickly build high­
quality, high-reliability computers taxed the abilities of Raytheon.

Through AC Electronic Circuits (contractor for the entire
guidance system), Raytheon was chosen to build the computers MIT
had designed largely because of its Polaris experience, but it had

40 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

never built a computer as complex as the one for Apollo. The Polaris
machine was much simpler. Despite the use of experienced Polaris
personnel, Raytheon's production division for the Apollo computer
went from 800 to 2,000 employees in a year's time in order to handle
the increased difficulties and speed of production62.

Rapid growth, underestimation of production requirements, and
reliability problems dogged Raytheon throughout the program.
Changes in design made by MIT in late 1962 caused the company its
initial trouble. The original request for proposal had featured Polaris
techniques, so Raytheon bid low, expecting to use the same tools and
production line for the Apollo machine. The changes in component
types and memory size caused cost estimates to nearly double, result­
ing in considerable friction with NASA63 . NASA was also worried
when two comguters and fully 50% of the Block I DSKY s failed
vibration tests6 . These failures turned out to be largely caused by
contaminated flat packs and DSKY relays. Particles would shake
loose during vibration testing65 . The Block II computers would not
work at first due to excessive signal propagation time in the
micrologic interconnection matrix. The solution was to switch from
nickel ribbon connectors to a circuit board, causing an increase of
$500,000 in production costs66.

These sorts of problems caused the Manned Spacecraft Center to
authorize a complete design review of the AGC in February 1966. The
lack of adequate support documentation was found to be the most sig­
nificant fault of the Block II computer67. This sort of problem is
usually the result of speeding up development to the point at which
changes are not adequately documented.

Continuous and careful attention to reliability led to the discovery
of problems. Builders flight-screened components lot by lot68 . Post­
production hardware tests included vibration, shock, acceleration,
temperature, vacuum, humidity, salt fog, and electronic noise. 69 As
D.C. Fraser, an engineer on the project, later remarked, "reliability of
the.Apollo computer was bought with money"70.

THE APOLLO GUIDANCE COMPUTER: SOFTWARE

Development of the on-board software for the Apollo program
was an important excercise both for NASA and for the discipline of
software engineering. NASA acquired considerable experience in
managing a large, real-time software project that would directly in­
fluence the development of the Shuttle on-board software. Software
engineering as a specific branch of computer science emerged as a
result of experiences with large-size military, civilian, and spaceborne
systems. As one of those systems, the Apollo software effort helped

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 41

provide examples both of failure and success that could be incor­
porated into the methodology of software engineering.

In the Apollo program, as well as other space programs with mul­
tiple missions, system software and some subordinate computer
programs are only written once, with some modifications to help in­
tegrate new software. However, each mission generates new opera­
tional requirements for software, necessitating a design that allows for
change. Since 1968, when designers first used the term software en­
gineering, consciousness of a software life cycle that includes an ex­
tended operational maintenance period has been an integral part of
proper software development.

Even during the early 1960s, the cycle of requirements definition,
design, coding, testing, and maintenance was followed, if not fully ap­
preciated, by software developers. A Bellcomm report prepared for
the Apollo program and dated November 30, 1964 could serve as an
excellent introduction to the concept today 71 . The important dif­
ference from present practice was the report's recommendation that
modules of code be limited to 200 to 300 lines, about five times larger
than current suggestions. The main point of the report (and the thrust
of software engineering) was that software can be treated the same
way as hardware, and the same engineering principles can apply.
However, NASA was more used to hardware development than to
large-scale software and, thus, initially failed adequately to control the
software development. MIT, which concentrated on the overall
guidance s1stem, similarly treated software as a secondary
occupation 7 . This was so even though MIT manager A.L. Hopkins
had written early in the program that "upon its execution rests the ef­
ficiency and flexibility of the Apollo Guidance and Navigation
System"73. Combined with NASA's inexperience, MIT's non­
engineering approach to software caused serious development
problems that were overcome only with great effort and expense. In
the end NASA and MIT produced quality software, primarily because
of the small-group nature of development at MIT and the overall
dedication shown by nearly everyone associated with the Apollo
program 74.

Managing the Apollo Software Development Cycle

One purpose of defining the stages in the software development
cycle and of providing documentation at each step is to help control
the production of software. Programmers have been known to in­
advertently modify a design while trying to overcome a particular
coding difficulty, thus making it imposs.ible to fulfill the specification.
Eliminating communication problems and preventing variations from
the designed solution are among the goals of software engineering. In

42 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

the Apollo program, with an outside organization developing the
software, NASA had to provide for quality control of the product. One
method was a set of standing committees; the other was the accep­
tance cycle.

Three boards contributed directly to the control of the Apollo
software and hardware development. The Apollo Spacecraft Con­
figuration Control Board monitored and evaluated changes requested
in the design and construction of the spacecraft itself, including the
guidance and control system, of which the computer was a part. The
Procedures Change Control Board, chaired by Chief Astronaut
Donald K. Slayton, inspected items that would affect the design of the
user interfaces. Most important was the Software Configuration Con­
trol Board, established in 1967 in response to continuing problems
and chaired for a long period by Christopher Kraft. It controlled the
modifications made to the on-board software 75. All changes in the ex­
isting specification had to be routed through this board for resolution.
NASA's Stan Mann commented that MIT "could not change a single
bit without permission"76.

NASA also developed a specific set of review points that paral­
leled the software development cycle. The Critical Design Review
(CDR) resulted in acceptance of specifications and requirements for a
given mission and placed them under configuration control. It fol­
lowed the preparation of the requirements definition, guidance equa­
tion development, and engineering simulations of the equations. Next
came a First Article Configuration Inspection (FACI). Following the
coding and testing of programs and the production of a validation
plan, it marked the completion of the development stage and placed
the software code under configuration control. After testing was com­
pleted, the Customer Acceptance Readiness Review (CARR) certified
that the validation process resulted in correct software. After the
CARR, the code would be released for core rope manufacture. Finally
the Flight Readiness Review (FRR) was the last step in clearing the
software for flight77. The acceptance process was mandatory for each
mission, providing for consistent evaluation of the software and ensur­
ing reliability. The unique characteristic of ICs of the Apollo software
appeared at each stage of the software life cycle.

Requirements Definition

Defining requirements is the single most difficult part of the
software development cycle. The specification is the customer's state­
ment of what the software product is to do. Improperly prepared or
poorly defined requirements mean that the resulting software will
likely be incomplete and unusable. Depending on the type of project,
the customer may have little or a lot to do with the preparation of the

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 43

specification. In most cases, a team from the software developers
works with the customer.

MIT worked closely with NASA in preparing the Guidance and
Navigation System Operations Plan (GSOP), which served as the re­
quirements document for each mission. NASA's Mission Planning
and Analysis Division at the Manned Spacecraft Center provided
detailed guidance requirements right down to the equation level78 . Of­
ten these re~uirements were in the form of flow charts to show
detailed logic 9. The division fashioned these requirements into a con­
trolled document that contained specific mission requirements,
preliminary mission profile, preliminary reference trajectory, and
operational requirements for spacecraft guidance and navigation.
NASA planned to review the GSOP at launch minus 18 months, 16
months, 14 months and then to baseline or "freeze" it at 13.5 months
before launch. The actual programs were to be finished at launch
minus 10.5 months and tested until 8 months ahead, when they were
released to the manufacturer, with tapes also kept at MIT and sent to
Houston, North American (CM manufacturer), and Grumman (LEM
manufacturer) for use in simulations. At launch minus 4 months the
core ropes were to be completed and used throughout the mission80.

In software engineering practice today, the specification docu­
ment is followed by a design document, from which the coding is
done. Theoretically, the two together would enable any competent
programmer to code the program. The GSOPs contained characteris­
tics of both a specification and design document. But, as one of the
designers of the Apollo and Shuttle software has said, "I don't think I
could give you the requirements for Apollo and have you build the
flight software"81 . In fact, the plans varied both· in what they included
and in the level of detail requirements. This variety gave MIT con­
siderable latitude when actually developing the flight software, thus
reducing the chance that it would be easily verified and validated.

Coding: Contents of the Apollo Software

By 1963, designers determined that the Apollo computer software
would have a long list of capabilities, including acting as backup to
the Saturn booster, controlling aborts, targeting, all navigation and
flight control tasks, attitude determination and control, digital
autopilot tasks, and eventually all maneuvers involving velocity
changes82. Programs for these tasks had to fit in the memories of two
small computers, one in the CM and one in the LEM. Designers
developed the programs using a Honeywell 1800 computer and later
an IBM 360, but never with the actual flight hardware. The develop­
ment computers generated binary object code and a listing83. The tape

44 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

containing the object code would be tested and eventually released for
core rope manufacture. The listing served as documentation of the
code84.

Operating System Architecture

The AGC was a priority-interrupt system capable of handling
several jobs at one time. This type of system is quite different from a
"round-robin executive." In the latter, programs have a fixed amount
of time in which to run before being suspended while the computer
moves on to the remaining pending jobs, thus giving each job the
same amount of attention. A priority-interrupt system is always ex­
ecuting the one job with the highest priority; it then moves on to
others of equal or lower priority in its queue.

The Apollo control programs included two related to job schedul­
ing: the Executive and the Waitlist. The Executive could handle up to
seven jobs at once while the Waitlist had a limit of nine short tasks85.
Waitlist tasks had execution times of 4 milliseconds or less. If a task
ran longer than that, it would be promoted by the Waitlist to "job"
status and moved to the Executive's queue86. The Executive checked
every 20 milliseconds for jobs or tasks with higher priorities than the
current ones87. It also managed the DSKY displays88. If the Execu­
tive checked the priority list and found no other jobs waiting, it ex­
ecuted a program called DUMMY JOB continuously until another job
came into the queue89.

The Executive had other duties as part of controlling jobs. One
solution to the tight memory in the AGC was the concept of time­
sharing the erasable memory90. No job had permanent claim to any
registers in the erasable store. When a job was being executed, the Ex­
ecutive would assign it a "coreset" of 12 erasable memory locations.
Also, when interpretive jobs were being run (the Interpreter is ex­
plained below), an additional 43 cells were allocated for vector ac­
cumulation (V AC). The final lunar landing programs had eight
coresets in the LEM computer and just seven in the CM. Both had
five VACs91 . Moreover, memory locations were given multiple as­
signments where it was assured that the owning processes would
never execute at the same time. This approach caused innumerable
problems in testing as software evolved and memory conflicts were
created due to the changes.

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 45

Programming the AGC

One can program a computer on several levels. Machine code, the
actual binary language of the computer itself, is one method of
specifying instructions. However, it is tedious to write and prone to
error. Assembly language, which uses mnemonics for instructions,(e.
g., ADD in place of a 3-bit operation code) and, depending on its
sophistication, handles addressing, is at a higher level. Most program­
mers in the early 1960s were quite familiar with assembly languages,
but such programs suffered from the need to put too much respon­
sibility in the hands of the programmer. For Apollo, MIT developed a
special higher order language that translated programs into a series of
subroutine linkages, which were interpreted at execution time. This
was slower than a comparable assembly language program, but the
language required less storage to do the same job92. The average in­
struction required two machine cycles-about 24 milliseconds-to
execute93.

The interpreter got a starting location in memory, retrieved the
data in that location, and interpreted the data as though it were an
instruction94. Instead of having only the 11 instructions available in
assembler, up to 128 pseudoinstructions were defined95. The larger
number of instructions in the interpreter meant that equations did not
have to be broken down excessively96. This increased the speed and
accuracy of the coding.

The MIT staff gave the resulting computer programs a variety of
imaginative names. Many, such as SUNDISK, SUNBURST, and
SUNDIAL, related to the sun because Apollo was the god of the sun
in the classical period. But the two major lunar flight programs were
called COLOSSUS and LUMINARY. The former was chosen be­
cause it began with "C" like the CM, and the latter because it began
with "L" like the LEM97. Correspondence between NASA and MIT
often shortened these program names and appended numbers. For ex­
ample, SOLRUM55 was the 55th revision of SOLARIUM for the
AS501 and 502 missions. BURST116 was the 116th revision of
SUNBURST98. Although these programs had many similarities,
COLOSSUS and LUMINARY were the only ones capable of navigat­
ing a flight to the moon. On August 9, 1968, planners decided to put
the first released version of COLOSSUS on Apollo 8, which made the
first circumlunar flight possible on that mission99.

Handling Restarts

One of the most significant differences between batch-type com-

46 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

puter systems and real-time systems is the fact that in the latter, an ab­
normal termination of a program is not acceptable. If a ground-based,
non-real-time computer system suffers a software failure ("goes
down") due to overloads or mismanagement of resources, it can
usually be brought up again without serious damage to the users.
However, a failure in a real-time system such as that in an aircraft
may result in loss of life. Such systems are backed up in many ways,
but considerable emphasis is still placed on making them failure proof
from the start. Obviously, the AGC had to be able to recover from
software failures. A worst-case example would be a failure of the
computer during an engine burn. The system had to have a method of
staying "up" at all times.

The solution was to provide for restarts in case of software
failures. Such restarts could be caused by a number of conditions:
voltage failures, clock failure, a "rupt lock" in which the system got
stuck in interrupt mode, or a signal from the NIGHT WATCHMAN
program, which checked to see if the NEWJOB register had not been
tested by the EXECUTIVE, indicating that the operating system was
hung up in some way 100_

An Apollo restart transferred control to a specified address, where
a program would begin that consulted phase tables to see which jobs
to schedule first. These jobs would then be directed to pick up from
the last restart point. The restart point addresses were kept in a restart
table. Programmers had to ensure that the restart table entries and
phase table entries were kept up to date by the software as it
executed lO 1. The restart program also cleared all output channels,
such as control jet commands, warning lights, and engine on and off
commands, so that nothing dangerous would take place outside of
computer control 102. ·

A software failure causing restarts occurred during the Apollo 11
lunar landing. The software was designed to give counter increment
requests priority over instructions 1°3. This meant that if some item of
hardware needed to increment the count in a memory register, its re­
quest to do so would cause the operating system to interrupt current
jobs, process the request, and then pick up the suspended routines. It
had been projected that if 85,000 increments arrived in a second, the
effect would be to completely stop all other work in the system 104.
Even a smaller number of requests would slow the software down to
the point at which a restart might occur. During the descent of Apollo
11 to the moon, the rendezvous radar made so many increment re­
quests that about 15% of the computer systems' resources were tied
up in responding105. The time spent handling the interrupts meant that
the interrupted jobs did not have enough computer time to complete
before they were scheduled to begin again. This situation caused res­
tarts to occur, three of which happened in a 40-second period while
program P64 of LUMINARY ran during descent 106. The restarts

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 47

caused a series of warnings to be displayed both in the spacecraft and
in Mission Control. Steven G. Bales and John R. Gannan, monitoring
the computer from Mission Control, recognized the origin of the
problem. After consultation, Bales, reporting to the Flight Director,
called the system "GO" for landing107. They were right, and the res­
tart software successfully handled the situation. The solution to this
particular problem was to correct a switch position on the rendezvous
radar which, through an arcane series of circuitry, had caused the
analog-to-digital conversion circuitry to race up and down 108. This
incident proved the need for and effectiveness of built-in software
recovery for unknown or unanticipated error conditions in flight
software-a philosophy that has appeared deeply embedded in all
NASA manned spaceflight software since then.

Verification and Validation

There could be no true certification of the Apollo software be­
cause it was impossible to simulate the actual conditions under which
the software was to operate, such as zero-G. The need for reliability
motivated an extensive testing program consisting of simulations that
could be accomplished before flight. Three simulation systems were
available for verification purposes: all-digital, hybrid, and system test
labs. All-digital simulations were performed on the Honeywell 1800s
and IBM 360s used for software development. Their execution rate
was 10% of real time 109. Technicians did hybrid simulations in a lab
that contained an actual AGC with a core rope simulator (as core rope
would not be manufactured until after verification of the program) and
an actual DSKY. Additionally, an attached Beckman analog computer
and various interfaces simulated spacecraft responses to computer
commands 11 O. Further ad hoc verification took place in the mission
trainers located in Houston and at Cape Canaveral, which would run
the released programs in their interpretive simulators.

The simulations followed individual unit tests and integrated tests
of portions of the software. At first, MIT left these tests to the
programmers to be done on an informal basis. It was very difficult at
first to get the Instrumentation Laboratory to supply test plans to
NASA 111 . The need for formal validation rose with the size of the
software. Programs of 2,000 instructions took between 50 and 100 test
runs to be fully debugged, and full-size mission loads took from 1,000
to 1,200 runs 112.

NASA exerted some pressure on MIT to be more consistent in
testing, and it eventually adopted a four-level test structure based
largely on the verification of the Gemini Mission Control Center
developed by IBM in 1964113. This is important because formal

48 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

release of the program for rope manufacture was dependent on the
digital simulations only. Raytheon performed the hybrid and system
tests after they had the release tape in hand 114. At that time, MIT
would have released an "AGC Program Verification Document" to
NASA. Aside from help from IBM, NASA also had TRW participate
in developing test plans. Having an outside group do some work on
verification is a sound software engineering principle, as it is less
likely to have a vested interest in seeing the software quickly succeed,
and it helps prevent generic errors.

Apollo Software Development Problems

Real-time flight software development on this scale was a new
experience for both NASA and the MIT Instrumentation Laboratory.
Memory limitations affected the software so that some features and
functions had to be abandoned, whereas tricky programming tech­
niques saved others. Quality of the initial code was sometimes poor,
so verification took longer and was more expensive. Despite valiant
validation efforts, software bugs remained in released programs, forc­
ing adjustments by users. Several times, NASA administrators put
pressure on MIT to reduce software complexity because there were
real doubts about MIT's ability to deliver reliable software on time.
Apparently, few had anticipated that software would become a pacing
item for Apollo, nor did they properly anticipate solutions to the
problems.

By early 1966, program requirements even exceeded the Block II
computer's memory. A May software status memo stated that not only
would the programs for the AS504 mission (earth orbit with a LEM)
exceed the memory capacity by 11,800 words but that the delivery
date for the simpler AS207 /208 programs would be too late for the
scheduled launch115. Lack of memory and the need for faster
throughput resulted in complicating and delaying the program
development effort116. One of MIT's top managers explained

If you are limited in program capacity ... you have to fix. You
have to get ingenious, and as soon as you start to get ingenious
you get intermeshing programs, programs that depend upon
others and utilize other parts of those, and many · things are going
on simultaneously. So it gets difficult to assign out little task
groups to program part of the computer; you have to do it with a
very technical team that understands all the interactions on all
these things 117.

The development of obscure code caused problems both in under­
standing the programs and validating them, and this, in turn, caused
delays. MIT's considerable geographic distance from Houston caused

COMPUTERS ON BOARD THE APOLLO SPACECRAFf 49

additional problems. Thus, NASA's contract managers had to com­
mute often. Howard W. "Bill" Tindall, newly assigned from the
Gemini Project as NASA's "watchdog" for MIT software, spent 2 or 3
days a week in Boston starting in early 1966118.

Tindall was well known at the Manned Spacecraft Center due to
his legendary "Tindallgrams "-blunt memos regarding software
development for Apollo. One of the first to recognize the importance
of software to mission schedules, he wrote on May 31, 1966 that "the
computer programs for the Apollo spacecraft will soon become the
most pacing item for the Apollo flights" 119. MIT was about to make
the standard emergency move when software was in danger of being
late: to throw more bodies into the project, a tactic that often back­
fires. As many as 50 people were to be added to the programming
staff, and the amount of interaction between programmers and, thus,
the potential for miscommunication increased along with the time
necessary to train newcomers. MIT tried to protect the tenure of its
permanent staff by using contractors who could be easily released.
The hardware effort peaked at 600 workers in June of 1965 and fell
off rapidly after that, while software workers steadily increased to 400
by August of 1968. With the completion of the basic version of
COLOSSUS and LUMINARY, the number of programmers quickly
decreased120. This method, although in the long-term interests of the
laboratory, caused considerable waste of resources in communication
and training.

Tindall's memo also detailed many of NASA's efforts to improve
MIT's handling of the software development. Tindall had taken Lyn­
wood Dunseith, then head of the computer systems in Mission Con­
trol, and Richard Hanrahan of IBM to MIT to brief the Instrumen­
tation Laboratory on the Program Development Plan used for manage­
ment of software development in the Real-Time Computing Center
associated with Mission Control. The objective was to give MIT some
suggestions on measuring progress and detecting problem areas early.
One NASA manager pointed out that the Instrumentation Laboratory
was protective of the image of MIT, and one way to control MIT was
to threaten its self-esteem121 . The need to call on IBM for advice was
apparently a form of negative motivation. A couple of weeks later,
Tindall reported that Edward Copps of MIT was leading the develop­
ment of a Program Development Plan based on one done by IBM 122.
However, by July he was complaining that MIT was implementing it
too slowly123. In fact, some aspects of configuration control such as
discrepancy reporting (when the software does not match the
specification) took over a year for MIT to implement 124.

NASA had to be very careful in approving cuts in the program re­
quirements to achieve some memory savings. Some features were ob­
viously "frosting," and could easily be eliminated; for example, the ef­
fects of the oblate nature of the earth, formerly figured into lunar orbit

SO COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

rendezvous but actually minimal enough to be ignored 125. Also cut
were some attitude maneuver computations. They therefore left Reac­
tion Control System (RCS) bums to the "feel" of the pilot, which
meant slightly greater fuel expenditure126. Overall, the cuts resulted
in software that saved money and accelerated development but could
not minimize fuel expenditures nor provide the close guidance
tolerance that was within the capability of the computer, given more
memory 127.

Flight AS-204: A Breaking Point

Despite efforts by both MIT and NASA, by the summer of 1966,
flight schedules and problems in development put both organizations
in a dangerous position regarding the software. A study of the
problems encountered with the software for flight AS-204, which was
to be the first manned Apollo mission, best demonstrates the urgency.
On June 13, Tindall reported that the AS-204 program undergoing in­
tegrated tests had bugs in every module. Some had not been unit
tested prior to being integrated 128. This was a serious breach of
software engineering practice. If individual modules are unit tested
and proven bug-free, then bugs found in integrated tests are most
likely located in the interfaces or calling modules. If unit testing has
not been done then bugs could be anywhere in the program load, and
it is very difficult to identify the location properly. This vastly in­
creases the time and, thus, the cost of debugging. It causes a much
greater slip in schedule than time spent on unit tests. Even worse, Tin­
dall said that the test results would not be formally documented to
NASA but that they would be on file if needed.

The AS-204 software schedule problems affected other things.
All the crew-requested changes in the programs were rejected because
including them would cause even further delays 129. The AS-501
program and others began to slip because the AS-204 fixes were
saturating the Honeywell 1800s used in program development130.
MIT also added another nine programmers to the team, all from AC
Electronic, thus increasing communication and training problems.

The eventual result was that the flight software for the mission
was of dubious quality. Tindall predicted such would be the case as
early as June 1966, saying that "we have every expectation that the
flight program we finally must accept will be of less than desirable
quality" 131 . In other words, it would contain bugs, bugs that would
not actually threaten the mission directly but that would have to be
worked around either by the crew or by ground control. They found
one such bug less than a month before the scheduled February 21,
1967, launch date. Ground computers and the Apollo guidance com-

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 51

puter calculated the time for the de-orbit bum that preceded re-entry.
Simulations performed during January 1967 and reported on the 23rd
indicated that there was a discrepancy between the two calculations of
as much as 138 seconds! Since the core rope was already installed in
the spacecraft, the only possible fix (besides a delay in the launch
time) would be to have the crew ignore the Apollo computer solution.
The ground would transmit the Real-Time Computing Center solu­
tion, after which an astronaut would have to key the numbers into the
Apollo computer132. This situation, and other discrepancies, led one
NASA engineer to later remark that "we were about to fly with flight
software that was really suspect" 133.

AS-204 did not fly, so that software load was never fully tried.
On January 27, 1967, during a simulation with the crew in the
spacecraft on the pad, a fire destroyed the CM, killed the crew, and
delayed the Apollo program for months. The changes in managing
software development put into effect by NASA and MIT during 1966
had not had enough time to take effect before the fire. In the ensuing
period, with manned launches on indefinite delay, MIT was under the
direction of the NASA team led by Tindall and was able to catch up
on its work and take steps to make the software more reliable. NASA
and MIT split the effort among three programs: CM earth orbit, CM
lunar orbit, and lunar module lunar landing (LM earth orbit was
dropped) 134. By October 17, 1967, the SUNDISK earth orbit program
was complete, verified, and ready for core rope manufacture, a year
before the first manned flight135. The time gained by the delay caused
by the fire allowed for significant improvements in the Apollo
software. Tindall observed at the time, "It is becoming evident that we
are entering a new epoch regarding development of spacecraft com­
puter programs." No longer would programs be declared complete in
order to meet schedules, requiring the users to work around errors. In­
stead, quality would be the primary consideration l36_

The Guidance Software Task Force

Despite postfire improvements, Apollo software had more hurdles
to clear. NASA was aware of continuing concern about Apollo's
computer programs. Associate Administrator for Manned Spaceflight
George E. Mueller formed a Guidance Software Task Force on
December 18, 1967 to study ways of improving development and
verification*. The group met 14 times at various locations before its
final report in September 1968 13 7.

*Members of the Task Force included Richard H. Battin, MIT; Leon R. Bush,
Aerospace Corp.; Donald R. Hagner, Bellcomm; Dick Hanrahan, IBM; James
S. Martin, NASA-Langley; John P. Mayer, NASA-MSC; Clarence Pitman, TRW;
and Ludie G. Richard, NASA-Marshall. Mueller was the chairman.

52 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Even while the Task Force was investigating, Mueller took other
steps to challenge MIT. A Software Review Board re-examined the
software requirements for the lunar mission in early February 1968.
The board judged the programs to be too sophisticated and complex,
and Mueller requested that they aim for a 50% reduction in the
programs, with increased propellant consumption allowed as a
tradeoff138. An aide reported that Mueller was convinced that MIT
"might not provide a reliable, checked-out program on schedule" for
the lunar landing mission l39.

The recommended 50% scrub did not occur, and the final report
of the Task Force was very sympathetic to the problems involved in
developing flight software. It recommended standardization of sym­
bols, constants, and variable names used at both Houston and
Huntsville to make communication and coding easier140. The Task
Force acknowledged that requirements would always be dynamic and
that development schedules would always be accelerated, but rather
than using this for an excuse for poor quality, the group recommended
that software not be slighted in future manned programs. Adequate
resources and personnel were to be assigned early to this "vital and
underestimated area" 141 . This realization would have great effect on
managing later software development for the Space Transportation
System.

Mueller remained concerned about software even after the Task
Force dissolved. On March 6, 1969, he wrote a letter to Robert Gil­
ruth, NASA deputy administrator, complaining that software changes
were being made too haphazardly and should receive more attention,
equal to that given to hardware change requests. Gilruth replied five
days later, disagreeing, noting that the Configuration Control Board
and other committees formed an interlocking system adequate for
change control 142.

Lessons of the Apollo Software Development Process

Overcoming the problems of the Apollo software, NASA did suc­
cessfully land a man on the moon using programs certifiably adequate
for the purpose. No one doubted the quality of the software eventually
produced by MIT nor the dedication and ability of the programmers
and managers at the Instrumentation Lab. It was the process used in
software development that caused great concern, and NASA helped to
improve it143. The lessons of this endeavor were the same learned by
almost every other large system development team of the 1960s: (a)
documentation is crucial, (b) verification must proceed through
several levels, (c) requirements must be clearly defined and carefully
managed, (d) good development plans should be created and ex-

COMPUTERS ON BOARD THE APOLLO SPACECRAFf 53

ecuted, and (e) more programmers do not mean faster development.
Fortunately, no software disasters occurred as a result of the rush to
the moon, which is more a tribute to the ability of the individuals do­
ing the work than to the quality of the tools they used.

USING THE AGC

The Apollo computer system made great demands on the crew. It
took about 10,500 keystrokes to complete a lunar mission; not much
in the life of an airline reservations clerk but still indicative of how
computer centered the crew had to be144. During the period in which
the software was criticized for its complexity, designers attempted to
reduce the number of keystrokes required to execute various
programs. When possible, they also eliminated built-in halts as data
were displayed for astronaut approval. However, the "fourth crew
member" never abandoned center stage145.

Apollo's crew employed its computer through the use of the
DSKYs. In the CM one was on the main control panel opposite the
commander's couch. The other was at the navigator's station in the
lower equipment bay, where the computer itself was located. Block I
had a different DSKY at the navigator's station than on the main
panel146, but they were identical in the Block II series. DSKY and
computer activity could be monitored from the ground as the com­
puter transmitted data words to drive real-time displays in Mission
Control 147.

The crew could communicate with the computer through keys,
displays, and warning lights on the DSKY. Additionally, the uplink
telemetry could provide input to the machine, and so could the
preflight checkout equipment148. The computer, in tum, could com­
municate with the crew by flashing the PROGram, VERB, and NOUN
displays149. The DSKY displays included 10 warning lights, a com­
puter activity light, a PROGram display, VERB and NOUN displays,
three five-digit numeric displays with signs, and 19 keys including
VERB, NOUN, CLEAR, KEY RELEASE, PROCEED, RESET,
ENTER, PLUS, MINUS, and the digits 0-9. See Boxes 2-2 and 2-3
for functions and use.

54 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

I UPLINK

I
TEMP

I I ACTY

I NO ATT I
GIMBAL

LOCK

I
STBY

I I
PROG

I

IKEY REL 11 REST ART I

IOPR ERRI ITRACKERI

I I I I

CO :vl P I PROG I
ACTY 77

t VE H U 1 I NOUN I

3/ 33
• 589'-/'-/
+ _=/58 ,n

IU

I 11 I --836 I'-/

Figure 2-2. The Display and Keyboard (DSKY) of an Apollo spacecraft.
(Prepared by The Wichita State University Media Services)

ORIGINAL PAGE IS
OE £00R QUALIT.Yi

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 55

Box 2-2:-Apollo Display and Keyboard Lights

Ten DSKY warning lights had the following functions:

• COMP ACTY: This lit up when the computer was running a
program.

• UPLINK ACTY: Lit when data was being received from the
ground.

• TEMP: Lit when the temperature of the stable platform was out
of tolerance.

• NO ATT: Lit when the inertial subsystem could not provide at­
titude reference.

• GIMBAL LOCK: Lit when the middle gimbal angle was greater
than 70 degrees.

• STB Y: Lit when the computer system was on standby.

• PROG: Lit when the computer was waiting for additional infor­
mation to be entered by the crew to complete the program.

• KEY REL: Lit when the computer needed control of the DSKY
to complete a program. Sometimes display information could be
"buried" under other routines or by a priority interrupt. The crew
could press the KEY REL key to release the keyboard to the re­
questing program150. When the KEY REL light went on, that
signaled the crew to press the key.

• REST ART: Lit when the computer was in the restart program.
This was the light that kept coming on during the Apollo 11 land­
ing.

• QPR ERR: Lit when the computer detected an error on the
keyboard.

• TRACKER: Lit when one of the optical coupling units failed .

The LEM DSKY had three additional lights: NO DAP, ALT, and
VEL, which were related to failures of the digital autopilot and to warn
of altitude and velocity readings outside of the predetermined limits.

56 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 2-3. Another DSKY was located at the navigator's station in the com­
mand module. Astronaut James A. Lovell takes a star sighting during the Apollo 8
mission. (NASA photo S-69-35099)

Box 2-3:-Apollo Display and Keyboard Displays

Seven displays were available on the DSKY:

• PROG: This was a two-digit display indicating what numbered
program the computer was currently executing.

• VERB: A two-digit display of the verb number being entered
(the verb-noun system is discussed below).

• NOUN: A two-digit display of the noun number being entered.

• Three five-digit numeric displays, which showed numbers in ei­
ther decimal or octal (base eight). When a sign was shown with
the number, the number was decimal; otherwise, it was octal 151 .

ORIGINAL PAGE IS
OF POOR QUALITY

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 57

Figure 2---4 . The interior of an Apollo Command Module, showing the location of
the DSKY on the main control panel at the left. Apollo 15 crewmen shown in­
clude Alfred M. Worden (center) and David R. Scott (left). James B. Irwin is
mostly obscured to the right. (NASA photo S-71-29952)

Using the Keys and the Verb-Noun System

Astronauts used keys to enter information and select programs
and actions. Key inputs caused automatic interrupts in the
software152. The astronauts would activate a program and then inter­
act with it by requesting and entering information; a typical software
load consisted of about 40 programs and 30 simultaneous routines153.
Changing programs and making other requests involved using the
verb-noun system. Those familiar with current computer keyboards

Ul<H._;_, JAL !'/,GE IS

O__B EOOR QUALITY

58 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

will notice the lack of alphabet keys on the DSKY. Whereas most
computer commands are entered by typing in the text of the com­
mand, the Apollo computer command list specified verb and noun
pairs. There were 100 two-digit numbers available for each, and most
were used on any given flight. Examples of verb-noun pairs are
"display velocity" and "load angle." Verb 37, for example, was
"Change Prog," which enabled the crew to set up a new program for
execution.

If, for example, the crew wanted to execute the rendezvous target­
ing program, an astronaut would first press the VERB key followed
by the digits 3 and 7, and then the ENTER key. That sequence in­
formed the computer of a request for a program change. The astronaut
would then press 3, 1, and ENTER to tell the computer to execute
program P3 l. Within the program the crew could request maneuver
angles (verb 50, noun 18), monitor the changes while a maneuver was
in progress (verb 06, noun 18), or request the velocity change required
for the next maneuver (verb 06, noun 84), among other functions. The
CSM G&C Checklist, a set of "cue cards" on three rings changed for
each mission by the Crew Procedures Division in Houston, described
all these sequences in detail. The document contained reference data,
such as a star list, verb list, noun list, alarm codes, error handling and
recovery, and the checklists for each program carried in the computer.

Despite the 100 verb-noun pairs, 70-odd programs and routines,
and a very limited user interface that alternated decimal and octal and
blinked for attention, the consensus is that the Apollo computer was
easy to use. As with other aspects of flying space missions, hours in
simulators made operating the computer second nature. NASA en­
gineer John R. Garman commented that "it's like playing the piano-­
you don't have to see your fingers to know where they are" 154.
Familiarity with the computer, remarked astronaut Eugene Ceman,
meant that pressing a wrong key simply and immediately "felt"
wrong155. Others also confirmed that using the machine eventually
became relatively natural 156. Apollo astronauts were also willing to
adapt to design foibles that would frustrate others. There were con­
cerns that a crewman initiating a maneuver from the navigator's sta­
tion would not be able to return to his couch before the burn started.
In response, Virgil Grissom was accommodating: "Well, we '11 just lie
down on the floor" 157. Astronauts also tolerated non-life-threatening
software errors not cleared up before flight as merely something else
to endure158. They did, however, complain about the annoying num­
ber of keystrokes required during a rendezvous, so designers modified
the software to make a "minkey" (minimum keystroke) option avail­
able, in which the computer could perform some functions without
constant crew approval 159. This change contributed to an even more
compact, straightforward system.

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 59

THE ABORT GUIDANCE SYSTEM

The computer in the Abort Guidance System (AGS) is probably
the most obscure computing machine in the manned spaceflight
program to date. The 330-page "Apollo Spacecraft News Reference"
prepared for the first lunar landing mission does not contain a single
reference to it, compared with several pages of description of the
Primary Guidance, Navigation, and Control System (PGNCS) com­
puter and its interfaces. The invisiblity of the AGS is a tribute to
PGNCS, since the AGS was never needed to abort a landing. It was,
however, an interesting and pioneering system in its own right.

The AGS owed its existence to NASA's abort policy; an abort is
ordered if one additional system failure would potentially cause loss
of crew160. Hence, the failure of either the PGNCS or the AGS would
have resulted in an abort. The AGS operated in an open loop, parallel
to the PGNCS in the LEM, and gave the crew an independent source
of position, velocity, attitude, and steering information161 . It could
verify navigation data during the periods when the LEM was behind
the moon and blacked out from ground control. The Apollo program
first exercised this capability during Apollo 9 and Apollo 10 leading
up to the first landing mission 162.

The AGS was a pioneer in that it was the first "strapped-down"
guidance system. The system used sensors fixed to the LEM to deter­
mine motion rather than a stable platform as in conventional inertial
guidance systems 163. The entire system occupied only 3 cubic feet
and consisted of three major components: (a) an Abort Electronic As­
sembly (AEA), which was the computer, (b) an Abort Sensor As­
sembly (ASA), which was the inertial sensor, and (c) a Data Entry and
Display Assembly (DEDA), which was the DSKY for the AGS.

AEA and DEDA: The Computer Hardware

As with the PGNCS computer, the AGS computer went through
an evolutionary period in which designers clarified and settled the re­
quirements. The first design for the system did not include a true com­
puter at all but rather a "programmer," a fairly straightforward sequen­
cer of about 2,000 words fixed memory, which did not have naviga­
tion functions. Its job was simply to abort the LEM to a "clear" lunar
orbit (one that would be higher than any mountain ranges) at which
point the crew would wait for rescue from the CM, with its more
sophisticated navigation and maneuvering system164. The require­
ments changed in the fall of 1964. To_ provide more autonomy and
safety, the AGS had to provide rendezvous capability without outside

60 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

sources of information165. TRW, the contractor, then decided to in­
clude a computer of about 4,000 words memory. The company con­
sidered an existing Univector accumulation machine but, instead,
chose a custom designed computer166.

The computer built for the AGS was the MARCO 4418 (for Man
Rated Computer). It was an 18-bit machine, with 17 magnitude bits
and a sign bit. It used 5-bit op codes and 13-bit addresses. Numbers
were stored in the two's complement form, fixed point, same as in the
primary computer. Twenty-seven instructions were available, and the
execution time varied from 10 to 70 microseconds, depending on the
instruction being performed167. The computer was 5 by 8 by 23.75
inches, weighed 32.7 pounds, and required 90 watts 168. The memory
was bit serial access, which made it slower than the PGNCS com­
puter, and it was divided into 2K of fixed cores and 2K of erasable
cores 169. The actual cores used in the fixed and erasable portions were
of the same construction, unlike those in the PGNCS computer.
Therefore, the ratio of fixed memory to erasable in the MARCO 4418
was variable 170. TRW was obviously thinking in terms of adaptability
to later applications.

The DEDA was much smaller and less versatile than the DSKY.
It was 5 .5 by 6 by 5 .19 inches and was located on the right side of the
LEM control panel in front of the pilot, about waist height171 . Sixteen
pushbutton keys were available: CLEAR, READOUT, ENTER,
HOLD, PLUS, MINUS, and the digits 0-9. It had a single, nine­
window readout display. Three windows showed the address (in
octal), one window the sign, and five, digits 172. This was similar to
the readout in the Gemini spacecraft for its computer.

Software for the AGS

. Since hardware in the AGS evolved as in PGNCS, software also
had to be "scrubbed" (reduced in size) in the AGS. Mirroring the
memory problems of PGNCS, by 1966, 2 full years before the first ac­
tive mission using the LEM, only 20 words remained of the 4,000 in
the AGS memory 173. Careful memory management became the focus
of TRW and NASA. Tindall recalled that the changes all had to be
made in the erasable portion, as the fixed portion was programmed
early and remained set to save money. However, changing the eras­
able memory turned out to be very expensive and a real headache, the
develofers fighting to free up storage literally one location at a
time17 . Also, some software decisions had to be altered in light of
possible disastrous effects. The restart program for the PGNCS has
been described. In it, a restart clears all engine bums. The first ver­
sions of the AGS software also caused engine shutdown and an at-

COMPUTERS ON BOARD THE APOLLO SPACECRAFf 61

titude hold to go into effect when a restart occurred. This would be
potentially dangerous if a restart began with the LEM close to the
lunar surface. The solution was to give the crew responsibility to
manually fire the engines during a restart if necessary 175.

Software development for the AGS followed a tightly controlled
schedule:

1. 12.5 months before launch: NASA delivers the prelimi­
nary reference trajectory and mission requirements to
TRW.

2. 11 months: Program specification and AGS performance
analysis is complete.

3. 10.5 months: NASA conducts the Critical Design
Review (CDR).

4. 8 months: The final mission reference trajectory is
delivered.

5. 7 months: The equation test results, verification test
plan, and preliminary program goes to NASA for ap­
proval.

6. 6.5 months: The First Article Configuration Inspection
(F ACI) conducted.

7. 5 months: The verified program and documentation is
delivered to NASA.

8. 4.5 months: NASA conducts the Customer Acceptance
Readiness Review (CARR).

9. 3 months: The operational flight trajectory is delivered
by NASA to the contractor.

10. 2 months: The final Flight Readiness Review (FRR) is
held.

11. 1.5 months: The tape containing the final program is
delivered 176.

One method of software verification was quite unique. To simu­
late motion and thus provide more realistic inputs to the computer,
planners used a walk-in van containing the hardware and software.
Technicians drove the van around Houston with the programs running
inside it177.

62 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Use of the AGS

The AGS was never used for an abort, but it did contribute to the
final rendezvous and docking with the CM on the Apollo 11 mission,
probably to avoid the problems encountered with the rendezvous radar
during landing178. It did monitor PGNCS performance during all mis­
sions in which it flew. The only criticism of its performance was from
astronaut John Young, who remarked that "one mistake in a rendez­
vous, and the whole thing quit" 179. Apparently, restarts occurred as
part of the recovery from some operator errors. The AGS was actually
like a parachute-absolutely necessary, but presumably never needed.

LESSONS

What did NASA learn from its experiences with the Apollo com­
puter system? At the management level, NASA learned to assign ex­
perienced personnel to a project early, rather than using the start of a
project for training inexperienced personnel; many NASA managers
of software and hardware were learning on the job while in key posi­
tions. Also, more participation by management in the early phases of
software design is necessary so that costs can be more effectively es­
timated and controlled.

From the standpoint of development, NASA learned that a more
thorough, early effort at total systems engineering must be made so
that specifications can be adequately set. NASA contractors in the
Apollo program faced changing specifications long after final require­
ments should have been fixed. This was expensive and caused such
problems as Raytheon's retooling, memory shortages, and design in­
sufficiencies.

The realization that software is more difficult to develop than
hardware is one of the most important lessons of the Apollo program.
So the choice of memory should be software driven, and designers
should develop software needed for manned spaceflight near the
Manned Spacecraft Center. The arrangement with MIT reduced over­
all quality and efficiency due to lack of communication. Also, more
modularization of the software was needed 180.

The AGC system served well on the earth-orbital missions, the
six lunar landing missions, the three Skylab missons, and the
Apollo-Soyuz test project. Even though plans existed to expand the
computer to 16K of erasable memory and 65K of fixed memory, in­
cluding making direct memory addressing possible for the erasable
portion, no expansion occurred181 . The Apollo computer did fly on
missions other than Apollo. An F-8 research aircraft used a lunar
module computer as part of a "fly-by-wire" system, in which control

COMPUTERS ON BOARD THE APOLLO SPACECRAFT 63

surf aces moved by servos at the direction of electronic signals instead
of traditional cables and hydraulics. In that way, the Apollo system
made a direct research contribution to the Shuttle, which is completely
a fly-by-wire craft. The most important legacy of the AGC, however,
was in the way NASA applied the lessons it was beginning to learn in
developing ground software to the management of flight software.

3

The Skylab Computer System

66 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Skylab, America's first orbital workshop, carried a highly successful
computer system. For much of the operating life of the space station,
the computer was not just the fourth crew member but the only crew
member. It made a large contribution to saving the mission during the
2 weeks after the troubled launch and later helped control Skylab
during the last year before re-entry. The entire system functioned
without error or failure for over 600 days of operation, even after a 4-
year and 30-day interruption. It is significant as the first spacebome
computer system to have redundancy management software. The
software development for the system followed strict engineering prin­
ciples, producing a fully verified and reliable real-time program.

The record of the computer system stands in contrast to that of the
workshop itself. NASA launched Skylab on May 14, 1973 on a Saturn
V booster. The first two stages put the modified S-IVB third stage into
orbit. The S-IVB contained the workshop, which included a solar tele­
scope mount and living and working quarters. The plan was to launch
the first crew the next day aboard a Saturn 1B carrying an Apollo
command and service module. However, shortly after achieving orbit,
telemetry from the unmanned Skylab indicated that one of the two
wings of solar panels was missing and the other had not deployed.
The panels on the Apollo Telescope Mount (ATM) had opened
properly but they were too small to supply power for the whole
workshop. In addition, the gyros were drifting and the thermal shield
was damaged. These failures caused concern that the interior of the
space station would overheat and destroy the equipment. The damage
was so serious that for the first 3 or 4 hours the ground controllers felt
that NASA would be fortunate if the systems were to function for 1
day1. However, by using the computer system that controlled the
workshop's attitude, the ground controllers were able to keep the
Skylab at angles to the sun such that the equipment would be exposed
to tolerable temperatures in the laboratory in concert with generating
adequate power from the remaining solar panels. At times these were
conflicting requirements. This had to be done for 2 weeks while en­
gineers prepared repair materials for the crew to fix the workshop.
Controller Steven Bales remembered that time as "the hardest 2 weeks
I have ever spent," since a 24-hour watch had to be maintained on the
attitude and temperature2.

The computer system again served as "captain" during the entire
Skylab reactivation. The workshop systems were shut down on
February 9, 1974, after the last crew left. NASA expected that the
Skylab would stay in orbit until the mid-1980s. By that time the Space
Shuttle would be operational and, it was thought, could be used to
bring up rockets to boost the laboratory into a higher orbit. However,
unexpected solar activity in the mid-1970s resulted in an increase in
the density of the atmosphere, so the Skylab's orbit decayed at a much
faster rate than projected3.

THE SKYLAB COMPUTER SYSTEM 67

Figure 3-1. Skylab in orbit. Note the foil sun shield above the center section and
the missing large solar panel. The Apollo Telescope Mount is the section with the
"windmill" solar panels. (NASA photo 74-H-98)

By 1978, the predicted re-entry time was to be late that year or in
early 1979. NASA decided to attempt to change the attitude of the
workshop so that minimal drag would ensue. In this way, the orbit
might be maintained until the Shuttle could rescue the space station.
Engineers reactivated and reprogrammed the computer to maintain the
proper attitude and, later, to control the re-entry when NASA aban­
doned the attempt to maintain orbit. They accomplished this over 4
years after the computer was shut down.

The need for the computer system that served Skylab so well was
not apparent until the original "wet workshop" concept (the laboratory
to be assembled in space inside of the empty propellant tanks of the
last stage of the launch vehicle) had progressed through more sophis­
ticated designs to the eventual "dry workshop"4. In December 1968,
NASA decided to acquire a dual computer system to help control at­
titude while in orbit5. Attitude control was crucial to the success of
the solar experiments. In fact, the name of the computer reflects this:
Apollo Telescope Mount Digital Computer (ATMDC). Two of these
computers were a part of the Skylab Attitude and Pointing Control
System (APCS), which consisted of a number of other components,

68 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

such as an interface unit, magnetic tape memory, control moment
gyros, the thrustor attitude control system, sun sensors, a star tracker,
and nine rate gyros6.

Marshall Space Flight Center devised this complex system-a
pioneering effort because it re~resents the first fully digital control
system on a manned spacecraft . Its mission-critical status led to the
use of extensive redundancy in its design, in both hardware and
software. The computer system not only managed its own redun­
dancy, but all redundant hardware on the spacecraft8. The uniqueness
and complexity of the control laws associated with the control mo­
ment gyro attitude system led one NASA engineer to refer to it as "a
crazy animal"9. It was up to the Skylab computer system to tame it.

HARDWARE

The choice of a central processor for the Skylab computer system
marked a break from NASA's previous practice. The Gemini and
Apollo computer systems were custom-built processors. Apollo did
have an immediate predecessor, but the number of changes necessary
before flight negated most of its resemblance to the Polaris system. To
the contrary, Skylab and, later, the Shuttle, used "off-the-shelf" IBM
4Pi series processors, though they both needed the addition of a cus­
tomized 1/0 system, a simpler and necessarily idiosyncratic com­
ponent. By using existing computers, NASA avoided the serious
problems associated with man-rating a new system encountered
during the Apollo program.

The 4Pi descended directly from the System 360 architecture
IBM developed in the early 1960s. Some 4Pis were at work in aircraft
by the latter part of that decade. The top-of-the-line 4Pi is the AP-101,
eventually used in the F-15, B-52, and Shuttle. The version on board
Skylab was the TC-1, which used a 16-bit word, in contrast to the
AP-101 's 32 bits. A TC-1 processor, an interface controller, an 1/0 as­
sembly, and a power supply made up an ATMDC 10. Each flight com­
puter had a memory of 16,384 words 11 . This memory was a destruc­
tive readout core memory, which means that the bits were erased as
they were read and that the memory location had to be refreshed with
the contents of a buffer register, which saved a copy of the bits before
they were passed on to the processor. The memory was in two
modules of 8K words each 12. Addressing ranged from Oto 8K, with a
hardware switch determining which module was being accessed13.
The redundant computer system was composed of two processors at­
tached to a single Workshop Computer Interface Unit. The unit con­
sisted of two 1/0 sections (one for each computer), a common section,
and a power supply 14. Only the 1/0 section connected to the active

THE SKYLAB COMPUTER SYSTEM 69

computer was powered. The inactive computer and its 1/0 section of
the interface unit were not powered. The common section contained a
64-bit transfer register and timer associated with redundancy
management15. The transfer register and timer were the only parts of
Skylab that consisted of triple modular redundant (TMR) circuits16.
Basically, TMR circuits sent signals in triplicate on separate channels
and then voted. The single output from a TMR voter represented ei­
ther two or three identical inputs.
· The final component of the computer subsystem was the Memory

Load Unit. The original design did not contain one, but, like the
Gemini Auxiliary Tape Memory, engineers later added it. Whereas
the Gemini tape unit was useful in handling memory overloads, desig­
ners included the Skylab tape unit to further increase the reliability of
the system. It carried a 16K software load and an 8K load that could
be written into either module of either memory of the A TDCs. If up to
three modules failed, the mission could continue with reduced
capabilities with an 8K program loaded into the remaining module.
This raised the total reliability of the system from a factor of 0.87 to
0.9717. The tape load would take a maximum of 11 seconds18.

NASA decided to add the Memory Load Unit in the summer of
1971, when both IBM and Marshall realized that a Borg-Warner tape
unit, like the two already used as telemetry recorders, could be
upgraded for program storage. IBM imposed some manufacturing
changes on the recorders (primarily piece part screening) to make the
process more nearly match the care taken in constructing the
computers 19.

NASA awarded the contract for the computer system to IBM on
March 5, 196920. By October, designers froze the choice of proces­
sors and their configuration, a decision heavily influenced by the con­
cern for redundancy and reliability21 . The first computer was
delivered on December 23, 1969. IBM eventually built 10, the final 2
being the flight versions, which went to NASA on February 11, 1972,
over a year before launch. Two of the A TMDCs and an interface unit
were turned over to IBM for use in testing both hardware and
software, ensuring that the final verification would be on actual equip­
ment rather than simulators22.

IBM took great pride in delivering on time without sacrificing
reliability. In applying Saturn development techniques to the Skylab
equipment, for examf1e, IBM required all piece parts to exceed ex­
pected stress levels2 , and prepared the ATMDC for thermal con­
ditions, the most dangerous stress to electronic components24. A num­
ber of design problems, including thermal and vibration difficulties,
analog conversion inaccuracies, and interconnection failures, had to
be overcome25 . To make up time lost handling these problems, IBM
sometimes went to a 7-day, three-shift debugging cycle26.

70 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

- N '"" < < <
u u u H c., c., c.,
0 0 3 ..J ...l

-a::,

u
c.,
0
...l

0
0
0

N
a::,

u
c.,
0
...l

0
0
0

Figure 3-2. The concept of Triple Modular Redundancy.

>,
u
i::
'I)

-0
i::
::,

-0
c.i

0::

...
(0

'"" -a::, ::,
-0

u C :I: v
0 <l)
...l

Q.
E--
....
0
..,

0
Q.
<l)

u

0 i::
0
u

0

RF Upl inlr. No. 1 ---.

RF Uplinlr. No. 2

Primary
Comput,r

\

ATMDC

TC-I ---
Input/
Output

Assembly t:====.-:.-:,""'

THE SKYLAB COMPUTER SYSTEM 71

Tape
Rrco,drr

Mrmory Load Unit

Switch S.lrcto,

wc,u

.---- Umbil i1I A. (GSEI

Umbilial 8 (GSEI

Rrdundant
Computer

TC-1

Input/
Output
As"mbly

ATMDC

Common Srction Rtdund1nt
Compu1er Primary Computer

1/0 Ex 1tn1ion • TMR
• Autom11ic Sw,1chovrr

1/0 holalion Circua\

1/0 Extrn,ion

Figure 3-3. A block diagram of the Skylab Computer System with the dual
A TMDCs, tape memory, and common section shown. (From IBM, Skylab Opera­
tion Assessment, ATMDC, 1974)

Probably due to the care taken in manufacture, the computer sys­
tem had no failures. A planned ground-initiated switch-over from the
primary to the secondary computer occurred after 630 hours of orbital
operations. The second computer then ran the remainder of the 271-
day mission27. On the final day, the system did another switch-over
and used the tape unit for the first time, primarily to prove that it
would work. A transmission of software from the ground to the com­
puter was also practiced. IBM's reports of the performance of the
hardware are quite self-congratulatory but, based on the actual record,
justified.

72 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

SOFTWARE

IBM wanted to do a careful job on the software for Skylab. In the
late 1960s and early 1970s, the company internally pushed the
development and implementation of software engineering techniques.
IBM learned many lessons from the creation of the OS/360 operating
system, and various government-related projects. Two IBM software
management experts, Harlan Mills and Frederick Brooks, circulated
these lessons both within IBM and to the computing public28. The
small size (16K) of the Skylab software and correspondingly small
group of programmers assigned to write it (never more than 75
people, not all of whom were programmers, and only 5 or 6 for the
reactivation software), meant that the difficulties in communication
and configuration control associated with large projects were not as
much of a factor. Also the IBM programmers were specialists. MIT
assigned engineers to the programming of the Apollo computer, as­
suming that it was easier to teach an engineer to program than to teach
a programmer the nuances of the system. This turned out to be a mis­
take, which MIT acknowledged29. Thus, the stage was set for IBM to
produce a superb real-time program. However, the complexity of the
control moment laws, the redundancy management needs, and the in­
evitable memory overrun kept the development from being simple.

Requirements Definition and Design

IBM and NASA jointly defined the requirements for the Skylab
software. Marshall Space Flight Center delivered the detailed require­
ments for the control laws, navigation, and momentum management,
leaving lesser items such as I/O handling to the contractor. IBM and
NASA made a parallel effort to determine if the equations actually
worked30. The result was the Program Requirements Document
(PRD), issued July 1, 19703 1.

The actual design, the Program Definition Document (PDD), was
released later and served as the baseline for the software, which meant
that the design could not be changed without formal review. The
software resulting from these documents ranged from 9,000 words to
nearly 20,000 words of memory. Since the memory size of the com­
puter was just over 16,000 words, a "scrub" was necessary, continuing
the NASA tradition of exceeding the memory size of an already­
procured computer by the time the planners knew the final require­
ments. Managers had not yet learned that software needs should drive
the hardware choices. Engineers changed the control moment gyro

THE SKYLAB COMPUTER SYSTEM 73

logic to reduce core usage and made other cuts32. Memory became
the prime consideration in allowing requirements changes33.

Architecture and Coding

Skylab gave IBM an opportunity to demonstrate how to do
software development right. The company carefully separated the
production process into strictly designed phases. Two different flight
loads resulted: one full-function program that filled the 16K memory,
and an 8K version as a backup that needed only one module for
storage. These two programs needed slightly different architectures, or
schemes for organizing the execution of functions, which made the
job tougher. Also increasing complexity was the requirement for
redundancy management. An advanced development environment
helped keep the complexity under control.

Production Phases

IBM developed the software load for Skylab in four baselined
phases. Originally, three were planned: Phase I, Phase II, and Final,
but numerous changes made during Phase I required an intermediate
stage Phase IA. Crews used the software resulting from Phase IA for
training in the simulators in Houston34.

The POD for Phase I was released on November 4, 1970, and
coding began35. The Phase I program contained most of the major
components of the eventual flight load, including discrete 1/0 and in­
terrupt processing, command system processing, initialization, redun­
dancy management, attitude reference determination, attitude control,
momentum desaturation, maneuvering, navigation and timing, A TM
experiment control, displays, telemetry, and algorithms for utilities36.
IBM's programming team completed and released the Phase I
program for verification on June 23, 1971. It consisted of 16,224
words, filling about 99% of the computer's memory37.

It was this situation that led to the added phase, which was chiefly
a memory scrub. Not only was Phase I a fairly extensive program,
three modules still had to be coded and many changes would likely
occur in the nearly 20 months remaining before launch38. By the time
IBM delivered Phase IA on February 9, 1972, it had incorporated 45
waivers and 105 software change requests (SWCR) made after the
thirteenth revision of the design39. This meant that nearly 40% of the
original program was changed. Even with the attention to memory
size, the new software amounted to 16,111 words, or 98.3% of the
locations.

74 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Phase II represented another extensive revision of the software.
The baseline for it was Phase IA plus 49 approved change requests.
By delivery on August 28, 1972, 102 additional changes had been in­
corporated and the design was up to revision 1940. Therefore,
software engineers modified about 35% of the program. The memory
usage rose to 99.7%, or 16,338 locations. The final version reduced
this to 16,329 words. The difference between Phase II and the flight
release was only 17 additional changes. IBM made the delivery March
20, 1973, 2 months before the launch.

Architecture: The 16K Program

The ATMDC software divided into an executive and applications
modules. The executive module handled the priority multitasking, in­
terrupt processing, supporting the interval timer and also basic
timekeeping chores41 . Applications consisted of three major groups:
time-dependent functions, asynchronous functions, and utilities.
Time-dependent functions were executed in three cycles, with the pos­
sibility of higher priority jobs interrupting the currently running
module. The cycles were differentiated by time: There was a "slow
loop" each second, an "intermediate loop" executing five times each
second, and the switch-over processor running each half second42.
Designers grouped appropriate modules in a cycle. An exception to
the cycle groupings, but nevertheless time dependent, was the
output-write routine, which was run between intermediate loops in or­
der to take more efficient advantage of the system resources. The
switch-over process aided in redundancy management, as explained
below. Asynchronous functions could be called at any time, one of
which was telemetry, which sent 24 strings of 50 bits per second. The
other was the command system, which could receive signals from ei­
ther the ground or the Digital Address System (DAS, the crew
interface) in the workshop. Those signals resulted in interrupts. Utility
functions included such common algorithms as square root, sine, and
cosine, and unique functions such as gimbal angle computations and
quaternion multiplication43.

Interrupt handling was quite straightforward. Each application
module had a specific priority ranking. Tasks could be requested by
several means, such as interrupts, discrete signals, elapsed time, or by
the direct request of another program. Any current task could be inter­
rupted when a new task was requested. The priority of the new task
was immediately entered into the priority level control tables. If the
new task was of a higher priority than the current task, the computer
did the new one first. When telemetry or the command system re­
quested a task, its priority was entered on the table, just like tasks

~:;:;:;:;:: ::::J 1. LNIIIU T AEAO. OUTl'UT WA ITE

5 i:J 2. TlL (M[TRY

~ 3. SWITCHOVlR ,,,octS.SOR. SELF TEST

r ·-\:-:::_._:_-: -. J &. INTERMEOIATt L.001'

E3 S. SL O'if LOOP

C:J I WA IT STA.Tl

THE SKYLAB COMPUTER SYSTEM 75

16 K FLI GHT PROGRAM COMPU TAT ION CYC LE

00

pp._GE 1S
ORlGlNA.L l'f~
OF. pQOR QU~

Figure 3-4. The real-time cycle of the Skylab 16K flight program. (From IBM,
Skylab Operation Assessment, ATMDC, 1974)

76 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

called in the other ways44. The standard telemetry signal functioning
as a Digital Command System (DCS) word consisted of 35 bits.
Buried in it were an enable bit, an execute bit, and 12 information bits.
The enable and execute bits caused an interrupt, making it possible for
the data to be stored45.

The 16K program had a computation cycle consisting of six
levels: experiment input, Control Moment Gyro gimbal rates,
Workshop Computer Interface Unit tests, and the command system
processor; telemetry output; the switch-over timer (reset each second)
and 64-bit transfer register (refreshed about once every 17 seconds);
the intermediate loop (made up of Control Moment Gyro control); the
slow loop (containing timing, navigation, maneuver, momentum
management, display, redundancy, self test, and experiment support
functions); and the "wait" state (when all functions in a particular
cycle finished, about 15% of cycle time in the flight release of the
program, depending on the number and nature of interrupts46.

The 8K Program

The 8K program was strongly related to the 16K program in that
the larger version served as the model for the smaller. Its design,
released April 3, 1972, developed from the Phase IA version of the
software. IBM delivered the 8K program on November 14, 1972 after
10 weeks of verification activity. The functions of the short program
were largely limited to attitude control and solar experiment activity
and data handling47. It was 8,001 words in length. IBM reduced the
number of levels in the computation cycle of the 8K program to four:
Level I handled command processing and 1/0 to the Gyros, Level II
did telemetry, Level III consisted of the time-dependent functions
from both the original intermediate loop and slow loop, and Level IV
was the wait state48.

Redundancy Management

All mission-critical systems in Skylab were redundant. The com­
puter pro?ram contained 1,366 words of redundancy management
software4 . At less than 10% of the total memory, it was a bargain.
Managing redundancy with stand-alone hardware and solely mechani­
cal switching would have added much more cost, weight, and com­
plexity to the workshop design, with the loss of a certain amount of
reliability.

The redundancy management software consisted of two parts: self

THE SKYLAB COMPUTER SYSTEM 77

tests of the computer system and an error detection program for
mission-critical hardware not in the computer system. Self tests of the
computer were quite extensive: Logic tests might involve doing a
Boolean OR operation on the contents of a register to see if a carry oc­
curred; operation tests required executing EXCHANGE and LOAD
instructions; and arithmetic tests meant executing an ADD and check­
ing for planned answer50. IBM also designed tests for memory ad­
dressing and 1/051 _

The error detection program examined critical signs in several
systems. If a failure was detected in attitude control hardware such as
the Control Moment Gyros, rate gyros or acquisition sun sensors, then
backups or reconfigurations were activated32. During the mission,
one Control Gyro and several of the rate gyros failed. In fact, a "six­
pack" of replacement rate gyros had to be brought up by the second
crew.

Switch-over between the two computers was handled by the error
detection program or automatically activated by the TMR timer cir­
cuits. If self tests indicated a computer hardware failure or that the
software was not properly maintaining the workshop's attitude,
switch-over would then be initiated. The timers were supposed to be
reset about once each second during the computation cycle, after
which they then counted down until reset. If two of the three reached
zero, then switch-over occurred53. Besides automatic switch-over, the
crew or the ground could initiate it, as actually happened in mid­
mission. So that the secondary computer would be properly activated,
a 64-bit transfer register was kept loaded with relevant data. This
register, like the timers, consisted of TMR circuits. Great care was
taken to ensure that data loaded into the transfer register were uncon­
taminated. A write operation to the register was restricted in length to
a period of 672 microseconds plus or minus 20%, which was just
about how long it took to write 64 bits into a redundant circuit. This
operation could only take place after 1.5 to 2.75 seconds had elapsed
since the last write, so the computer would not accept transient signals
as correct data and a new write could not interfere with an earlier
write54. Besides this "time-out feature," the transfer register could
only be refreshed after a successful execution of the error detection
program55. This way, data could not be written to the register from a
failed computer.

The redundancy management software was a step toward the
eventual Shuttle redundancy management scheme. Previously, IBM
had used TMR hardware to ensure reliability. This system, with its
watchdog timer, was software based and, in effect, saved space and
weight. Two A TMDCs were smaller and required less power than a
single Tiv1R computer of equal reliability.

78 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

The Development Environment and Integration

The Skylab software development was done in a programming
environment that took advantage of useful software tools and proper
integration techniques. Binary code for the computer was in
hexadecimal (base 16) format, and loaded in that format56. Hand
coding in hex is rather tedious, so IBM prepared an assembler to
translate mnemonics into it. They also provided a relocatable loader
for placing separately coded modules in contiguous memory loca­
tions. Macros, blocks of frequently used code, were kept in common
libraries. Listings of ~rograms and the original source resided in an
IBM System 360/75 . This environment was small compared with
the later Software Production Facility for the Shuttle, but the concept
of a good tool set, promoted by IBM's Mills and Brooks, was well
realized.

Integration of the Skylab software followed a top-down approach:
The program was highly modular so as to keep individual functions
separate for easy modification and also simple enough for a single
programmer to handle. The executive and major subprocesses were
coded and integrated first; then the remaining modules were added.
The modules were grouped into three batches, so all the modules in a
batch were added and tested, then the next batch would be added, and
so on58. This helped in the integration process.

Verification

The software for Skylab was one of the most extensively verified
systems of its era. Since it was a real-time program, verification was
more difficult than a corresponding batch program because it is hard
to replicate test inputs when interrupts can occur at any time; thus, a
combination of simulators is needed to properly verify a real-time
program.

IBM used a number of different simulation configurations in the
verification process. The AS-II simulator consisted of a System
360/75 used for analysis of the Skylab while it was in orbit. It could
evaluate the effects of changes to the flight program. The Sky lab
Workshop Simulator (SWS) was an all-digital simulation used in
developing the initial software, as well as verification. It ran at a 3.5/1
ratio of execution time to real time. The SWS was so effective that it
once correctly identified a deficiency in the requirements relating to
the Control Moment Gyro system. The Skylab Hybrid Simulator
(SHS) included some analog circuits for greater fidelity. One of the
most effective simulators was a System 360/44 connected to an actual
A TMDC; the program in the 44 could simulate six degrees of
freedom59.

THE SKYLAB COMPUTER SYSTEM 79

The verification process was scheduled for the final 10 weeks
prior to the delivery of any software phase. The process included
validation of the baseline program to the requirements, coding
analysis, logic analysis, equation implementation tests, performance
evaluations, and mission procedure validation. The AS-II did the logic
analysis and was designed to trace all logic paths through the
software. The 360/44 and A TMDC system did performance tests since
it was near real time in operation60. The digital simulators could be
stopped in order to insert program changes. Tracing was also
possible61 . Combining simulators and software verification tools con­
tributed to a high level of confidence that was confirmed in actual per­
formance.

USER INTERFACES

NASA and IBM designed the computer system to operate
autonomously. One crewman reported "not much interaction" with the
system at all62, but the capability was present for significant activity if
needed63. The crew could enter data and actually make changes in the
software through a keyboard located in the DAS on the ATM Control
and Display Console.

The DAS had only 10 keys and a three-position switch. The keys
were the digits 0-7 (all entries were in octal), a clear key, and an enter
key. The switch could select either power bus one or two, or be off.
Above the DAS was an "Orbit Phase" panel containing a digital
readout of minutes and seconds to the next orbital benchmark. When
the first keystroke of a five-digit command was made, the uplink DCS
commands were inhibited, and the time remaining clock inputs were
inhibited, so that the clock digits could be used for displaying the
keystrokes. In that mode, five digits would be lit instead of four. The
remaining four keystrokes were the data/command input64. The dis­
play of the keystrokes represented an echo. If the sequence was cor­
rect, the astronaut pressed the enter key, or else he would restart the
input process. Pressing the clear key brought back the digital clock.
The rather limited nature of this command system indicates that it was
intended for sparing use.

Besides the DAS, one other switch on the control panel related to
the computer system. In the "Attitude Control" area of the panel was a
three-position switch that controlled which computer was in actual
use. it could be set for automatic (and usually was), in which case the
redundancy management software would take care of matters. Alter­
nately, the crew could purposely select either the primary or secon­
dary computer. If either of these was selected, then automatic change­
over was inhibited65. The switch gave the crew protection from

80 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 3--5. Dr. Edward Gibson at the Apollo Telescope Mount Control console.
The interface to the digital computer is at lower left, on the panel immediately
above the coil of cable. (NASA photo 4-60352)

ORIGINAL PAGE rs
OF POOR QUALIT_YJ

THE SKYLAB COMPUTER SYSTEM 81

failure of the redundancy management software. Incidentally, the
switch was not a common three-position toggle switch but, instead, re­
quired the crew to pull out and rotate the post. This protected the crew
from accidental switching.

THE REACTIVATION MISSION

The Skylab Reactivation Mission represents one of the most in­
teresting examples of the autonomy and reliability of manned
spacecraft computers. The original Skylab mission lasted 272 days
with long unmanned periods. The reactivation mission, flown entirely
under computer control, lasted 393 days. Therefore, the bulk of the ac­
tivated life of the space laboratory fully depended on the A TMDCs.

When it was obvious that the Workshop was going to fall to the
earth long before a rescue mission could be launched, NASA began
studying methods of prolonging the orbital life of the spacecraft. Even
though the atmosphere is very thin at the altitude Skylab was flying,
the drag produced on the spacecraft was highly related to its attitude
with respect to its direction of flight (velocity vector). During most of
the manned mission periods Skylab flew in solar inertial (SI) mode, in
which the lab was kept perpendicular to the sun to provide maximum
exposure for the solar collectors. Momentum desaturation maneuvers
were done on the dark side of the earth to compensate for bias
momentum buildup resulting from noncyclic torques acting on the
spacecraft. The SI mode was high drag, so engineers devised two new
modes, end-on-velocity-vector (EOVV) and torque equilibrium at­
titude (TEA). EOVV pointed the narrow end of the lab in the direction
of flight, minimizing the aerodynamic drag on the vehicle. TEA could
control the re-entry, using the gravity gradient and gyroscopic torques
to counterbalance the aerodynamic torque. Only in this way could the
Workshop be controlled below 140 nautical miles altitude66.

Use of the new modes required that they be coded and transmitted
to the computers in orbit. First it was necessary to discover whether or
not the computers still functioned. Since the ATMDC used destructive
readout core memories, there was some concern that the software
might have been destroyed during restart tests if the refreshment
hardware had failed. On March 6, 1978, NASA engineers at the Ber­
muda tracking station ordered portions of Skylab to activate. On
March 11, the ATMDC powered up for 5 minutes to obtain telemetry
confirmation that it was still functioning. The software resumed the
program cycle where it had left off 4 years and 30 days earlier. As far
as the computer was concerned, it had suffered a temporary power
transient67 !

When IBM began to make preparations to modify the software, it
discovered that there was almost nothing with which to work. The

82 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

carefully constructed tools used in the original software effort were
dispersed beyond recall, and, worse yet, the last of the source code for
the flight programs had been deleted just weeks beforehand. This
meant that changes to the software would have to be hand coded in
hexadecimal, as the assembler could not be used-a risky venture in
terms of ensuring accuracy. Eventually it became necessary to
repunch the 2,516 cards of a listing of the most recent flight program,
and IBM hired a subcontractor for the purpose68.

Engineers could not test this software with the same high fidelity
as during the original development. They abandoned plans for real
time simulations because they could not find enough parts of any of
the original simulators. Interpretive simulation could be performed
because the tapes for that form of testing had been saved. However,
the interpretive simulator ran 20 times slower than real time, so less
testing was possible69_

IBM approached the modification using the same principles as in
the original production. The baseline software for the reactivation was
Flight Program 80, including change request 3091, which was already
in the second computer. Software changes for reactivation were
simply handled as routine change requests. They placed the EOVV
software in memory previously occupied by experiment calibration
and other functions useless in the new mission. TEA replaced the
command and display software 70.

When the software was ready for flight, NASA uplinked it to a
reserve area of memory and then downlinked and manually verified it.
If it passed the verification, engineers gave a command to activate it.
The reprogramming was generally successful. The four people as­
signed to the software revision maintained IBM's record of quality
throughout the reactivation mission 71 .

CONCLUSIONS

The Skylab program demonstrated that careful management of
software development, including strict control of changes, extensive
and preplanned verification, and the use of adequate development
tools, results in quality software with high reliability. Attention to
piece part quality in hardware development and the use of redundancy
resulted in reliable computers. However, it must be stressed that part
of the success of the software management and the hardware develop­
ment was due to the small size of both. Few programmers were in­
volved in initial program design and writing. This meant that com­
munications between programmers and teams were relatively min­
imal. The fact that IBM produced just 10 computers and really needed
to ensure the success of just 2 of those helped in focusing the quality
assurance effort expended on the hardware.

THE SKYLAB COMPUTER SYSTEM 83

What happened after the manned Skylab program demonstrated
the need for foresight and proper attention to storage of mission­
critical materials until any possibility of their use had gone away. The
dispersal of the verification hardware is understandable, as it is expen­
sive to maintain. However, some provision should have been made
for retaining mission-unique capabilities such as actual flight
hardware. The destruction of the flight tapes and source code for the
software by unknown parties was inexcusable. A single high-density
disk pack could have held all relevant material.

Skylab marked the beginning of redundant computer hardware on
manned spacecraft. It was also the first project that developed
software with awareness of proper engineering principles. The Shuttle
continued both these concepts but on a much larger and more complex
scale.

4

Computers in the

Space Shuttle Avionics System

86 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Computers are used more extensively on the Space Transportation
System (STS) than on any previous aircraft or spacecraft. In conven­
tional aircraft, mechanical linkages and cables connect pilot conti:ols,
sµch as the rudder pedals and stick, to hydraulic actuators at the con­
trol smfaces. However, the Shuttle contains a fully digital fly-by-wire
avionics system. All connections are electrical and are routed through
computers. To give the spacecraft more autonomy, system manage­
ment functions (fuel levels, life support, etc.), handled on the ground
during previous flight programs, are monitored on board. Software
can be adjusted to suit increasingly complex and varied payloads.
Subsystems, like the main engines,that had no computer assistance be­
fore use them for performance improvement. And, as in Gemini and
Apollo, guidance and navigation tasks are accomplished on the Shut­
tle with computers. All these functions, especially flight control, are
critical to mission success; therefore, the computers performing the
tasks must be made fail-safe by using redundancy. Meeting these re­
quirements has resulted in one of the most complex software systems
ever produced and a computer network within the spacecraft with
more powerful hardware than many ground-based computer centers in
the mid- l 960s.

The major differences between the Shuttle computer system and
the systems used on Gemini and Apollo were the choice of an "off­
the-shelf' main computer instead of a custom-made machine and the
pervasiveness of the system within the spacecraft, since the main
computers are the heart of any true avionics system. Avionics
(aviation plus electronics) grew in the 1950s and 1960s as electronic
devices, especially digital devices, replaced mechanical or analog
equipment in aircraft. These digital devices were combined into a
coherent system, rather than isolated in function and location within
the aircraft. Several modem military airplanes have applied this con­
cept to varying degrees. The FB-111, an Air Force tactical bomber,
has a complex avionics system that Rockwell International built just
before it was awarded the Shuttle contract1; the F-15 fighter used an
~-1 computer in its system. A repackaged version of the F-15's
computer became the AP-101 used in the shuttle2. However, in no
aircraft has the Shuttle's avionics system been matched as yet. For in­
stance, its main computers have to interconnect with other computers
in subsystems, such as the controllers on each main engine, whereas
most aircraft systems are centered on a single set of machines.

Since the Shuttle is completely dependent on the success of its
avionics system, each component must be made failure proof. The
method chosen to ensure this is absolute redundancy, often to a depth
of four duplicate devices. Managing this level of redundancy became
a large problem in itself.

Another result of the pervasive avionics system is that the fre­
quency and sophistication of the crew interaction with the computers
exceeds any previous manned space program. A large portion of the

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 87

ORIG I"· .~_ ~- ~ ~ r.E rn
OF. P Ou_z · 0AL1TY:

Figure 4-1. The first launch of the Shuttle Challenger, one of a fleet of the most
computationally intensive spacecraft ever built. (NASA photo)

88 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

software is directed at easing the necessary commanding of the com­
puters. In general, software development for the Shuttle has far out­
stripped any previous NASA ground or flight system in effort and
cost. The combination of requirements forced the Agency to pioneer
techniques in digital avionics, redundancy management, computer in­
terconnection, and real-time software development.

EVOLUTION OF THE SHUTTLE COMPUTER SYSTEM

Planning for the STS began in the late 1960s, before the first
moon landing. Yet, the concept of a winged, reusable spacecraft went
back at least to World War II, when the Germans designed a sub­
orbital bomber that would "skip" along the upper atmosphere, drop­
ping bombs at low points in its flight path. In America in the late
1940's, Wernher von Braun, who transported Germany's rocket
knowhow to the U.S. Army, proposed a new design that became
familiar to millions in the pre-Sputnik era because Walt Disney
Studios popularized it in a series of animated television programs
about spaceflight. It consisted of a huge booster with dozens of
upgraded V-2 engines in the first stage, many more in the second, and
a single-engine third stage, topped with a Shuttle-like, delta-winged
manned spacecraft.

Because the only reusable part of the von Braun rocket was the
final stage, other designers proposed in its place a one-piece shuttle
consisting of a very large aerospacecraft that was intended to fly on
turbojets or ramjets in the atmosphere before shifting to rocket power
when the atmospheric oxygen ran out. Once it returned from orbit, it
would fly again under jet power. However, the first version of the
reusable spacecraft to actually begin development was the Air Force
Dyna-Soar, which had a lifting body orbital vehicle atop a Titan III
booster. That project died in the mid-1960s, just before NASA an­
nounced a compromise design of desirable features: the expensive
components (engines, solid rocket shells, the orbiter) to be reusable;
the relatively inexpensive component, the external fuel tank, to be ex­
pendable; the orbiter to glide to an unpowered landing3.

The computer system inside the Shuttle vehicle underwent an
evolution as well. NASA gained enough experience with on-board
_computers during the Gemini and Apollo programs to have a fair idea
of what it wanted in the Shuttle. Drawing on this experience, a group
of experts on spaceborne computer systems from the Jet Propulsion
Laboratory, the Draper Laboratory (renamed during its Apollo efforts)
at MIT, and elsewhere collaborated on an internal NASA publication
that was a guide to help the designer of embedded spacecraft
computers4. Individuals contributed additional papers and memos.
Preliminary design proposals by potential contractors also influenced

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 89

the eventual computer system. In one, Rockwell International teamed
up with IBM to submit a system5. Previously, in 1967, the Manned
Spacecraft Center contracted with IBM for a conceptual study of
spacebome computers6 and two Huntsville IBM engineers did a
shuttle-specific study in 19707. Coupled with IBM Gemini and Saturn
experience, the Rockwell/IBM team was hard to beat for technical ex­
pertise. NASA also sought further advice from Draper, as it was still
heavily involved in Apollo8. These varied contributions shaped the
final form of the Shuttle's computer system.

There were two aspects of the computer design problem: func­
tions and components. Previous manned programs used computers
only for guidance, navigation, and attitude control, but a number of
factors in spacecraft design caused the list of computable functions to
increase. A 1967 study projected that post-Apollo computing needs
would be shaped by more complex spacecraft equipment, longer
operational periods, and increased crew sizes9. The study suggested
three approaches to handling the increased computer requirements.
The first assigned a small, special-purpose computer to each task, dis­
tributing the processes so that the failure of one computer would not
threaten other spacecraft systems. The second approach proposed a
central computer with time-sharing capability, thus extending the con­
cepts implemented in Gemini and Apollo. Finally, the study recom­
mended several processors with a common memory (a combination of
the features of the first two ideas). This last concept was so popular
that by 1971 at least four multiprocessor systems were being
developed for NASA's use 10. * The greater appeal of the multiproces­
sors, and the production of the Skylab dual computer system, replaced
the idea of using simplex computer systems that could not be counted
on to be 100% reliable on long-duration flights.

On a more detailed level than the overall configuration, experts
also realized that increased speed and capacity were needed to effec-
tively handle the greater number of assigned tasks 11 . One engineer
suggested that a processor 50% to 100% more powerful than first in­
dicated be procured12. This would provide insurance against the
capacity problems encountered in Gemini and Apollo and be cheaper
than software modifications later. A further requirement for a new
manned spacecraft computer was that it be capable of floating-point
arithmetic. Previous computers were fixed-point designs, so scaling
of the calculations had to be written into the software. Thirty percent
of the Apollo software development effort was spent on scaling13.

*These were: EXAM (Experimental Aerospace Multiprocessor) at Johnson
Space Center, the Advanced Control, Guidance, and Navigation Computer at
MIT, SUMC (Space Ultrareliable Modular Computer) at Marshall Space Flight
Center, and PULPP (Parallel Ultra low Power Processor) at the Goddard Space
Flight Center.

90 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

One holdover component from the Gemini, Apollo, and Skylab
computers remained: core memory. Mostly replaced by semiconduc­
tor memories on IC chips, core memory was made up of doughnut­
shaped ferrite rings. In the mid-1960s, core memories were deter­
mined to be the best choice for manned flight for the indefinite future,
because of their reliability and nonvolatility 14. Over 2,000 core
memories flew in aircraft or spacecraft by 1978 15. The NASA design
guide for spacecraft computers recommended use of core memory and
that it be large enough to hold all programs necessary for a mission16.
That way, in emergencies, there would be no delay waiting for
programs to be loaded, as in Gemini 8, and the memory could be
powered down when unneeded without losing data.

By 1970, several concepts to be used in the Shuttle were chosen.
One of these was the use of buses, which Johnson Space Center's
Robert Gardiner considered for moving large amounts of data 17. In­
stead of having a separate discrete wire for every electronic connec­
tion, components would send messages on a small number of buses on
a time-shared basis. Such buses were already in use in cabling from
the launch center to rockets on the launch pads. Buses were also being
considered for military and commercial aircraft, which were becom­
ing quite dependent on electronics. Additionally, there would be two
redundant computer systems- though no decision had been made as
to how the systems would communicate. In the LEM, the PGNCS had
an active backup in the Abort Guidance System (AGS). This was not
true redundancy in that the AGS contained a computer with less
capacity than the AGC, and so could not complete a mission, just
safely abort one. True redundancy, however, meant that each com­
puter system would be capable of doing all mission functions.

Redundancy grew out of NASA's desire to be able to complete a
mission even after a failure. In fact, early studies for the Shuttle predi­
cated the concept of "fail operational/fail operational/fail-safe." One
failure and the flight can continue, but two failures and the flight must
be aborted because the next failure reduces the redundancy to three
machines, the minimum necessary for voting. In the 1970 computer
arrangement, one special-purpose computer handled flight control
functions (the fly-by-wire system), and another general-purpose com­
puter performed guidance, navigation, and data management func­
tions. These two computers had twins and the entire group of four was
duplicated to provide the desired layers of redundancy18.

More concrete proposals came in 1971. Draper presented a couple
of plans, one fairly conservative, the other more ambitious. The less
expensive version used two sets of two AGCs. These models of the
AGC would contain 32K of erasable memory and magnetic tape mass
memory instead of the core rope in the original 19. Redundancy would
be provided by a full backup that would be automatically switched
into action upon failure of the primary (an idea later abandoned since

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 91

a software fault could cause a premature switch-over)20. Draper's
more expensive, but more robust, plan proposed a "layered collabora­
tive computer system," to provide "significant total, modest individual
computing power"21 . A relatively large multiprocessor was at the
heart of this system, with local processors at the subsystem level. This
had the potential effect of insulating the central computer from sub­
system changes.

Unlike Gemini and Apollo, NASA wanted an off-the-shelf com­
puter system for the Shuttle. If "space rating" a s:tstem involved a
stricter set of requirements than a military standard 2, starting with a
military-rated computer made the next step in the certification process
a lot cheaper. Five systems were actively considered in the early
1970s: The IBM 4Pi AP-1, the Autonetics D232, the Control Data
Corporation Alpha, the Raytheon RAC-251, and the Honeywell
HDC-701 23. The basic profile of the computer system evolved to the
point where expectations included 32-bit word size for accurate cal­
culations, at least 64K of memory, and microprogramming
capability24. Microprograms are called firmware and contain control
programs otherwise realized as hardware. Firmware can be changed to
match evolving requirements or circumstances. Thus, a computer
could be adapted to a number of functions by revising its instruction
set through microcoding.

Despite the fact that Draper Laboratory favored the Autonetics
machine, and a NASA engineer estimated that the load on the Shuttle
computers would "be heavier than the 4Pi [could] support," the IBM
machine was still chosen25 . The 4Pi AP-1 's advantages lay in its his­
tory and architecture. Already used in aircraft applications, it was also
related to the 4Pi computers on Skylab, which were members of the
same architectural family as the IBM System 360 mainframe series.
Since the instruction set for the AP-1 and 360 were very similar, ex­
perienced 360 programmers would need little retraining. Additionally,
a number of software development tools existed for the AP-1 on the
360. As in the other spacecraft computers, no compilers or other
program development tools would be carried on-board. All flight
programs were developed and tested in ground-based systems, with
the binary object code of the programs loaded into the flight com­
puter. Simulators and assemblers for the AP-1 ran on the 360, which
could be used to produce code for the target machine. In both the
Gemini and Apollo programs, such tools had to be developed from
scratch and were expensive.

One further aspect of the evolution of the Shuttle computer sys­
tems is that previous manned spacecraft computers were programmed
using assembly language or something close to that level. Assembly
language is very powerful because use of memory and registers can be
strictly controlled. But it is expensive to develop assembly language
programs since doing the original coding and verifying that the

92 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

programs work properly involve extra care. These programs are nei­
ther as readable nor as easily tested as programs written in FORTRAN
or other higher-level computer languages. The delays and expense of
the Apollo software development, along with the realization that the
Shuttle software would be many times as complex, led NASA to en­
courage development of a language that would be optimal for real­
time computing. Estimates were that the software development cycle
time for the Shuttle could be reduced 10% to 15% by using such a
language 26.

The result was HAL/S, a high-level language that supports vector
arithmetic and schedules tasks according to programmer-defined
priority levels.** No other early 1970s language adequately provided
either capability. Intermetrics, Inc., a Cambridge firm, wrote the com­
piler for HAL. Ex-Draper Lab people who worked on the Apollo
software formed the company in 196927.

The proposal to use HAL met vigorous opposition from managers
used to assembly language systems. Many employed the same ar­
gument mounted agai~st FORTRAN a decade earlier: The compiler
would produce code significantly slower or with less efficiency than
hand-coded assemblers. High-level languages are strictly for the con­
venience of programmers. Machines still need their instructions
delivered at the binary level. Thus, high-level languages use compilers
that translate the language to the point where the machine receives in­
structions in its own instruction set (excepting certain recently
developed LISP machines, in which LISP is the native code). Com­
pilers generally do not produce code as well as humans. They simply
do it faster and more accurately. However, many engineers felt that
optimization of flight code was more important than the gains of using
a high-level language. To forestall possible criticism, Richard Parten,
the first chief of Johnson's Spacecraft Software Division, ordered a
series of benchmark tests. Parten had IBM pick its best assembly lan­
guage programmers to code a set of test programs. The same functions
were also written in HAL and then raced against each other. The run­
ning times were sufficiently close to quiet objectors to high-level lan­
guages on spacecraft (roughly a 10% to 15% performance
difference)28 .

**The origins of the name of the language are unclear. Stanley Kubrick's clas­
sic film 2001 : A Space Odyssey (1968) was playing in theaters at about the time
the language was being defined. A chief "character" in the film was a murderous
computer named HAL. NASA officials deny any relationship between the names.
John R. Garman of Johnson Space Center, one of the principals in Shuttle on­
board software development, said it may have come from a fellow involved in the
early development whose name was Hal. Others suggest it is an acronym for
Higher Avionics Language. For a full description of the language and sample
programs, see Appendix II.

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 93

By 1973, work could begin on the software necessary for the
shuttle, as hardware decisions were complete. Conceptually, the shut­
tle software and hardware came to be known as the Data Processing
System (DPS).

THE DPS HARDWARE CONFIGURATION

The DPS hardware in the shuttle avionics system consists of four
major components: general-purpose computers, the data bus network,
the multifunction cathode ray tube display system, and the mass
memory units. Each is a substantial improvement over similar sys­
tems in any previous spacecraft. Together, they are a model for future
avionics developments.

General-Purpose Computers

NASA uses five general-purpose computers in the Shuttle. Each
one is an IBM AP-101 central processing unit (CPU) coupled with a
custom-built input/output processor (IOP). The AP-101 has the same
type of registers and architecture used in the IBM System 360 and
throughout the 4Pi series29. IBM announced the 4Pi in 1966, so by the
early 1970s, when Shuttle procurement was complete, the machine
had had extensive operational use30. The AP-101 version, which is an
upgraded AP-1, has since been used in the B-52 and B-lB military
aircraft and the F-8 digital fly-by-wire experimental aircraft. The
central processor in each case is the same, but the IOP is adapted to
the particular application.

Although one of the reasons for choosing the AP-10 l was its
familiar instruction set, some modifications were necessary for the
Shuttle version. Since the execution of instructions is dependent on
microcode, rather than hardware only, the instruction set could be
changed somewhat. Microcode is a set of primitives that can be com­
bined to create new logic paths in the hardware. The AP-101 has room
for up to 2,048 microinstructions, 48 bits in length31 .

"'O~ .., -· 0 ~
n C n -,
(/J It,
(/J s· ...

(IQ i
en .
~►
~ er 3
. 0

-3~
g a.
::ri ~­
>-ti (JQ,
::r ~
(") 3
0
3 0

'"O,
c:: ::r n ~ ..,
-· ::r
(/J ~ a. g~
0:, ~
~ n
(")
:,,;--
c:: ::r

'"O ~

~3
(IQ ~ g-n
en (/J

'-< c::
~'"O
n
3 g
(")

o en
3 ::r

'"O c::
c:: a
~ n ..,

0
~
~

General General General General

Purpose Purpose Purpose Purpose

Computer Computer Computer Computer

l 2 3 4

Input/Output Input/Output Input/Output Input/Output

Processor Processor Processor Processor

L j L ~

I I '
...-I

Intercomputer Communication Bus/ Data Buses (24 in all

0 0
0 0
J 0
O 000
0
00000

SPACECRAFT (SOLID ROCKET BOOSTERS/EXTERNAL TANK/
ORBITER SYSTEMS)

MASS MEMORY UNITS (TWO MAGNETIC TAPE DRIVES FOR
STORAGE OF PROGRAMS AND DATA)

General

Purpose

Computer

5

Input/Output
Processor

'
~

\C>

'"' (j
0
:::
"'O
<=
-3
l:!'l ,,
r:,i
2
r:,i
"'O
>
(j
l:!'l

~ ...
~
:c :,
-3 :c
l:!'l
2
>
r:,i

>
~
"'O
l:!'l ,, ...
l:!'l
2
(j
l:!'l

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 95

Box 4-1: IBM AP-101 Central Processor and Memory Hardware

Shuttle computers make extensive use of standard !Cs. The AP-IO 1
is built using transistor-transistor logic (TIL) semiconductor circuits as
the basic building block. The TIL gates are arranged in medium-scale
integration (MSI) and large-scale integration (LSI) configurations32. The
circuits are on boards that can be interchanged as units .

The AP-101 uses a variety of word sizes . Instructions can be either
16 or 32 bits in length. Fixed-point arithmetic, done using fractional
numbers stored in two's complement form, also uses 16- and 32-bit
lengths. Floating-point arithmetic is done with 32-, 40- and 64-bit
words, although the latter are limited to addition and subtraction33 . In­
structions using floating-point take longer to execute than fixed-point
arithmetic, and adding is still faster than multiplying; but average speed
for the machine is 480,000 instructions per second, compared with 7,000
instructions per second in the Gemini computer34.

The CPU registers are in three groups. Two sets of eight 32-bit
registers are available for fixed-point arithmetic . One set of eight 32-bit
registers is for floating-point operations35 . Semiconductor memories are
used in the registers instead of discrete components. As a result, the
registers are faster than those used on Gemini and Apollo and, since they
are available in large sets, can be used to store intermediate results of
calculations without having to access core memory. Thus, processing is
accelerated and achieves the performance noted above36.

A program status word (PSW), 64 bits in length, is used to help
control interrupts. The PSW contains information such as the next in­
struction address, current condition code, and any system masks for
interrupts37. It has to be updated every instruction to stay current38 .

Since the AP-101 allows 61 different interrupt conditions divided into 20
priority levels, it is necessary to have an accurate indication of where a
program left off when interrupted39. At any given time, several programs
are likely to be in a suspended state.

The processor has more than one level of addressing. The common
16-bit address can only directly address 64K words , which was the
original memory size of the AP-101 . The addressing is extended by
replacing the highest order bit with 4 bits from the program status word
that indicate which sector of memory to access40 . This is similar to the
scheme used in the AGC when its memory had to be expanded. This
configuration allows 131 ,072 full words (32-bit words) to be addressed.
The architecture permits addressing up to 262,144 full words, so memory
can be expanded without affecting the processor's design41 .

96 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box -1-1 (Continued)

Due to packaging considerations, the core memory is located partly
in the central processor and partly in the IOP (they are boxed separately).
However, it is still considered as a single unit for addressing and access.
The entire memory is shared, not just the portion located in the in­
dividual boxes. Originally, 40K of core were in the CPU and 24K in the
IOP. The memory is organized into modules with 18-bit half words.
These contain 16 bits of data, a parity bit, and a storage protect bit to
prevent unintentional alteration of the data42. The original memory
modules contained 8K half words, so 6 were needed in the !OP and 10 in
the CPU to store 64K full words. Later memory expansion consisted of
replacing the CPU memory modules with double-density modules, in
which twice the cores are in the same size container as a single-density
module43 . So by the first flight, the Shuttle computer memories were
104K words or 106,496 full words of 32 bits. The memory access time is
400 nanoseconds, quite fast for core.

The eventual Shuttle instruction set contained 154 instructions
defined within that 2K memory. However, the expected advantages of
the flexibility of microcoding, which influenced the decision to select
the AP- IO 1, were lessened by the fact that at least six of the new in-
structions either did not work properly or performed insufficiently44.
One NASA manager said that the microcoding was bungled by "the
ones and zeroes artists" (referring to the binary numbered nature of
microprograms) who apparently tried to do things the tricky way45 .

NASA tried to correct its tendency to underestimate memory size,
but was disappointed again on the Shuttle program. One requirement
for memory was that it be large enough to contain all the programs
necessary for a mission. Therefore, memory estimates became a
regular part of preliminary design studies. Most estimates in the 1969
to 1971 period ranged around 28K words46. Rockwell International
settled on 32K in its bid and won the contract partially because of that
estimate47. NASA, trying to save itself from later difficulties, bought
64K of memory for each computer, hoping that doubling the estimate
would be enough (despite memory increases in previous programs of
several hundred percent)48. Unfortunately, the software grew to over
700K, requiring not only more computer memory, but the addition of
mass memory units to hold programs that would not fit into the ex­
tended core. Parten said after this, "I don't know how you ensure
proper memory size ahead of time, unless you're incredibly lucky"49.

From the standpoint of a spacecraft designer worried about power
requirements, an interesting feature of the AP-101 memory is that
only the module currently being accessed is at full power. If a
memory module is used, it remains at full power for 20 microseconds.

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 97

If no further accesses are made in that interval, it automatically goes
to medium power. If the entire computer is in standby mode, it goes to
low power. An estimated 136 watts are saved by doing this
switching50.

The memory can be altered in flight. The ground can uplink
bursts of 64 16-bit halfwords at a time, which can replace data already
in the specified addresses. The crew can also change up to six 32-bit
words simultaneously by using their displays and keyboards.
However, those changes must be hand keyed in hexadecimal.

The Shuttle's AP-101 contains one of the most extensive sets of
self-testing hardware and software ever used in a flight computer. Its
self-test hardware resides in the BITE, or built-in test equipment.
When this is coupled with the self-test software, 95% of hardware
failures can be detected by the machine itself51 , whereas the other 5%
and potential software failures require the use of redundancy.

As evidenced by the component description given here, the IBM
AP-101 is a fairly common computer architecture, easily understand­
able and programmable by anyone familiar with IBM's large commer­
cial mainframes. The IOPS, bus system, and displays contain the
characteristics that make the Shuttle DPS unique.

The IOPs and the Bus System

It is difficult to discuss the Shuttle's IOPs without also talking
about the data bus network, because the former are designed to
manage the latter. All subsystems on the spacecraft are connected
redundantly to at least a pair of data buses. There are 24 of these
buses, and the subsystems share them, using multiplexers to control
the sharing. Eight of the 24 are "flight-critical data buses" that help fly
the vehicle; 5 are used for intercomputer communication among the
five general-purpose computers; 4 connect to the four display units; 2
run to the twin mass memory units; 2 more are "launch data buses,"
and connect to the Launch Processing System; 2 are used for
payloads, and the final pair for instrumentation52. Each bus is in­
dividually controlled by a microprogrammed processor, essentially a
small special-purpose computer, called a bus control element (BCE).
The BCE can access memory and execute independent programs53. A
twenty-fifth computer, the Master Sequence Controller, is used to
control I/O flow on the 24 BCEs54. Thus, each IOP contains 25 dedi­
cated computers. In addition, the IOP itself is basically a programm­
able processor with multiple functions. It shares main memory with
the central processor. If a program affecting the IOP is initiated by the
central processor, a direct memory access channel is opened to speed
up reading core. That, however, creates contention for the memory

98 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

with the central processor and may have the effect of actually slowing
down the system as a whole55.

One reason an IOP is needed is that the Shuttle computers trans­
fer data internally in parallel along 18-bit buses. This means that one
half word and its associated parity bit are moved from memory to the
operation registers and back again all at once. However, data are
transferred from orbiter subsystems to the IOP in serial form, one bit
at a time. Of course, the serial data are at a high rate (1 megahertz), so
transfer speed is not a concern. The conversion of serial data to paral­
lel data is the function of the Multiplexer Interface Adapters in the
IOP56. The Shuttle DPS also has 16 multiplexer/demultiplexers that
convert parallel data to serial for output to the buses57.

Input and output to each computer is ultimately controlled in two
modes: command and listen. In command mode (CM), signals sent
from the host processor to subsystems connected to a bus controlled
by a commanding BCE will actually effect the commands. In listen
mode, the subsystems will ignore the command signals. In both cases
input to the computer from any bus is listened to, but the computer's
orders are obeyed only by the systems on the buses for which it is the
commander. This moding capability means that a single computer can
be assigned a set of buses different from another computer, thus
spreading out the responsibilities and protecting against failure. It also
means that each computer receives all input data all the time, so that it
can take over from a failed computer immediately. This is especially
important to the backup flight system. The set of controlled buses is
called a "string." A typical string for a single computer might be a pair
of flight critical buses, one intercomputer bus (always), a display bus,
and a bus from the mass memory unit (MMU), payload, launch, and
instrumentation group. The strings can be reconfigured by the crew in
flight, which is done periodically as missions proceed through various
phases.

Display Electronics

The Shuttle's display system, built by the Norden Division of
United Technologies Corporation, is the most complex ever used on a
flying machine and contains computers of its own. For the first time in
a spacecraft, cathode ray tubes (CRTs) are used as the primary display
medium, although a wealth of warning lights that supplement the dis­
plays still dot the cockpit. The CRTs hold 26 lines of 51 characters on
a 5- by 7-inch screen. That screen size is fairly common on portable
computers. However, the number of characters per line is smaller (51
vs. the more common 80) and the number of lines larger (26 vs. the
usual 24). The net effect is that the individual characters appear
slightly larger on the Shuttle's screens, necessary because although

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 99

the user of a portable computer is usually about 16 inches from the
screen, on the Shuttle the distance between user and screen is well
over 2 feet. Information on the Shuttle's screens appears green on
black, and characters can be selectively highlighted. Three of these
screens are mounted in the forward cockpit between the pilots. A
fourth is aft at the mission specialist station. Keyboards, built by
Ebonex, are used for crew input. Two are between the pilots, with a
third adjacent to the mission specialist's CRT.

Displays placed on the CRTs are controlled by a special-purpose
computer with a 16-bit word size and 8K of memory. This computer
provides display control and can create circles, lines, intensity
changes (highlighting), and flashing messages. The display software is
stored on the MMUs until the computer is powered up. The CRT and
its associated processor is referred to as the display electronics unit
(DEU)58.

Mass Memory Unit: A Late Addition

The final component of the Shuttle 's DPS hardware is the mass
memory unit (MMU). Originally acquired only to provide initial load­
ing of the orbiter's computers, the MMV, built by Odetics, Inc., has
been used extensively to help resolve the memory growth problem.
Two of these units are installed on the orbiter, each capable of con­
taining 8 million 16-bit words, enough for three times the Shuttle
software. The tape can be addressed in 512 word blocks, and the crew
can alter its contents in flight using a special display59. The MMV
stores all the Primary Avionics Software System and all the software
for the Backup Flight System, the DEUs, and the engine controllers.
Thus, the Shuttle continues the same computer/mass memory con­
figuration as the Gemini spacecraft.

This complex network of computer hardware on the orbiter has
many possible points of failure. Also, the 700K of flight software may
contain undiscovered bugs that could emerge at critical mission times,
and self-testing might not be sufficient to protect the spacecraft from
such failures. Other schemes for preventing a fatal failure need to be
developed if the Shuttle is to fly with the confidence of its crew, pas­
sengers, and potential paying customers. Exactly what those schemes
would be has occupied many researchers for several years.

100 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

COMPUTER SYNCHRONIZATION

AND REDUNDANCY MANAGEMENT

One key goal shaping the design of the Shuttle was "autonomy."
Multiple missions might be in space at the same time, and large crews,
many with nonpilot passengers, were to travel in space in craft much
more self-sufficient than ever before. These circumstances, the desire
for swift turnaround time between launches, and the need to sustain
mission success through several levels of component failure meant
that the Shuttle had to incorporate a large measure of fault tolerance in
its design. As a result, NASA could do what would have been un­
thinkable 20 years earlier: put men on the Shuttle's first test flight.
The key factor in enabling NASA to take such a risk was the redun­
dancy built into the orbiter60.

Fault tolerance on the Shuttle is achieved through a combination
of redundancy and backup. Its five general-purpose computers have
reliability through redundancy, rather than the expensive quality con­
trol employed in the Apollo program61 . Four of the computers, each
loaded with identical software, operate in what is termed the
"redundant set" during critical mission phases such as ascent and de­
scent. The fifth, since it only contains software to accomplish a "no
frills" ascent and descent, is a backup. The four actuators that drive
the hydraulics at each of the aerodynamic surf aces are also redundant,
as are the pairs of computers that control each of the three main en­
gmes.

Management of redundancy raised several difficult questions.
How are failures detected and certified? Should the system be static or
dynamic? Should the computers run separately without communica­
tion and be used to replace the primary computer one by one as
failures occur? Could the computers, if running together, stay in step?
Should redundancy management of the actuators be at the computer or
subsystem level? Fortunately, NASA experience on other aircraft and
spacecraft programs could provide data for making the final decisions.

Redundant Precursors

Several systems that incorporated redundancy preceded the Shut­
tle. The computer used in the Saturn booster instrument unit that con­
tained the rocket's guidance system used triple modular redundant
(TMR) circuits, which means that there was one computer with redun­
dant components. Disadvantages to using such circuits in larger com-

ORIGINAL PAGE IS
Of POOR QUALITY:

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 101

puters are that they are expensive to produce, and an event such as the
explosion on Apollo 13 could damage enough of the computer that it
ceases to function. By spreading redundancy among several simplex
circuit computers scattered in various parts of the spacecraft, the ef­
fects of such catastrophic failures are minimized62.

Skylab's two computers each could perform all the functions re­
quired on its mission. If one failed, the other would automatically take
over, but both computers were not up and running simultaneously.
The computer taking over would have to find out where the other had
left off by using the contents of the 64-bit transfer register located in
the common section built with TMR circuits. The Skylab computers
were able to have such a relatively leisurely switch-over system be­
cause they were not responsible for navigation or high-frequency
flight control functions. If there were a failure, it would be possible
for the Skylab to drift in its attitude without serious danger; the Shut­
tle would have no such margin of safety.

Figure 4-3. The F-8 aircraft that proved the redundant set configuration planned
for the Shuttle would work. (NASA photo ECN-6988)

The need for the redundant computers on the Shuttle to process
information simultaneously, while still staying closely synchronized
for rapid switch-over, seriously challenged the designers of the sys­
tem. Such a close synchronization between computers had not been
done before, and its feasibility would have to be proven before NASA
could make a full commitment to a particular design. Most of the

102 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

necessary confidence resulted from a digital fly-by-wire testing
program NASA started at the Dryden Flight Research Center in the
early 1970s63. The first computer used in the F-8 "Crusader" aircraft
chosen for the program was a surplus AGC in simplex, with an
electronic analog backup. Later, the project engineers wanted a duplex
system using a more advanced computer. Johnson Space Center
avionics people noted the similarities between the digital fly-by-wire
program and the Shuttle. Dr. Kenneth Cox of JSC suggested that
Dryden go with a triplex system to move beyond simple one-for-one
redundancy. By coordinating procurement, NASA outfitted both the
F-8 aircraft and the Shuttle with AP-101 processors. Draper
Laboratory produced software for the F-8, and its flight tests proved
the feasibility of computers operating in synchronization, as it suf­
fered several single point computer failures but successfully flew on
without loss of control. This flight program did much to convince
NASA of the viability of the synchronization and redundancy
management schemes developed for the Shuttle.

How Many Computers'?

One key question in redundancy planning is how many computers
are required to achieve the level of safety desired. Using the concept
of fail operational/fail operational/fail-safe, five computers are
needed. If one fails, normal operations are still maintained. Two
failures result in a fail-safe situation, since the three remaining prevent
the feared standoff possible in dual computer systems (one is wrong,
but which?). Due to cost considerations of both equipment and time,
NASA decided to lower the requirement to fail operational/fail-safe,
which allowed the number of computers to be reduced to four. Since
five were already procured and designed into the system, the fifth
computer evolved into a backup system, providing reduced but ade­
quate functions for both ascent and descent in a single memory load.
NASA's decision to use four computers has a basis in reliability
projections done for fly-by-wire aircraft. Triplex computer system
failures were expected to cause loss of aircraft three times in a million
flights, whereas quadruple computer system failures would cause loss
of aircraft only four times in a thousand million flights64.

At first the backup flight system computer was not considered to
be a permanent fixture. When safety level requirements were lowered,
some IBM and NASA people expected the fifth computer to be
removed after the Approach and Landing Test phase of the Shuttle
program and certainly after the flight test phase (STS- l through 4)65 .
However, the utility of the backup system as insurance against a
generic software error in the primary system outweighed considera­
tions of the savings in weight, power, and complexity to be made by

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 103

u
i:ii::
t.i.l
E-<
::>
Q..
l::
0 u

i:o

a:
t.i.l
E-<
::>
Q..
l::
0 u

C:
H

...
::,

0

C:

...
::,

0

...
::,

0

u
C:
C
Ct)
u

•.-<
C:
::,

§
C
u
,...
(I) ...
::,
0.
E
0
u ,...
(I) ...
C:

H

ex::
I
~

Figure +-4. The intercommunication system used m the F-8 triplex computer
system.

104 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

eliminating it66. In fact, as the first Shuttle flights approached, Arnold
Aldrich, Director of the Shuttle Office at Johnson Space Center, cir­
culated a memo arguing for a sixth computer to be carried along as a
spare67 ! He pointed out that since 90% of avionics component
failures were expected to be computer failures and that since a min­
imum of three computers and the backup should exist for a nominal
re-entry, aborts would then have to take place after one failure. By
carrying a spare computer preloaded with the entry software, the
primary system could be brought back to full strength. The sixth com­
puter was indeed carried on the first few flights. In contrast with this
"suspenders and belt" approach, John R. Garman of the Johnson
Space Center Spacecraft Software Division said that "we probably did
more damage to the system as a whole by putting in the backup"68.
He felt that the institution of the backup took much of the pressure off
the developers of the primary system. No longer was their software
solely responsible for survival of the crew. Also, integrating the
priority-interrupt-driven operating system of the primary computers
with the time-slice sys_tem of the backup caused compromises to be
made in the primary.

Synchronization

Computer synchronization proved to be the most difficult task in
producing the Shuttle's avionics. Synchronizing redundant computers
and comparing their current states is the best way to decide if a failure
has occurred. There are two types of synchronization used by the
Shuttle's computers in determining which of them has failed: one for
the redundant set of computers established for ascent to orbit and de­
scent from orbit, and one for synchronizing a common set while in or­
bit. It took several years in the early 1970s to discover a way to ac­
complish these two synchronizations .

. The essence of Shuttle redundancy is that each computer in the
redundant set could do all the functions necessary at a particular mis­
sion phase. For true redundancy to take place, all computers must lis­
ten to all traffic on all buses, even though they might be commanding
just a few. That way they know about all the data generated in the cur­
rent phase. They must also be processing that data at the same time
the other computers do. If there is a failure, then the failed computer
could drop out of the set without any functional degradation whatever.
At the start, the Shuttle's designers thought it would be possible to run
the redundant computers separately and then just compare answers
periodically to make sure that the data and calculations matched69. As
it turned out, small differences in the oscillators that acted as clocks
within the computers caused the computers to get out of step fairly

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 105

quickly. The Spacecraft Software Division formed a committee,
headed by Garman, made up of representatives from Johnson Space
Center, Rockwell lp.temational, Draper Laboratory and IBM Corpora­
tion, to study the problem caused by oscillator drift70. Draper's people
made the suggestion that the computers be synchronized at input and
output points 71 . This concept was later expanded to also place
synchronization points at process changes, when the system makes a
transition from one software module to another. The decision to put in
the synchronization points II settled everyone's mind II on the issue 72.

Intercomputer communication is what makes the Shuttle's
avionics system uniquely advanced over other forms of parallel com­
puting. The software required for redundancy management uses just
3K of memory and around 5 % or 6% of each central processor's
resources, which is a good trade for the results obtained78. An increas­
ing need for redundancy and fault tolerance in non-avionics systems
such as banks, using automatic tellers and nationwide computer net­
works, proves the usefulness of this system. But this type of
synchronization is so little known or understood by people outside the
Shuttle program that carryover applications will be delayed.

One reason why the redundancy management software was able
to be kept to a minimum is that NASA decided to move voting to the
actuators, rather than to do it before commands are sent on buses.
Each actuator is quadruple redundant. If a single computer fails, it
continues to send commands to an actuator until the crew takes it out
of the redundant set. Since the Shuttle's other three computers are
sending apparently correct commands to their actuators, the failed
computer's commands are physically out-voted79. Theoretically, the
only serious possibility is that three computers would fail simul­
taneously, thus negating the effects of the voting. If that occurs, and if
the proper warnings are given, the crew can then engage the backup
system simply by pressing a button located on each of the forward
rotational hand controllers.

Does the redundant set synchronization work? As described, the
F-8 version, with redundancy management identical to the Shuttle,
survived several in-flight computer failures without mishap. On the
first Shuttle Approach and Landing Test flight, a computer failed just
as the Enterprise was released from the Boeing 747 carrier; yet the
landing was still successful. That incident did a lot to convince the
astronaut pilots of the viability of the concept.

Synchronization and redundancy together were the methods
chosen to ensure the reliability of the Shuttle avionics hardware. With
the key hardware problems solved, NASA turned to the task of
specifying the most complex flight software ever conceived.

106 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box 4-2: Redundant Set Synchronization: Key to Reliability

Synchronization of the redundant set works like this: When the
software accepts an input, delivers an output, or branches to a new
process, it sends a 3-bit discrete signal on the intercomputer communica­
tion (ICC) buses, then waits up to 4 milliseconds for similar discretes
from the other computers to arrive. The discretes are coded for certain
messages. For example, 010 means an I/O is complete without error, but
011 means that an I/O is complete with error 73 . This allows more infor­
mation other than just "here I am" to be sent. If another computer either
sends the wrong synchronization code, or is late the computer detecting
either of these conditions concludes that the delinquent computer has
failed, and refuses from then on to listen to it or acknowledge its
presence. Under normal circumstances, all three good computers should
have detected the single computer's error. The bad computer is an­
nounced to the crew with warning lights, audio signals, and CRT mes­
sages. The crew must purposely kill the power to the failed computer, as
there is no provision for automatic powerdown. This prevents a generic
software failure causing all the computers to be automatically shut off.

This form of synchronization creates a tightly coupled group of
computers constantly certifying that they are at the same place in the
software. To certify that they are achieving the same solutions, a
"sumword" is used. While computers are in a redundant set, a sumword
is exchanged 6.25 times every second on the ICC buses74. A sumword
typically consists of a 64 bits of data, usually the least significant bits of
the last outputs to the solid rocket boosters, orbital maneuvering engines,
main engines, body flap, speed brake, rudder, elevons, throttle, the sys­
tem discretes, and the reaction control system 75 . If there are three
straight miscomparisons of a sumword, the detecting computers declare
the computer involved to be failed76 .

Both the 3-bit synchronization code and sumword comparison are
characteristics of the redundant set operations. During noncritical mis­
sion phases such as on-orbit, the computers are reconfigured. Two might
be left in the redundant set to handle guidance and navigation functions,
such as maintaining the state vector. A third would run the systems
management software that controls life support, power, and the payload.
The fourth would be loaded with the descent software and powered
down, or "freeze dried," to be instantly ready to descend in an emergency
and to protect against a failure of the two MMUs. The fifth contains the
backup flight system. This configuration of computers is not tightly
coupled, as in the redundant set. All active computers, however, do con­
tinue the 6.25/second exchange of sumwords, called the common set
synchronization 77 .

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 107

OPS I

ASCENT

ors 1

ASCl::NT

OPS I

ASCENT

OPS I

ASCENT

'-------- REDUNDANT SET ___________ _,,

BACKUP

FLI GHT
SY STEM

'------------COMMON SET---------------~

BEJ SYST EMS

MANAGEMENT

'----· REDUNDANT SET __ __,

-------------COMMON SET --I

OPS 3

DESCENT

ors 3

Of.SCENT

.._ _______ REDUNDANT SET

OPS 3

DESCENT

OPS 3

DESCENT
(unpowered)

OPS 3

DESCENT

BACKUP
FLIGHT
SYSTEM

(unpuwere d)

BACKUP

FLIGHT
SYSTEM

'------------ COMMON SET _______________ __,

Figure 4-5. The various computer configurations used during a Shuttle mission.
The names of the operational sequences loaded into the machines are shown.

108 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

DEVELOPING SOFTWARE FOR THE SPACE SHUTTLE

During 1973 and 197 4 the first requirements began to be
specified for what has become one of the most interesting software
systems ever designed. It was obvious from the very beginning that
developing the Shuttle's software would be a complicated job. Even
though NASA engineers estimated the size of the flight software to be
smaller than that on Apollo, the ubiquitous functions of the Shuttle
computers meant that no one group of engineers and no one company
could do the software on its own. This increased the size of the task
because of the communication necessary between the working groups.
It also increased the complexity of a spacecraft already made complex
by flight requirements and redundancy. Besides these realities, no one
could foresee the final form that the software for this pioneering
vehicle would take, even after years of development work had
elapsed, since there continued to be both minor and major changes.
NASA and its contractors made over 2,000 requirements changes be-
tween 1975 and the first flight in 198180. As a result, about $200 mil­
lion was spent on software, as opposed to an initial estimate of $20
million. Even so, NASA lessened the difficulties by making several
early decisions that were crucial for the program's success. NASA
separated the software contract from the hardware contract, closely
managed the contractors and their methods, chose a high-level lan­
guage, and maintained conceptual integrity.

NASA awarded IBM Corporation the first independent Shuttle
software contract on March 10, 1973. IBM and Rockwell Inter­
national had worked together during the period of competition for the
orbiter contract81 . Rockwell bid on the entire aerospacecraft, intend­
ing to subcontract the computer hardware and software to IBM. But to
Rockwell's dismay, NASA decided to separate the software contract
from the orbiter contract. As a result, Rockwell still subcontracted
with IBM for the computers, but IBM had a separate software contract
monitored closely by the Spacecraft Software Division of the Johnson
Space Center. There are several reasons why this division of labor oc­
curred. Since software does not weigh anything in and of itself, it is
used to overcome hardware problems that would require extra systems
and components (such as a mechanical control system)82. Thus
software is in many ways the most critical component of the Shuttle,
as it ties the other components together. Its importance to the overall
program alone justified a separate contract, since it made the contrac­
tor directly accountable to NASA. Moreover, during the operations
phase, software underwent the most changes, the hardware being es­
sentially fixed83. As time went on, Rockwell's responsibilities as

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 109

prime hardware contractor were phased out, and the shuttles were
turned over to an operations group. In late 1983, Lockheed Corpora­
tion, not Rockwell, won the competition for the operations contract.
By keeping the software contract separate, NASA could develop the
code on a continuing basis. There is a considerable difference between
changing maintenance mechanics on an existing hardware system and
changing software companies on a not-yet-perfect system because to
date the relationships between components in software are much har­
der to define than those in hardware. Personnel experienced with a
specific software system are the best people to maintain it. Lastly,
Christopher Kraft of Johnson Space Center and George Low of NASA
Headquarters, both highly influential in the manned spacecraft
program during the early 1970's, felt that Johnson had the software
management expertise to handle the contract directly84.

One of the lessons learned from monitoring Draper Laboratory in
the Apollo era was that by having the software development at a
remote site (like Cambridge), the synergism of informally exchanged
ideas is lost; sometimes it took 3 to 4 weeks for new concepts to filter
over85. IBM had a building and several hundred personnel near
Johnson because of its Mission Control Center contracts. When IBM
won the Shuttle contract, it simply increased its local force.

The closeness of IBM to Johnson Space Center also facilitated the
ability of NASA to manage the project. The first chief of the Shuttle's
software, Richard Parten, observed that the experience of NASA
managers made a significant contribution to the success of the pro­
gramming effort86. Although IBM was a giant in the data processing
industry, a pioneer in real-time systems, and capable of putting very
bright people on a project, the company had little direct experience
with avionics software. As a consequence, Rockwell had to supply a
lot of information relating to flight control. Conversely, even though
Rockwell projects used computers, software development on the scale
needed for the Shuttle was outside its experience. NASA Shuttle
managers provided the initial requirements for the software and
facilitated the exchange of information between the principal contrac­
tors. This situation was similar to that during the 1960s when NASA
had the best rendezvous calculations people in the world and had to
contribute that expertise to IBM during the Gemini software develop­
ment. Furthermore, the lessons of Apollo inspired the NASA
managers to push IBM for quality at every point87.

The choice of a high-level language for doing the majority of the
coding was important because, as Parten noted, with all the changes,
"we'd still be tryinf to get the thing off the ground if we'd used as­
sembly language"8 . Programs written in high-level languages are far
easier to modify. Most of the operating system software, which is
rarely changed, is in assembler, but all applications software and some
of the interfaces and redundancy management code is in HAL/S89.

110 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Although the decision to program in a high-level language meant that
a large amount of support software and development tools had to be
written, the high-level language nonetheless proved advantageous,
especia_lly since it has specific statements created for real-time pro­
grammmg.

Defining the Shuttle Software

In the end, the success of the Shuttle's software development was
due to the conceptual integrity established by using rigorously main­
tained requirements documents. The requirements phase is the begin­
ning of the software life cycle, when the actual functions, goals, and
user interfaces of the eventual software are determined in full detail. If
a team of a thousand workers was asked to set software requirements,
chaos would resutt90. On the other hand, if few do the requirements
but many can alter them later, then chaos would reign again. The
strategy of using a few minds to create the software architecture and
interfaces and then ensuring that their ideas and theirs alone are im­
plemented, is termed "maintaining conceptual integrity," which is well
explained in Frederick C. Brooks' The Mythical Man-Month9 1. As for
other possible solutions, Parten says, "the only right answer is the one
you pick and make to work"92.

Shuttle requirements documents were arranged in three Levels:
A, B, and C, the first two written by Johnson Space Center engineers.
John R. Garman prepared the Level A document, which is comprised
of a comprehensive description of the operating system, applications
programs, keyboards, displays, and other components of the software
system and its interfaces. William Sullivan wrote the guidance,
navigation and control requirements, and John Aaron, the system
management and payload specifications of Level B. They were as-
sisted by James Broadfoot and Robert Emun93. Level B requirements
are different in that they are more detailed in terms of what functions
are executed when and what parameters are needed94. The Level Bs
also define what information is to be kept in COMPOOLS, which are
HAL/S structures for maintaining common data accessed by different
tasks95. The Level C requirements were more of a design document,
forming a set with Level B requirements, since each end item at Level
C must be traceable to a Level B requirement96. Rockwell Inter­
national was responsible for the development of the Level C require­
ments as, technically, this is where the contractors take over from the
customer, NASA, in developing the software.

Early in the program, however, Draper Laboratory had significant
influence on the software and hardware systems for the Shuttle.
Draper was retained as a consultant by NASA and contributed two

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 111

key items to the software development process. The first was a docu­
ment that "taught" NASA and other contractors how to write require­
ments for software, how to develop test flans, and how to use func­
tional flow diagrams, among other tools9 . It seems ironic that Draper
was instructing NASA and IBM on such things considering its dif­
ficulties in the mid- l 960s with the development of the Apollo flight
software. It was likely those difficult experiences that helped motivate
the MIT engineers to seriously study software techniques and to be­
come, within a very short time, one of the leading centers of software
engineering theory. The Draper tutorial included the concept of highly
modular software, software that could be "plugged into" the main cir­
cuits of the Shuttle. This concept, an application of the idea of inter­
changeable parts to software, is used in many software systems today,
one example being the UNIX*** operating system developed at Bell
Laboratories in the 1970s, under which single function software tools
can be combined to perform a large variety of functions.

Draper's second contribution was the actual writing of some early
Level C requirements as a model98. This version of the Level C
documents contained the same components as in the later versions
delivered by Rockwell to IBM for coding. Rockwell's editions,
however, were much more detailed and complete, reflecting their
practical, rather than theoretical, purpose and have been an irritation
for IBM. IBM and NASA managers suspect that Rockwell, miffed
when the software contract was taken away from them, may have
delivered incredibly precise and detailed specifications to the software
contractor. These include descriptions of flight events for each major
portion of the software, a structure chart of tasks to be done by the
software during that major segment, a functional data flowchart, and,
for each module, its name, calculations, and operations to be per­
formed, and input and output lists of parameters, the latter already
named and accompanied by a short definition, source, precision, and
what units each are in. This is why one NASA manager said that "you
can't see the forest for the trees" in Level C, oriented as it is to the
production of individual modules99. One IBM engineer claimed that
Rockwell went "way too far" in the Level C documents, that they told
IBM too much about how to do things rather than just what to do100.
He further claimed that the early portion of the Shuttle development
was "underengineered" and that Rockwell and Draper included some
requirements that were not passed on by NASA. Parten, though, said
that all requirements documents were subject to regular review by
joint teams from NASA and Rockwell 101.

The impression one gains from documents and interviews is that
both Rockwell and IBM fell victim to the "not invented here"

***UNIX is a trademark of AT&T.

112 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

syndrome: If we didn't do it, it wasn't done right. For example, Rock­
well delivered the ascent requirements, and IBM coded them to the
letter, thereby exceeding the available memory by two and a third
times and demonstrating that the requirements for ascent were exces­
sive. Rockwell, in return, argued for 2 years about the nature of the
operating system, calling for a strict time-sliced system, which al­
locates predefined periods of time for the execution of each task and
then suspends tasks unfinished in that time period and moves on to the
next one. The system thus cycles through all scheduled tasks in a
fixed period of time, working on each in tum. Rockwell's original
proposal was for a 40-millisecond cycle with synchronization points
at the end of each 102. IBM, at NASA's urging, countered with a
priority-interrupt-driven system similar to the one on Apollo. Rock­
well, experienced with time-slice systems, fought this from 1973 to
1975, convinced it would never work103_

The requirements specifications for the Shuttle eventually con­
tained in their three levels what is in both the specification and design
stage of the software life cycle. In this sense, they represent a fairly
complete picture of the software at an early date. This level of detail at
least permitted NASA and its contractors to have a starting point in
the development process. IBM constantly points to the number of
changes and alterations as a continuing problem, partially ameliorated
by implementing the most mature requirements first 104. Without the
attempt to provide detail at an early date, IBM would not have had
any mature requirements when the time came to code. Even now, re­
quirements are being changed to reflect the actual software, so they
continue to be in a process of maturation. But early development of
specifications became the means by which NASA could enforce con­
ceptual integrity in the shuttle software.

Architecture of the Primary Avionics Software System

The Primary Avionics Software System, or PASS, is the software
that runs in all the Shuttle's four primary computers. PASS is divided
into two parts: system software and applications software. The sys­
tem software is the Flight Computer Operating System (FCOS), the
user interface programming, and the system control programs,
whereas the applications software is divided into guidance, navigation
and control, orbiter systems management, payload and checkout
programs. Further divisions are explained in Box 4-3.

The most critical part of the system software is the FCOS. NASA,
Rockwell, and IBM solved most of the grand conceptual problems,
such as the nature of the operating system and the redundancy
management scheme, by 1975. The first task was to convert the FCOS
from the proposed 40-millisecond loop operating system to a priority-

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 113

Box 4-3: Structure of PASS Applications Software

The PASS guidance and navigation software is divided into major
functions, dictated by mission phases, the most obvious of which are
preflight, ascent, on-orbit, and descent. The requirements state that these
major functions be called OPS, or operational sequences. (e.g., OPS-1 is
ascent; OPS-3, descent.) Within the OPS are major modes. In OPS-1, the
first-stage bum, second-stage bum, first orbital insertion bum, second or­
bital insertion bum, and the initial on-orbit coast are major modes; tran­
sition between major modes is automatic. Since the total mission
software exceeds the capacity of the memory, OPS transitions are nor­
mally initiated by the crew and require the OPS to be loaded from the
.M:MU. This caused considerable management concern over the preser­
vation of data, such as the state vector, needed in more than one OPS 105.
NASA's solution is to keep common data in a major function base,
which resides in memory continuously and is not overlaid by new OPS
being read into the computers.

Within each OPS, there are special functions (SPECs) and display
functions (DISPs). These are available to the crew as a supplement to the
functions being performed by the current OPS. For example, the descent
software incorporates a SPEC display showing the horizontal situation as
a supplement to the OPS display showing the vertical situation. This
SPEC is obviously not available in the on-orbit OPS. A DISP for the
on-orbit OPS may show fuel cell output levels, fuel reserves in the or­
bital maneuvering system, and other such information. SPECs usually
contain items that can be selected by the crew for execution. DISPs are
just what their name means, displays and not action items. Since SPECs
and DISPs have lower priority than OPS, when a big OPS is in memory
they have to be kept on the tape and rolled in when requested 106. The
actual format of the SPECs, DISPs, OPS displays, and the software that
interprets crew entries on the keyboard is in the user interface portion of
the system software.

driven system 107. Priority interrupt systems are superior to time-slice
systems because they degrade gracefully when overloaded 1 °8. In a
time-slice system, if the tasks scheduled in the current cycle get
bogged down by excessive I/O operations, they tend to slow down the
total time of execution of processes. IBM's version of the FCOS ac­
tually has cycles, but they are similar to the ones in the Skylab system
described in the previous chapter. The minor cycle is the high­
frequency cycle; tasks within it are scheduled every 40 milliseconds.
Typical tasks in this cycle are those related to active flight control in
the atmosphere. The major cycle is 960 milliseconds, and many
monitoring and system management tasks are scheduled at that
frequency 109. If a process is still running when its time to restart

114COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

OUIIII
FLIQR

I.OHl'IITU
\OflllAAI

•NOT AVAILABL E 55 1,2

»~~s a--------.
-- ---- - --

- lllll(

Figure 4--6. A block diagram of the Shuttle flight computer software architecture.
(From NASA, Data Processing System Workbook)

comes up due to excessive 1/0 or because it was interrupted, it cancels
its next cycle and finishes up 110. If a higher priority process is called
when another process is running, then the current process is inter­
rupted and a program status word (PSW) containing such items as the
address of the next instruction to be executed is stored until the inter­
ruption is satisfied. The last instruction of an interrupt is to restore the
old PSW as the current PSW so that the interrupted process can
continue 111 . The ability to cancel processes and to interrupt them
asynchronously provides flexibility that a strict time-slice system does
not.

A key requirement of the FCOS is to handle the real-time state­
ments in the HAL/S language. The most important of these are
SCHEDULE, which establishes and controls the frequency of execu­
tion of processes; TERMINATE and CANCEL, which are the op­
posite of SCHEDULE; and WAIT, which conditionally suspends
execution 112. The method of implementing these statements 1s con-

ORJGlNAL PAGE IS
OE £00R QUALITY

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 115

trolled by a separate interface control document113. SCHEDULE is
generally programmed at the beginning of each operational sequence
to set up which tasks are to be done in that software segment and how
often they are to be done. The syntax of SCHEDULE permits the
programmer to assign a frequency and priority to each task. TER­
MINATE and CANCEL are used at the end of software phases or to
stop an unneeded process while others continue. For example, after
the solid rocket boosters burn out and separate, tasks monitoring them
can cease while tasks monitoring the main engines continue to run.
WAIT, although handy, is avoided by IBM because of the possibility
of the software being "hung up" while waiting for the 1/0 or other
condition required to continue the process114. This is called a race
condition or "deadly embrace" and is the bane of all shared resource
computer operating systems.

The FCOS and displays occupy 35K of memory at all times 115.
Add the major function base and other resident items, and about 60K
of the 106K of core remains available for the applications programs.
Of the required applications programs, ascent and descent proved the
most troublesome. Fully 75% of the software effort went into those
two programs116. After the first attempts at preparing the ascent
software resulted in a 140K load, serious code reduction began. By
1978, IBM reduced the size of the ascent program to 116K, but NASA
Headquarters demanded it be further knocked down to 80K 117. The
lowest it ever got was 98,840 words (including the system software),
but its size has since crept back up to nearly the full capacity of the
memory. IBM accomplished the reduction by moving functions that
could wait until later operational sequences 118. The actual figures for
the test flight series programs are in Table 4-1 119. The total size of the
flight test software was 500,000 words of code. Producing it and
modifying it for later missions required the development of a com­
plete production facility.

116 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

TABLE 4-1: Sizes of Software Loads in PASS

NAME

Preflight initialization

Preflight checkout

Ascent and abort

On-orbit

On-orbit checkout

On-orbit system management

Entry

Mass memory utility

Note: Payload and rendezvous software was added later during the operations

phase.

Implementing PASS

KWORDS

72.4

81.4

105.2

83.1

80.3

84.1

101.1

70.1

NASA planned that PASS would be a continuing development
process. After the first flight programs were produced, new functions
needed to be added and adapted to changing payload and mission re­
quirements. For instance, over 50% of PASS modules chanf:ed during
the first 12 flights in response to requested enhancements 20. To do
this work, NASA established a Software Development Laboratory at
Johnson Space Center in 1972 to prepare for the implementation of
the Shuttle programs and to make the software tools needed for ef­
ficient coding and maintenance. The Laboratory evolved into the
Software Production Facility(SPF) in which the software development
is carried on in the operations era. Both the facilities were equipped
and managed by NASA but used largely by contractors.

The concept of a facility dedicated to the production of onboard
software surfaced in a Rand Corporation memo in early 1970121 . The
memo summarized a study of software requirements for Air Force
space missions during the decade of the 1970s. One reason for a
government-owned and operated software factory was that it would be
easier to establish and maintain security. Most modules developed for

COMPUTERS IN THE SP ACE SHUTTLE AVIONICS SYSTEM 117

the Shuttle, such as the general flight control software and memory
displays, would be unclassified. However, Department of Defense
(DoD) payloads require system management and payload manage­
ment software, plus occasional special maneuvering modules. These
were expected to be classified. Also, if the software maintenance con­
tract moved from the original prime contractor to some different
operations contractor, it would be considerably simpler to accomplish
the transfer if the software library and development computers were
government owned and on government property. Lastly, having such
close control over existing software and new development would
eliminate some of the problems in communication, verification, and
maintenance encountered in the three previous manned programs.

Developing the SPF turned out to be as large a task as developing
the flight software itself. During the mid-1970s, IBM had as many
people doing software for the development lab as they had working on
PASS122. The ultimate purpose of the facility is to provide a program­
ming team with sufficient tools to prepare a software load for a flight.
This software load is what is put on to the MMU tape that is flown on
the spacecraft. In the operations era of the 1980s, over 1,000 compiled
modules are available. These are fully tested, and often previously
used, versions of tasks such as main engine throttling, memory
modification, and screen displays that rarely change from flight to
flight. New, mission-specific modules for payloads or rendezvous
maneuvers are developed and tested using the SPF's programming
tools, which themselves represent more than a million lines of
code 123. The selection of existing modules and the new modules are
then combined into a flight load that is subject to further testing.
NASA achieved the goal of having such an efficient software produc­
tion system through an 8-year development process when the SPF was
still the Laboratory.

In 1972, NASA studied what sort of equipment would be required
for the facility to function properly. Large mainframe computers com­
patible with the AP-101 instruction set were a must. Five IBM 360/75
computers, released from Apollo support functions, were available 124.

These were the development machines until January of 1982125.
Another requirement was for actual flight equipment on which to test
developed modules. Three AP-101 computers with associated display
electronics units connected to the 360s with a flight equipment inter­
face device (FEID) especially developed for the purpose. Other
needed components, such as a 6-degree-of-freedom flight simulator,
were implemented in software126. The resulting group of equipment is
capable of testing the flight software by interpreting instructions,
simulating functions, and running it in the actual flight hardware 127.

In the late 1970s, NASA realized that more powerful computers
were needed as the transition was made from development to opera­
tions. The 360s filled up, so NASA considered the Shuttle Mission

118 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Simulator(SMS), the Shuttle Avionics Instrumentation Lab (SAIL),
and the Shuttle Data Processing Center's computers as supplementary
development sites, but this idea was rejected because they were all too
busy doing their primary functions 128. In 1981, the Facility added two
new IBM 3033N computers, each with 16 million bytes of primary
memory. The SPF then consisted of those mainframes, the three
AP-101 computers and the interface devices for each, 20 magnetic
tape drives, six line printers, 66 million bytes of drum memory, 23.4
billion bytes of disk memory, and 105 terminals129. NASA ac­
complished rehosting the development software to the 3033s from the
360s during the last quarter of 1981. Even this very large computer
center was not enough. Plans at the time projected on-line primary
memory to grow to 100 million bytes 130, disk storage to 160 billion
bytes131 , and two more interface units, display units, and AP-l0ls to
handle the growing DOD business132. Additionally, terminals con­
nected directly to the SPF are in Cambridge, Massachusetts, and at
Goddard Space Flight Center, Marshall Space Flight Center, Kennedy
Space Center, and Rockwell International in Downey, California 133.

Future plans for the SPF included incorporating backup system
software development, then done at Rockwell, and introducing more
automation. NASA managers who experienced both Apollo and the
Shuttle realize that the operations software preparation is not enough
to keep the brightest minds sufficiently occupied. Only a new project
can do that. Therefore, the challenge facing NASA is to automate the
SPF, use more existing modules, and free people to work on other
tasks. Unfortunately, the Shuttle software still has bugs, some of
which are no fault of the flight software developers, but rather because
all the tools used in the SPF are not yet mature. One example is the
compiler for HAL/S. Just days before the STS-7 flight, in June, 1983,
an IBM employee discovered that the latest release of the compiler
had a bug in it. A quick check revealed that over 200 flight modules
had been modified and recompiled using it. All of those had to be
checked for errors before the flight could go. Such problems will con­
tirnie until the basic flight modules and development tools are no
longer constantly subject to change. In the meantime, the accuracy of
the Shuttle software is dependent on the stringent testing program
conducted by IBM and NASA before each flight.

Verification and Change Management of the Shuttle Software

IBM established a separate line organization for the verification
of the Shuttle software. IBM's overall Shuttle manager has two
managers reporting to him, one for design and development, and one
for verification and field operations. The verification group has just

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 119

less than half the members of the development group and uses 35% of
the software budget134. There are no managerial or personnel ties to
the development group, so the test team can adopt an "adversary
relationship" with the development team. The verifiers simply as­
sume that the software is untested when received 135. In addition, the
test team can also attempt to prove that the requirements documents
are wrong in cases where the software becomes unworkable. This en­
ables them to act as the "conscience" of the entire project136.

IBM began planning for the software verification while the re­
quirements were being completed. By starting verification activity as
the software took shape, the test group could plan its strategy and
begin to write its own books. The verification documentation consists
of test specifications and test procedures including the actual inputs to
be used and the outputs expected, even to the detail of showing the
content of the CRT screens at various points in the test137. The
software for the first flight had to survive 1,020 of these tests138. Fu­
ture flight loads could reuse many of the test cases, but the preparation
of new ones is a continuing activity to adjust to changes in the
software and payloads, each of which must be handled in an orderly
manner.

Suggestions for changes to improve the system are unusually wel­
come. Anyone, astronaut, flight trainer, IBM programmer, or NASA
manager, can submit a change request139. NASA and IBM were
processing such requests at the rate of 20 per week in 1981 140. Even
as late as 1983 IBM kept 30 to 40 people on requirements analysis, or
the evaluation of requests for enhancements141. NASA has a cor­
responding change evaluation board. Early in the program, it was
chaired by Howard W. Tindall, the Apollo software manager, who by
then was head of the Data Systems and Analysis Directorate. This
turned out to be a mistake, as he had conflicting interests142_ The
change control board moved to the Shuttle program office. Due to the
careful review of changes, it takes an average of 2 years for a new re-
quirement to get implemented, tested, and into the field143. Generally,
requests for extra functions that would push out current software due
to memory restrictions are turned down144.

120 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box 4-4: How IBM Verifies the Shuttle Flight Software

The Shuttle software verification process actually begins before the
test group gets the software, in the sense that the development organiza­
tion conducts internal code reviews and unit tests of individual modules
and then integration tests of groups of modules as they are assembled
into a software load. There are two levels of code inspection, or
"eyeballing" the software looking for logic errors. One level of inspec­
tion is by the coders themselves and their peer reviewers. The second
level is done by the outside verification team. This activity resulted in
over 50% of the discrepancy reports (failures of the software to meet the
specification) filed against the software, a percentage similar to the
Apollo experience and reinforcing the value of the idea 145 . When the
software is assembled, it is subject to the First Article Configuration In­
spection (F ACI), where it is reviewed as a complete unit for the first
time. It then passes to the outside verification group.

Because of the nature of the software as it is delivered, the verifica­
tion team concentrates on proving that it meets the customer's require­
ments and that it functions at an acceptable level of performance. Consis­
tent with the concept that the software is assumed untested, the verifica­
tion group can go into as much detail as time and cost allow. Primarily,
the test group concentrates on single software loads, such as ascent, on­
orbit, and so forth 146. To facilitate this, it is divided into teams that spe­
cialize in the operating system and detail, or functional verification;
teams that work on guidance, navigation, and control; and teams that cer­
tify system performance. These groups have access to the software in the
SPF, which thus doubles as a site for both development and testing.
Using tools available in the SPF. the verification teams can use the real
flight computers for their tests (the preferred method). The testers can
freeze the execution of software on those machines in order to check in­
termediate results, alter memory, and even get a log of what commands
resulted in response to what inputs 147.

After the verification group has passed the software, it is given an
official Configuration Inspection and turned over to NASA. At that point
NASA assumes configuration control, and any changes must be ap­
proved through Agency channels. Even though NASA then has the
software, IBM is not finished with it 148 .

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 121

Box 4--1 (Continued)

The software is usually installed in the SAIL for prelaunch, ascent,
and abort simulations, the Flight Simulation Lab (FSL) in Downey for
orbit, de-orbit, and entry simulations, and the SMS for crew training. Al­
though these installations are not part of the preplanned verification
process, the discrepancies noted by the users of the software in the
roughly 6 months before launch help complete the testing in a real en­
vironment. Due to the nature of real-time computer systems, however,
the software can never be fully certified, and both IBM and NASA are
aware of this 149. There are simply too many interfaces and too many op­
portunities for asynchronous input and output.

Discrepancy reports cause changes in software to make it match
the requirements. Early in the program, the software found its way
into the simulators after less verification because simulators depend
on software just to be turned on. At that time, the majority of the dis­
crepancy reports were from the field installations. Later, the majority
turned up in the SPF150. All discrepancy reports are formally disposed
of, either by appropriate fixes to the software, or by waiver. Richard
Parten said, "Sometimes it is better to put in an 'OPS Note' or waiver
than to fix (the software). We are dependent on smart pilots" 151 . If the
discrepancy is noted too close to a flight, if it requires too much ex­
pense to fix, it can be waived if there is no immediate danger to crew
safety. Each Flight Data File carried on board lists the most important
current exceptions of which the crew must be aware. By STS-7 in
June of 1983, over 200 pages of such exceptions and their descriptions
existed 152. Some will never be fixed, but the majority were addressed
during the Shuttle launch hiatus following the 5 lL accident in January
1986.

So, despite the well-planned and well-manned verification effort,
software bugs exist. Part of the reason is the complexity of the real­
time system, and part is because, as one IBM manager said, "we
didn't do it up front enough," the "it" being thinking through the
program logic and verification schemes153. Aware that effort ex­
pended at the early part of a project on quality would be much cheaper
and simpler than trying to put quality in toward the end, IBM and
NASA tried to do much more at the beginning of the Shuttle software
development than in any previous effort, but it still was not enough to
ensure perfection.

122 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box 4-5: The Nature of the Backup Flight System

The Backup Flight System consists of a single computer and a
software load that contains sufficient functions to handle ascent to orbit,
selected aborts during ascent, and descent from orbit to a landing site. In
the interest of avoiding a generic software failure, NASA kept its
development separate from PASS. An engineering directorate, not the
on-board software division, managed the software contract for the
backup, won by Rockwell 154.

The major functional difference between PASS and the backup is
that the latter uses a time-slice operating system rather than the
asynchronous priority-driven system of PASS 155 . This is consistent with
Rockwell's opinion on how that system was to be designed. Ironically,
since the backup must listen in on PASS operations so as to be ready for
instant takeover, PASS had to be modified to make it more
synchronous 156. Sixty engineers were still working on the Backup Flight
System software as late as 1983 157.

USING THE SHUTTLE DPS

With the level of complexity present in the hardware and software
just described, it is not surprising that the crew interfaces to those
components are also complex. The complexity is caused not so much
by the design of the interfaces but by the limited amount of memory
available for graphics displays, automatic reconfiguring of the com­
puters, and other utilities to make the system more cooperative and
simpler for the users. There is some difference between the way the
users of the system perceive the DPS and the way the designers, both
NASA and IBM, perceive it. Some astronauts and trainers are openly
critkal. John Young, the Chief Astronaut in the early 1980s, com­
plained, "What we have in the Shuttle is a disaster. We are not making
computers do what we want" 158. Flight trainer Frank Hughes also
remarked that "the PASS doesn't do anything for us" 159, noting that
such practical items as the time from loss of ground-station signals
and acquisition of new stations is not part of the primary software.
Both said, "We end up working for the computer, rather than the com­
puter working for us." This comment is something reminiscent of
Apollo days, when the number of keystrokes needed to fly a mission
was a concern. John Aaron, one of NASA's designers of PASS inter­
faces and later chief of spacecraft software, said that the Apollo ex­
perience influenced Shuttle designers to avoid excessive pilot inter­
action with the computers. Even so, he found the "crew

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 123

ORIGINAL Ac 2 ~S
Of POUR UAL TY

Figure 4-7. The forward flight deck of a Shuttle, with the three CRT screens and
twin keyboards visible in the center. (NASA photo S80-35133)

interfaces ... more confusing and complex than I thought they would
be" 160. One statistic that supports his perception is that the 13,000
keystrokes used in a week-long lunar mission are matched by a Shut­
tle crew in a 58-hour flight161 .

Another aspect of the "working for the computer" problem is that
steps normally done by computers using preprogrammed functions are
done manually on the Shuttle. The reconfiguration of PASS from the
ascent redundant set to the on-orbit groupings has to be done by the
crew, a process taking several minutes and needing to be reversed be­
fore descent. Aaron acknowledges that the computer interfaces are too
close to machine level, but points out that management "would not
buy" simple automatic reconfiguration schemes. Even if they had,
there is no computer memory to store such utilities.

Tied to the computer memory problem is the fact that many func-

124 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

tions have to be displayed together on a screen because of the fact that
such displays are "memory hungry." As a result, many screens are so
crowded that reading them quickly is difficult, the process being fur­
ther affected by the blandness and primitive nature of any graphics
available. Astronaut Vance Brand claimed that after initial confusion,
several hours with simulators makes things easier to find; he makes a
point of checking his entries on the input line before pressing the ex-
ecute key 162. Young does that as well, but for additional reasons: The
keyboard buffer is so small that entering data too quickly causes some
to be lost, and he wants to check whether he is accessing the right
screen display with the proper keyboard. This latter concern arises
because there are only two keyboards for the three forward CRTs.
Since both keyboards can be assigned to the same screen, two CRTs
may not be currently set up for input. Even if the two keyboards are
assigned to different screens, one CRT is left without capability for
immediate crew input. Astronaut Henry Hartsfield termed this situa­
tion "prone to error" 163_

Since flying the Sbuttle is in many ways flying the Shuttle com­
puters (they provide the active flight control, guidance and navigation,
systems management, and payload functions), the astronauts are inter­
ested in making suggestions for improving the computer system. Most
revolve around more automation, more user friendliness, more color,
better graphics, and more functions, such as adding a return-to­
launch-site (RTLS) abort with two engines out in addition to the
present version with only one engine out164. Each of these enhance­
ments is tied to increasing memory. IBM proposed a new version of
the Shuttle computers with 256K of memory and software com­
patibility with the existing system. Johnson Space Center began test­
ing these AP-lOlF computers in 1985, with the first operational use
projected for the resumption of Shuttle missions in 1988.

In the meantime, the astronauts themselves pioneered efforts to
use small computers to add functions and back up the primary sys­
tems. Early flights used a Hewlett-Packard HP-41 C programmable
calt:ulator to determine ground-station availability, as well as carry a
limited version of the calculations for time-to-retrofire. Beginning
with STS-9 in December, 1983, a Grid Systems Compass portable
microcomputer with graphics capabilities was carried to display
ground stations and to provide functions impractical on the primary
computers. Mission Specialist Terry Hart, responsible for program­
ming the HP-41 Cs, said that placing the mission documentation on the
computer was also being considered.165

THE SPACE SHUTTLE MAIN ENGINE CONTROLLERS

Among the many special-purpose computers on the Shuttle, the

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 125

Box 4-6: Using the Shuttle's Keyboards

The Shuttle's keyboards are different from those found on Gemini
and Apollo because they are hexadecimal, or base 16, rather than
decimal, so that memory locations can be altered by hex entries from the
keyboard. A single hex digit represents 4 bits, so just four digits can fill a
half-word memory location. The other keys perform specialized func­
tions. The most often used are

• ITEM: This selects a specific function displayed on a CRT. For
example, if the astronaut wishes to perform a function numbered
32 on the screen, he or she presses ITEM, 3, 2, EXEC.

• OPS: This, plus a four-digit number, selects the operational se­
quence and major mode desired by the crew. For instance, to
choose the first major mode of the ascent software, OPS, 1, 1, 0,
1, and PRO is entered.

• SPEC: This key, plus appropriate digits and PRO, selects a
specialist function or display function screen. Each OPS has as­
sociated with it a number of primary screens that reflect what is
happening in the software. The ascent program has a vertical
path graphic, for instance. Additionally, special functions can be
called from SPEC displays that are overlaid on the primary
screens when called. On-orbit, and several other OPS, have a
"GPC Memory" display that can be used to read or write to in­
dividual memory locations. It cannot be called from either the
ascent or descent OPS. Display function screens are just that:
used to show various data such as fuel cell levels, but with no
crew functions. To return to the primary screen that was on the
CRT before the SPEC or DISP call, the RESUME key is used.

• CLEAR: Each time this key is depressed, one character is
deleted from the input line on the CRT accessed. This enables an
astronaut to erase an error if it is caught before EXEC or PRO is
depressed.

• '+' : This sign can be used as a delimiter around numeric data or
between a series of function selections.

main engine controllers stand out as a clear "first" in space technol­
ogy. The Shuttle's three main liquid-propellant engines are the most
complex and "hottest" rockets ever built. The complexity is tied to the
mission requirements, which state that they be throttleable, a common
characteristic of internal combustion engines and turbojets, but rare in
the rocket business. They run "hotter" than any other rocket engine
because at any given moment they are closer to destroying themselves
than their predecessors. Previous engines were overbuilt in the sense
that they were designed to bum at full thrust through their entire

126 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure -'-8. Keyboard layout of the Shuttle computer system. (From NASA, Data
Processing System Workbook)

lifetime of a few minutes with no chance that the continuous explo­
sion of fuel and oxidizer would get out of control. To ensure this, en­
gineers designed combustion chambers and cooling systems better
than optimum, with the result that the engines weighed more than
less-protected designs, thus reducing performance. Engineers also set
fluid mixtures and flow rates by mechanical means at preset levels,
and levels could not be changed to gain greater performance. The
Shuttle engines can adjust flow levels, can sense how close to explod­
ing they are, and can respond in such a way as to maintain maximum
performance at all times. Neither the throttleability or the perfor­
mance enhancements could be accomplished without a digital com­
puter as a control device.

In 1972, NASA chose Rocketdyne as the engine contractor, with

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 127

2 0 I I / O O O /

N E N / I U S C 0 N F I G
I CONFIG _!(Gl)

2 GPC ! ?_ ! ·! !!

S T I I N G I , !
2 II ?_

l 9 .!
4 l 0 !

p l I / 2 l l 0 -

C I T I I 2 !
2 I l ?.
l l 4 !!
4 I S !!

LAUNCH I I 6 !!
2 I 1 !!

"" I l II !
2 I 9 .!

GPC N(N0RY 2 117/ll:I0:18

000/08:10:18

R r A 0 / W I I T E G N C
D A T A 2 0 • I I T S E T 2 2 SEQ ID 24

C o D £ 2 I I I T I S T Z l W I I T E 2 S

2 6 £ N G U N I T S
ADD I D D E S I R E D

2 8 2 ' - - - - -
l 0 l I

l 2 l l

l 4 l 5

l 6 l 7

l 8 l 9

N E N 0 I Y D U N P
4 0 S T A R T I D
4 I N U N I E I W D S
4 2 W D S / F I A N (

OUNP 41

4 4 0 0 W N l I S T G P C !

H E I 2 7 •
ACTUAL

S T 0 A l N C •
4 S C O N f I G

46 GPC !
5 J O R l 4 1

l RR LOG R (5 (l 48

SPEC O PRO

Figure 4-9. A typical display of the Primary Avionics Software System. (From
NASA, Data Processing System Workbook)

Marshall Space Flight Center responsible for monitoring the design,
production, and testing of the engines. Rocketdyne conducted a
preliminary study of the engine control problem and recommended
that a distributed approach be used for the solution 166. By placing
controllers at the engines themselves, complex interfaces between the
engine and vehicle could be avoided. Also, the high data rates needed
for active control are best handled with a dedicated computer. Both
Marshall and Rocketdyne agreed that a digital computer controller
was better than an analog controller for three reasons. First, software
allows for greater flexibility. Inasmuch as the control concepts for the
engines were far from settled in 1972, NASA considered the ease of
modifying software versus hardware a very important advantage167.

128 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Second, the digital system could respond faster. And third, the failure
detection function could be simpler168. Basically, the computer has
only two functions: to control the engine and to do self tests.

The concept of fail operational/fail-safe is preserved with the en­
gine controllers because each engine has a dual redundant computer
attached to it. Failure of the first computer does not impede opera­
tional capability, as the second takes over instantly. Failure of the
second computer causes a graceful shutdown of the affected
engine169. Loss of an engine does not cause any immediate danger to
a Shuttle crew, as demonstrated in a 1985 mission that lost an engine
and still achieved orbit. If engine loss occurs early in a flight, the mis­
sion can be aborted through a RTLS maneuver that causes the
spacecraft essentially to turn around and fly back to a runway near the
launch pad. Slightly later aborts may lead to a landing in Europe for
Kennedy Space Center launches. If the engine fails near orbit it may
be possible to achieve an orbit and then modify it using the orbital
maneuvering system engines.

Controller Software and Redundancy Management

As with the main computers on the Shuttle, software is an impor­
tant part of the engine controller system. NASA managers adopted a
strict software engineering approach to the controller code. Marshall's
Walter Mitchell said, "We try to treat the software exactly like the
hardware" 170. In fact, the controller software is more closely married
to engine hardware than in other systems under computer control. The
controllers operate as a real-time system with a fixed cyclic execution
schedule. Each major cycle has four 5-millisecond minor cycles for a
total of 20 milliseconds. This is a high frequency, necessitated by the
requirement to control a rapidly changing engine environment. Each
major cycle starts and ends with a self test. It proceeds through engine
control tasks, input sensor data reads, engine limit monitoring tasks,
output, another round of input sensor data, a check of internal voltage,
and then the second self test 171 . Some free time is built into the cycle
to avoid overruns into the next cycle. So that the controller will not
waste processing time handling data requests from the primary
avionics system, direct memory access of engine component data can
be made by the primary 172.

As with the primary computers in the Shuttle, the memory of the
controller cannot hold all the software originally designed for it. A set
of preflight checkout programs have to be stored on the MMU and
rolled in during the countdown. At T-30 hours, the engines are ac­
tivated and the flight software load is read from the mass memory 173.
Even this way, fewer than 500 words of the 16K are unused 174.

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 129

ORIGINAL PAGE IS
OE POOR QUALIT.Yl

Figure 4-10. A Shuttle Main Engine Controller mounted in an engmeenng
simulator at the Marshall Space Flight Center. (NASA photo)

Although redundant, the controllers are not synchronized like the
primary computers. Marshall Space Flight Center studied active
synchronization, but the additional hardware and software overhead
seemed too expensive 175. The present system of redundancy manage­
ment most closely resembles that used by the Skylab computers. Since
Marshall also had responsibility for those computers and was making
the decision about the controllers at the same time Skylab was operat­
ing, some influence from the A TMDC experience is possible. Two
watchdog timers are used to flag failures. One is incremented by the
real-time clock and the other, by a clock in the output electronics.
Each has to be reset by the software. If the timers run out, the software
or critical hardware of the computer responsible for resetting them is
assumed failed and the Channel B computer takes over at that point.
The timeout is set at 18 milliseconds, so the engine involved is
"uncontrolled" by a failed computer for less than a major cycle before
the redundant computer takes over 176_

130 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box 4-7: Shuttle Engine Controller Hardware

The computer chosen for the engine controllers is the Honeywell
HDC-601. The Air Force was using it in 1972 when the choice was
made, so operational experience existed. Additionally, the machine was
software compatible with the DDP 516, a ground-based Honeywell min­
icomputer, so a development environment was available . Honeywell
built parts of the controller in St. Petersburg, Florida and shipped those
to the main plant in Minneapolis for final assembly; within a couple of
years, all the construction tasks moved to St. Petersburg. By mid-1983,
Honeywell completed 29 of the computers 177.

The HDC-601 uses a 16-bit instruction word. It can do an add in 2
microseconds, a multiply in 9. Eighty-seven instructions are available to
programmers, and all software is coded in assembly language 178. The
memory is 2-mil plated wire, which has been used widely in the military
and is known for its ruggedness. It functions much like a core memory in
that data are stored as a one or zero by changing the polarity in a seg­
ment of the wire. Each machine has 16K of 17 bits, the seventeenth bit
used to provide even parity 179. Plated wire has the advantage of having
nondestructive readout capability.

The controllers are arranged with power, central processor, and in­
terfaces as independent components, but the 1/0 devices are cross
strapped. This provides a reliability increase of 15 to 20 times, as
modular failures can be isolated. The computers and associated
electronics are referred to as Channel A and Channel B. With the cross
strapping, if Channel A's output electronics failed, than Channel B's
could be used by Channel A's computer180.

Packaging is a serious consideration with engine controllers, since
they are physically attached to a running rocket engine, hardly the benign
environment found in most computer rooms. The use of late 1960s tech­
nology, which creates computers with larger numbers of discrete com­
ponents and fewer !Cs, means that the engine builders are penalized in
designing appropriate packages l8 l. Rocketdyne bolted early versions of
the controller directly to the engine, resulting in forces of 22g rattling the
omputer and causing failures. The simple addition of a rubber gasket
reduced the g forces to about 3 or 4. Within the outer box, the circuit
cards are held in place by foam wedges to further reduce vibration
effects 182.

THE FUTURE OF THE SHUTTLE'S COMPUTERS

The computers in the Shuttle were candidates for change due to
the rapid progress of technology coupled with the long life of each
Shuttle vehicle. First to be replaced were the engine controllers. By

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 131

ORIGL l A.L P .,\GE IS

QE POOR QUALITY,

Figure .i--t t. A Shuttle main engine in a ground test. The Controller can be seen
mounted on the left side of the combustion chamber. (NASA photo 885338)

132 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

the early 1980s, Marshall Space Flight Center began studying a Block
II controller design because it was becoming impossible to find parts
and programmers for the late 1960s components of the Block I 183.
The revised computer uses a Motorola 68000 32-bit microprocessor.
When selected, it was clearly the state of the art. Instead of plated
wire, a CMOS-type semiconductor random-access memory is used.
Finally, the software is written in the high-level programming lan­
guage, C. Such a computer reflects the current design and components
of a ground-based, powerful digital control system. The C language is
also known as an excellent tool for software systems development. In
fact, the UNIX operating system is coded in it.

Aside from the processor change, the Block II's memory was in­
creased to 64K words. Therefore, the entire controller software, in­
cluding preflight routines, can be loaded at one time. Semiconductor
memories have the advantages of high speed, lower power consump­
tion, and higher density than core, but lack core memory's ability to
retain data when power is shut off. Reliability of the memory in the
Block II computer was assured by replicating the 64K and providing a
three-tier power supplyl84. Both Channel A and Channel B have two
sets of 64K memories, each loaded with identical software. Failure in
one causes a switch-over to the other. This protects against hardware
failures in the memory chips. The three tiers of power protect against
losing memory. The first level of power is the standard 115-volt
primary supply. If it fails, a pair of 28-volt backup supplies, one for
each channel, is available from other components of the system. Last,
a battery backup, standard on most earth-based computer systems, can
preserve memory but not run the processor.

The significance of the evolution to Block II engine controllers is
that they represent the first use of semiconductor memories and
microprocessors in a life-critical component of a manned spacecraft.
Honeywell scheduled delivery of a breadboard version suitable for
testing in mid-1985. The new controller is physically the same length
and width, so it fits the old mounting. The depth is expected to be
somewhat less. When the first of these computers flies on a Shuttle,
NASA will have skipped from 1968 computer technology to 1982
technology in one leap.

IBM's new version of the AP-101 (the F) incorporates some of
the same advantages gained by the new technology of the engine con­
trollers. Increasing the memory to 256K words means that the ascent,
on-orbit, and descent software can be fitted into the memory all at
once. (This is not likely to happen, however, because of the pressing
need to improve the crew interfaces and expand existing functions.)
Higher component density allows the CPU and IOP to be fitted into
one box roughly the size and weight of either of their predecessors.
Execution speed is now accelerated to nearly l million operations per
second, twice the original value. In essence, NASA has finally ac­
quired the power and capability it wanted in 1972, before the software
requirements showed the inadequacy of the original AP-101.

COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 133

As in the engine controllers, the memory in the AP-10 lF is made
of semiconductors. Power can be applied to the memory even when
the central processor is shut down so as to keep the stored programs
from disappearing. A commercially available error detection and cor­
recting chip is included to constantly scan the memory and correct
single bit errors. These precautions help eliminate the disadvantage of
volatility while still preserving the size, power, and weight advantages
of using semiconductors over core memories 185.

CONCLUSION

The DPS on the Shuttle orbiter reflects the state of software en­
gineering in the 1970s. Even though the software was admittedly the
key component of the spacecraft, NASA chose the hardware before
the first software requirement was written. This is typical of practice
in 1972, but less so now. NASA managers knew that time and money
spent on detailed software requirements specification and the cor­
responding development of a test and verification program would save
millions of dollars and much effort later. The establishment of a dedi­
cated facility for development was an innovative idea and helped keep
costs down by centralization and standardization. A combination of
complete requirements, an aggressive test plan, a decent development
facility, and the experience of NASA, Rockwell, Draper, and IBM en­
gineers in real-time systems was enough to create a successful Shuttle
DPS.

Even as the system took shape, NASA managers looked to the fu­
ture of manned spacecraft software. Increased automation of code and
test case generation, automated change insertion and verification, and
perhaps automated requirements development are all considered fu­
ture necessities if development costs are to be kept down and
reliability increased. In the 1980s, a new opportunity for software
development and hardware selection presents itself with NASA's
long-awaited Space Station. NASA has another chance to adopt up­
dated software engineering techniques and, perhaps, to develop
others. Success in space is increasingly tied to success in the software
factory.

COMPUTERS ON BOARD UNMANNED SPACECRAYf 137

power and complexity, paralleling the development of computers for
manned spacecraft. Unlike the manned programs, however, JPL spon­
sored fundamental research into spacecraft computing, which was
then translated into concepts that guided the development of flight
systems. The result was a series of innovative and flexible on-board
computers.

Part Two: Computers

On Board Unmanned Spacecraft

Unmanned spacecraft computers differ from manned spacecraft com­
puters in that they are designed to work much longer and use much
less spacecraft resources. A typical manned mission lasts a week or
less; the exception was Skylab, whose computers operated for 9
months straight and again later during its reactivation mission. Un­
manned missions in earth orbit or to the outer planets can last a
decade or longer. Manned spacecraft usually carry large auxiliary
power units based on fuel cell technology, as power requirements for
life support, experiments, and computers are high. Spacecraft in earth
orbit are often dependent on solar cell arrays, which are by nature
low-power generators. Interplanetary probes use either solar cells or
small radioisotope generators. Clearly, these circumstances cause dif­
ferent requirements for computers.

Of the two types of unmanned spacecraft, one is designed for
earth orbit operations and the other flies to the moon, planets, or deep
space. Earth orbiters usually need no navigation after achieving orbit;
space probes, however, are critically dependent on proper guidance.
Earth orbiters can be commanded nearly instantaneously from the
ground during the roughly 10% of the time they are "visible" to
ground stations. Interplanetary probes need to be autonomous, at least
capable of independent routine operation, due to speed of light delays
in communication and longer periods out of earth control. Multiple
missions and simple geography prevent interplanetary probes from be­
ing in constant contact with the three Deep Space Network stations.
Therefore, the basis of fault handling on an interplanetary probe is
failure detection and repair, whereas earth orbiters concentrate on
"safing" the spacecraft until the ground stations can help out. For
these reasons, computers became more sophisticated on spacecraft
designed to leave the gravity pull of the earth.

Moreover, the different computers have distinct origins. Many
near earth spacecraft used a variant of a single machine developed at
the Goddard Space Flight Center, whereas the Jet Propulsion
Laboratory (JPL) of the California Institute of Technology, a long
time NASA contractor, has dominated computer construction for deep
space flight, designing and building an evolving series of computers
for the Agency's interplanetary probes. These two lines of develop­
ment represent the most fruitful of NASA's forays into computer

136 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

research. Computers on manned spacecraft were generally developed
from other computers (Apollo from Polaris; 4Pi from the System
360). Computers in ground operations were adapted from commercial
machines. However, computers on unmanned spacecraft were custom
designed. In these cases, NASA was not only a contract monitor but
was actively involved in development.

The making of the first NASA Standard Spacecraft Computer,
which has controlled a number of earth-orbiting missions, has been
described elsewhere* As can be inferred by its name, NASA designed
this computer to fly on multiple, varying missions, which it has done
to good effect. For example, both the Solar Maximum Mission and the
Hubble Space telescope used the computer. Goddard Space Flight
Center led development of the device over a IO-year period from the
late 1960s to the late 1970s.

Figure B: The NASA Standard Spacecraft Computer I in its packaging. (NASA
photo)

In contrast, machines built at JPL have had a longer and more re­
lated history. Although some reuse has occurred, the various space
probes built at JPL carried mission-unique computers of increasing

*see Raymond G. Hartenstein, Ann C. Merwarth, William N. Stewart, Thomas
D. Taylor, and Charles E. Trevathan, "Development and Application of NASA's
First Standard Spacecraft Computer," Commun. ACM, 27(9), 902-913
(September 1984.)

ORIGINAL PAGE IS
OF. POOR QUALITX

5

From Sequencers to Computers:

Exploring the Moon

and the Inner Planets

140 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

One organization more than any other has dominated the exploration
of deep space: the Jet Propulsion Laboratory (JPL) of the California
Institute of Technology. JPL was responsible for the Ranger and Sur­
veyor series of lunar exploration spacecraft, the Mariner and Viking
Orbiter explorers of Mercury, Venus, and Mars, and the Voyager and
Galileo probes of the outer planets. As a result, the evolution of on­
board computers for deep space operations took place at JPL.

JPL's chief contribution to computing on unmanned spacecraft
was in leading progress from hard-wired sequencers to programmable
sequencers to digital computers. The Pioneer spacecraft developed
mostly at NASA's Ames Research Center and the Lunar Orbiters used
to map the moon in the 1960s did not carry on-board computers. Like
their earth-orbiting cousins and the first JPL probes, they used se­
quencing devices to activate and command experiments. Later the
Mariner spacecraft acquired more autonomy and flexibility by using
machines that stored command sequences in changeable software.
Finally, sophisticated spacecraft flew with special-purpose digital
computers.

Unique in its relationship to NASA, JPL is not solely a govern­
ment installation in the same way as, for example, the Johnson or
Marshall Space Flight Centers. JPL 's personnel receive their pay­
checks from Cal Tech, yet almost every piece of equipment on the site
has a NASA property tag, since, for over a quarter of a century, Cal
Tech has administered contracts that have paid for all research and
development of the many spacecraft originated at JPL.

Another way in which JPL is unique is its products. Whereas
thousands of earth-orbiting satellites have been launched, less than a
dozen each of Rangers, Surveyors, and Mariners were constructed,
and just two Vikings and Voyagers and one Galileo were sent into
space. Not only were few spacecraft built, but the interplanetary
launches were separated by years and had to be on strict deadlines due
to the realities of celestial mechanics. This created a completely dif­
ferent development environment than that at other NASA centers. The
emphasis on basic research at JPL has perhaps been stronger than at
any other NASA installation. This orientation and its application in
spacecraft forms a special part of the story of JPL.

JPL 's computer development activities were shaped by its or­
ganizational structures. When a project is started at the Laboratory, an
office is established to house the project manager, key systems
managers, and staff. Offices have come and gone with the projects
themselves. The Ranger office, for example, has been closed for
nearly 20 years, whereas the Voyager office is likely to be open for as
long as that. Most personnel are housed in divisions and sections relat­
ing to specific discipline or system functions, as, in 1984, the
"Technical Divisions" contained sections on "Guidance and Control"
and "Spacecraft Data Systems." When a project office needs a com­
ponent or service, it "subcontracts" it to the appropriate technical sec-

FROM SEQUENCERS TO COMPUTERS 141

tions. For instance, Spacecraft Data Systems supplies on-board com­
puters, whereas the Navigation Systems Section does the trajectory
calculations needed for a specific mission. In this way, specialists can
be kept busy on a series of projects over a period of years without
depending on a specific project for their jobs. Competition between
sections to develop related components can also exist, as on the
Voyager project, when the attitude control staff wanted to make their
own computer for their system while the data systems people claimed
sole domain over computer development. Within this setting, JPL has
produced high quality on-board computers that have demonstrated
outstanding reliability*.

FIXED SEQUENCERS: "COMPUTERS" ON

RANGER, SURVEYOR AND THE EARLY MARINERS

Whether the final mission destination is as close as the moon or
as far as Neptune, probe spaceflights consist of the same milestones
and activities: launch, mid-course maneuver, cruise, and encounter.
Spacecraft are launched in a stowed position dictated by the geometry
of the booster vehicle. Most space probes look like multiarmed Hindu
gods in flight due to the need to expose solar panels, point antennas,
and deploy imaging equipment, but they must be folded to fit into the
nose fairing of a rocket. During the launch period the spacecraft is in­
jected into its transfer orbit to intercept the target, deploys its various
appendages into their proper positions, and orients itself. A decision
was made early at JPL to build spacecraft that would be stablized in
three axes during flight1. Spacecraft would be oriented by using the
sun, earth, and/or a star as a reference. If kept from tumbling they
would always be pointed in a specific direction. A key advantage of
this plan is that a directional antenna could be used for earth-space
communications, reducing power requirements. Imaging equipment
could also be more stable than on a spin-stabilized spacecraft such as
a Pioneer. A disadvantage of three-axis stabilization is that a fairly
sophisticated attitude control system must be carried, including a sen­
sor system to find the sun and a guide star. Part of the launch phase,
then, is spent scanning the sky for Canopus, Vega, or whatever star
has been chosen for aligning the spacecraft.

The mid-course maneuver phase often comes only a day or two
after initial transfer orbit insertion in order to correct relatively large

*JPL's roots and its role in NASA receive excellent treatment in Clayton
Koppes' The Jet Propulsion Lab and the American Space Program, Yale Univer­
sity Press, 1982.

142 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

injection errors. Consisting of a timed bum of the spacecraft's propul­
sion system in each of three axes, it serves a number of purposes.
Early launches could not depend upon the launch vehicle to establish
an adequate flight path. Later, as booster guidance improved, probes
were purposely aimed to miss the target so as to avoid contaminating
planetary atmospheres with earthly bacteria hitching a ride on a
spacecraft if the spacecraft ceased to function during launch and could
not change its path to miss the planet. Therefore, the mid-course burn
took place to correct the path of a "live" spacecraft. On long-duration
missions with several targets, such as the Voyager probe to Jupiter,
Saturn, Uranus, and Neptune, this maneuver might be repeated before
and after each encounter. Engine firings are made before encounter to
improve the accuracy of the trajectory to achieve a better gravity as­
sist from the target planet to the new trajectory and reduce the size of
the postencounter maneuvers.

Less is done on the spacecraft during the cruise period than in any
other mission phase. However, recent larger and more complicated
spacecraft have particle and fields experiments that run constantly and
engineering calibrations that need periodic attention. If the spacecraft
attitude is disturbed, reorientation may be necessary. This period of
relative quiet ends when the encounter sequences begin as the
spacecraft nears its target. Instruments must be turned on, calibrated
and aimed. Imaging instrument pointing must be programmed and
controlled. Data must be recorded and transmitted to earth. Of course,
these activities are repeated during multiple encounter missions.

Initiating the functions done in each phase requires on-board con­
trol. This was unnecessary for Ranger missions to the moon, which
were simple impact flights with televised imaging during the last
minutes. Because maximum speed-of-light delay in radio signals to
the moon is less than a second, near-real-time commanding could be
done. Ground commands could fire engines, point the spacecraft, and
turn on cameras. Ranger flights used a voice/manual commanding
system for this. Desired instructions were developed and formatted at
JPL and then delivered by telephone to the Deep Space Network sta­
tion currently in contact with the spacecraft. An operator would
thumb-wheel the octal codes into a panel called the
"Read-Write-Verify Console," sending them to the spacecraft after
verification2. Such care was not always enough. On Ranger III, a
guidance error caused the spacecraft to miss the moon by 23,000
miles. Although JPL flight controllers were able to get images during
the flyby, a documentation discrepancy between the command set
developed during the ground testing of the spacecraft and the flight set
caused Ranger to point the wrong way, returning images of open
space3.

Ranger carried a "Central Computer and Sequencer" to back up
the direct command system. Activated before lift-off, it counted the
hours, minutes, and seconds until a specified mission event was to oc-

FROM SEQUENCERS TO COMPUTERS 143

cur and then executed a set of commands that performed the required
functions. If the uplink radio channel failed, the mission would
proceed according to a prepared plan. This assumed optimum perfor­
mance, turning on the cameras regardless of where the spacecraft
might be actually pointing. Still, it provided a bit of insurance for the
ffilSSIOn.

At the same time that the Rangers were being built, JPL designed
and flew the first Mariners. Mariner's initial mission was a Venus
flyby launched in 1962. In the case of this spacecraft and its later
brethren, the Central Computer and Sequencer was the prime source
of commands, at least for cruise and encounter portions of the
mission4. The time delay for commands to travel to Venus and Mars
defeats real-time control from the ground. For Mariner II, at launch
time minus 15 minutes, the clock was set so that the encounter se­
quence would begin at 12 hours from the closest approach to Venus.
The sequencer's clock, a very accurate oscillator similar to computer
clocks today, started at launch time minus 3 minutes5. Direct com­
manding capability was maintained. When the star tracker got con­
fused and locked onto the wrong target, ground controllers could
reinitiate a search6. Direct command could also be used for mid­
course maneuvers. As a complement to direct command,
"quantitative" commands could be sent to the sequencer for later use 7.
For instance, times such as "51 seconds of minus roll" and "795
seconds of minus pitch" or bum times could be inserted into the
memory for later execution8. Mariners could abandon direct command
and go to automatic command if a radio failure was detected. On the
Mariner Mars 1964 spacecraft the sequencer contained a cyclic com­
mand that checked for such a failure at 66 2/3 hour intervals, effecting
an auto switch-over9.

The Mariner II spacecraft to Venus (1962), Mariner IV to Mars
(1964), and Mariner V to Venus (1967) carried the same Central
Computer and Sequencer. Just one flew on each mission, due to space
and weight restrictions, even though the machine weighed in at 11.5
pounds10. However, with the direct command capability intact, each
had essentially the same level of redundancy as the Gemini and
Apollo spacecraft, with their single-processor on-board computer sys­
tems and ground control computers. Plans for Mariner Mars 1969
called for a larger spacecraft and a more ambitious mission: two
picture-taking flybys of different portions of the "red planet". JPL 's
Neil H. Herman, who had headed development of the Sequencer, saw
an opportunity to improve the device for the upcoming flights 11 . One
aim was to give the new spacecraft more flexibility. If the first flyby
turned up something special, it would be very useful if the second
spacecraft could be reprogrammed in flight to take advantage of les­
sons learned on the initial pass 12. This actually happened during the
missions when reprogramming was accomplished for Mariner VII' s

144 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

August 5, 1969 flyby in response to Mariner Vi's July 31 passage13.
Another reason for more on board autonomy is that command sessions
for the Mariners lasted as long as 8 hours! Mariner's command rate
was 1 bit per second, so long sequences were expensive both in per­
sonnel time and Deep Space Network time 14. The availability of more
space and weight plus the desire for flexibility and greater autonomy
caused JPL to change the Sequencer to make it more of a computer
and less of what it really was, a fixed-program counter.

Figure 5-1. Mariner Mars 1971 carried a programmable sequencer with an ex­
panded memory. (JPL photo P12035)

PROGRAMMABLE SEQUENCERS:

MARINERS TO MARS, VENUS, AND MERCURY

Mariner Mars 1969 carried a 26-pound, programmable Central
Computer and Sequencer designed by Herman and his team at JPL
and built by Motorola 15. The machine originated in studies done in
1964-1965 for a Mars orbiter and lander called "Voyager" and
Mariner Mars 1966, neither of which flew 16. The major difference be­
tween the fixed sequencers and the programmable sequencer is that it
had a memory of 128 words that could be altered in flight. Although
this device had far greater flexibility and capabilities than the fixed se­
quencers, one of the older sequencers traveled on the spacecraft as a
backup. During critical maneuvers, the two sequencers would run in
parallel, a disagreement causing an abort of the maneuver. The Se­
quencer commanded all spacecraft systems, including the Attitude and
Pointing System and Flight Data System, each of which evolved to in­
clude their own computers by the time JPL designed the outer planets
Voyager in the 1970s.

ORIGINAL: PAGE IS
OE POOR QUALITY

FROM SEQUENCERS TO COMPUTERS 145

Original requirements for Mariner Mars 1969 called for 20 words
of memory, making the 128-word version more than enough. Yet the
memory was quickly exceeded, necessitating the use of "creative"
programming techniques for the duration of the mission. Fortunately,
the Sequencer was reprogrammable in flight. Memory locations used
for terminated mission phases could be given to tasks scheduled for
later. Edward Greenberg of JPL, who did most of the programming,
replaced the launch and mid-course bum routines with new code after
they had been executed 17.

Despite the autonomy and flexibility gained by using the
programmable Central Computer and Sequencer, the two Mariner
Mars 1969 missions were the "most commanded" to that date.
Mariner VI received 946 radio commands, Mariner VII got 957; either
number exceeded the total number of commands sent to all the three
previous successful missions combined18. One of the reasons for this
was the memory restrictions; another could be that the engineers on
the project downplayed the full capabilities of the Sequencer, not
realizing what was possible19. However, the full capabilities of the
device were more than exercised on the last Mariner missions.

Box 5-1: Programmable Central Computer

and Sequencer Architecture and Software

The new Central Computer and Sequencer had no accumulator or
central registers common to standard computers. Each memory location
could be used as a register, and all operations began at a location, acted
on the contents of another location, and ended in a third memory
location20 . Memory consisted of 22-bit words stored in magnetic core,
with destructive serial readout21 . Three types of words could be stored.
An instruction word used the first 4 bits for one of the 16 operation
codes, the next 9 for the address of the memory location to be acted on,
and the last 9 for the address of where to go afterward22 . Instruction DHJ
meant "decrement hours and jump," so the computer would subtract one
from the time portion of the event word stored in the location specified
by the first address in the instruction and then jump to the location
specified by the second address. An event word contained a 13-bit time,
scaled to hours, minutes, or seconds, and a 9-bit address of where to go
to start the event being timed when the time part zeroed23 . For instance,
if the event word was timing the mid-course correction bum, when the
time portion reached zero, a branch would occur to the specified address,
the first address of the mid-course maneuver subroutine. The last type of
word was a data word, containing 22 bits of data.

146 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box 5-1 (Continued)

An instruction set of 16 operation codes contained mostly counting­
type instructions: five scaled decrementing instructions (countdown
hours, minutes, seconds, variables), and an incrementing instruction
(count and jump). There was an ADD and a SUBtract, each requiring 27
milliseconds of machine time, by far the slowest instructions. Program­
mers used those very rarely, as the other instructions were better suited
to sequencing. Subtraction was in one's complement form.

The sequencer executed the software by making a scan of the first
seven instructions each hour24. Those instructions constituted the entire
executive! They contained sufficient decrement and branching instruc­
tions to check if anything needed to be done during that hour of flight.
As an example, the exec might contain a counter that kept track of the
time to an imaging session. The resulting routine might look like this: 25

l. Count 123 hours from start.

2. Count 45 minutes.

3. Activate camera and start frame count.

4. At 29th frame, start sending images.

5. At 32nd frame, rotate filter wheel to blue.

6. At 93rd frame, stop scan and stow platform.

7. Resume cruise mode counting.

After resuming cruise mode, the spacecraft clock would activate a
scan at hour intervals again. Mission control could interrupt a scan, or a
quiet time, and cause a jump to a specified subroutine20. (The entire
Mariner Mars 1969 flight program is reproduced in Appendix IV.)

A memory location could be changed by issuing two consecutive
commands from earth stations. JPL called these commands CC-1 and
CC-2. CC-1 sent the address and the least significant 7 bits of the new
word, and it caused an interrupt in the receiving Sequencer. CC-2
relayed the most significant 15 bits and released the scan inhibit27 . A
related command, CC-3, caused the Central Computer and Sequencer to
read out the contents of a specified memory location, 1 bit per second28 .
Input was even slower, requiring an average of 2 minutes per word, com­
pared with a ground-loading time of all 128 words in less than a
minute29.

EXPANDED MEMORY AND EXPANDED FUNCTIONS

The new sequencer had a 9-bit address field, providing a 512 ad­
dress limit. Expanding the memory to 512 words did not require a
change in the logic. So JPL added the extra memory for the Mariner

0 , C' :· J /\ , • _-_ -'e S
OF ?Gvh. •'JAL ~

FROM SEQUENCERS TO COMPUTERS 147

Mars 1971 orbiter missions. Still, the old fixed sequencer remained in
charge of the Mars orbit insertion bum. After the spacecraft es­
tablished orbits, however, the ground control center used the new se­
quencer to control the imaging of Mars and its moons. The expanded
memory proved sufficient. Preflight estimates for Mariner VIII
specified 150 words of memory and 225 words for for Mariner IX, yet
both grew to over 400 words in flight30.

The mission that used the sequencer to its limits was Mariner
Venus Mercury 1973, or Mariner X. Mission profile called for the
spacecraft to tum its imaging equipment on the earth as it flew toward
deep space, do some studies of the moon in flyby, and then research in
the area of Venus during a gravity assist maneuver that would send it
toward Mercury, where JPL planned three separate encounters with
the innermost planet.

Figure 5-2. Mariner Venus/Mercury 1973 made the most use out of the
programmable sequencers. (JPL photo 251-l 35AC)

148 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Due to the more complex mission requirements, the design team
wanted a bigger and better sequencer, but cost constraints killed any
chance of building a new machine31 . Adrian Hooke of JPL, one of the
project's managers, decided to use planned memory updates at regular
intervals. He also instituted a "suspenders and belt" approach to
reliability. The sequencer would not only carry a detailed program for
the next mission phase but also a constantly updated bare minimum
program to complete the mission if the spacecraft lost contact with the
ground. If a command was not received for a certain time, then the se­
quencer would follow whatever commands were in the backup
program. Thus, software moved ahead in leap frog fashion. During the
earth-moon phase the Venus backup was loaded, during the Venus
encounter the backup Mercury encounter sequence was on board, and
so on32. Software development was assigned to three programmers.
Ronald Spriestersbach of JPL wrote the near-earth and post-Mercury
sequences, George Elliot of the Boeing Company did the Venus en­
counter, and Larry Koga of JPL wrote all three Mercury encounters33.

During the 1969 missions, most changes and subroutines were
hand-coded and used once. By 1971, the COMGEN ground computer
program that produced memory loads for the Sequencer could develop
blocks of commands that functioned much like subroutines in a stan­
dard computer program or macros in an assembly language
program34. In 1973, COMGEN resided in an IBM 360/75 computer
that generated the commands and sent them via the NASA com­
munications net to the appropriate Deep Space Network station for
transmission. By this time, each station had a command computer,
thus ending the voice/manual era35. Another improvement to the Se­
quencer was that engineers could do memory checks by comparing a
sumword stored in location 512 to the result of summing the first 511
locations. If a miscompare occurred, then a location-by-location check
for error could be made36.

The improvements both in the Sequencer and in programming
and ground control techniques were not enough to ensure its use
beyond the Mariner series of spacecraft. In spite of the success of the
long and complicated mission of Mariner X, JPL's Hooke complained
that memory limits were too costly due to excessive need for op­
timization and constant relocation of subroutines37. Besides, the se­
quencers, regardless of their full name, were not computers.
Spacecraft needed to do on-board computations, to have more room
for software (and, thus, increased flexibility), and to use the central
computer for other functions such as spacecraft health and safety
monitoring done on other manned and unmanned spacecraft. Some
missions intrinsically needed computers, as, for example, the Viking
Mars orbiters and landers and the Voyager outer planet probes. The
computer eventually designed, built, and used for the Viking Orbiter
had its roots in the programmable sequencer, but it also owed some

FROM SEQUENCERS TO COMPUTERS 149

concepts, at least in comparison, to a computer built in the research
side of JPL and aimed at the long-duration, complex missions of the
future. The story of that computer research project adds a necessary
perspective for understanding the direction JPL's on-board computer
development took in the 1970s.

THE STAR COMPUTER

Researching the Reliability Problem

In 1961 a Lithuanian-born computer scientist named Algirdas
Avizienis, employed at UCLA, began research on a highly fault­
tolerant computer system for use on long-duration space missions.
The nonprogrammable version of the Central Computer and Sequen­
cer would soon make its first flight on Mariner Venus 1962. Even at
that early date, JPL expected to use computers on board the "Grand
Tour" spacecraft planned for the 1970s. A favorable alignment of the
outer planets would make possible a mission that could fly by Jupiter,
Saturn, Uranus, and Neptune, thus having encounters with all the gas
giants in one sweep. Such a mission would have to last for years, with
the spacecraft operating autonomously for long periods of time. In­
convenient speed-of-light communications delays in the exploration
of the inner planets would become crippling in an outer planets mis­
sion, requiring a spacecraft to carry its own "brain," because the earth­
bound brains of its makers would be hours away in an emergency.

Avizienis' chief interest was in computer reliability. Computer
failures occurred much more frequently then than in today's world of
ICs. A computer entrusted with the successful completion of a deep
space mission could not afford to fail before or during its long­
awaited encounter, so JPL and Avizienis' interests came together at
just the right time. During the period from 1961 to 1965, the
Laboratory sponsored his search for a more fault-tolerant computer. In
1965 the reliability scheme was settled and construction of a prototype
began. The breadboard version first ran a prof ram in March of 1969,
after a 2-year effort at software development 8. Avizienis named the
computer ST AR, for self testing and repair, and the name gives a clue
to the architecture. JPL's Flight Computers and Sequencers Section of
the Guidance and Navigation Division paid for the work. Avizienis
was responsible for the concept; David A. Rennels, later a colleague
at UCLA, for the hardware; John A. Rohr, for the software. F.P.
Mathur did the reliability calculations, and the MIT Instrumentation
Laboratory developed the read-only memory, which was basically a
core rope type of memory39.

150 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Avizienis used selective redundancy to achieve reliability. On the
Space Shuttle, the on-board computers are complete redundant ver­
sions of each other and are considered multiple computers. In the
ST AR, the computer is considered a single entity with its separate
components replicated. Thus, each subsystem of ST AR had several
duplicate versions of itself in the computer as spares. The key advan­
tage is that the spares were unpowered as long as the primary com­
ponent ran successfully. Only when there was a failure would the
spare come to life, and then power to the failed component would be
cut off. Thus, the total power consumption of the ST AR equaled, but
did not exceed, that of a similar computer without the spares, making
it attractive to power-conscious spacecraft designers40. In the 1960s,
all spacecraft computers were simplex systems. The only ultrareliable
system was the Launch Vehicle Digital Computer used on the Saturn
IB and Saturn V boosters. Its reliability was achieved by using triple
modular redundant (TMR) circuits such as those in the Common Sec­
tion of the Skylab computer system. Avizienis evaluated TMR cir­
cuitry and found that the number of independent failures a TMR sys­
tem could tolerate before failing was much smaller than a component­
redundant computer such as ST AR could tolerate41 . Also, reliability
theoretically increased through dormancy42. Mean-time-between­
failure (MTBF) figures for a component begin when the component is
turned on; thus, a subsystem with a MTBF-of 1,000 hours, backed up
with two identical spares, yields a MTBF of 3,000 hours. That was the
theory behind ST AR.

Avizienis reasoned that failures were either caused by transient
conditions or permanent component failures. In order to check for
transient faults, ST AR would repeat the program segment in which a
fault was first detected. If the fault repeated itself, the affected com­
ponent would be turned off and its spare activated, with the program
segment repeated again. All fault detection was by hardware tech­
niques, with error-correcting codes included in the software43. Poten­
tially, STAR could be an "automatic repairman" for the entire
spacecraft, if other spacecraft systems used the same concepts44.

Applications for STAR

In 1969, JPL began designing a Thermoelectric Outer Planet
Spacecraft, or TOPS. In previous inner planet probes, the flight paths
were close enough to the sun to enable the spacecraft to use solar cells
for power generation. Outer planet missions ranged so far from the
sun that solar cells would be inadequate. TOPS would carry
radioisotope thermoelectric generators to provide electrical power.

FROM SEQUENCERS TO COMPUTERS 151

' '

I
I
I ________ _ J __

Figure 5-3. The STAR computer configuration. (From Avizienis, "Design
Methods for Fault-Tolerant Navigation Computers," JPL TR-32-1409)

ORIGINAL PAGE IS
OE £OOR QUALITY

J

152 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box 5-2: ST AR Architecture and Software

ST AR was a fixed-point machine with a 32-bit word. Using
separated components for redundancy meant that they had to be con­
nected on a bus, which had 4-bit bytes as the basic transfer block45 There
were 16K words of read-only memory, which Avizienis said consisted of
a "braid" of transformers and wires46. Since MIT built the device, the
description almost certainly indicates that it was a core rope similar to
that used in the Apollo Guidance Computer (AGC). The basic version
used two copies of 4K of random-access memory, with up to 12 units
attachable. Avizienis forsaw that the memory would have to be
reprogrammed in flight on a mission like Grand Tour, so provision was
made for that function47 .

Use of a large word size was not to increase arithmetic power as
much as to provide space for error-checking codes. A ST AR address
consisted of a 16-bit field for the address and a 4-bit check field. The
address would be multiplied by 15 (yielding 20 bits), and then stored or
transmitted along the bus during an operation. At the receiving end, the
address would be evaluated according to the following equation:

C(a) == 15-151a

where 151a is the modulo residue of a. Numeric data were handled
similarly; the 28-bit operands multiplied by 15 to get a 32-bit word. If
the result of the check operation was zero residue, the data or address
was correct. If not, ST AR issued a fault signal48 .

STAR had three control signals. One was the common I-megahertz
CLOCK signal. RESET indicated a return to a standard initial state.
SYNC signaled the beginning of a new 10-step instruction cycle49. If a
fault was detected, the computer would return to the last SYNC point
and begin executing instructions from there . If the 10 instructions after
the SYNC were executed successfully, ST AR sent a new SYNC signal.

ST AR' s read/write memory units were different in that they would
recognize either their hard-wired name or an assigned name50. In this
way, if a memory unit and its backup copy failed, another memory unit
could be assigned its name, loaded with the appropriate data, and then
act like the original memory unit, thus avoiding the necessity of chang­
ing all the addresses in the software. When an instruction appeared on
the memory in (MI) bus, the memory unit that had that address put its
contents on the memory out (MO) bus, and the Arithmetic Processor or
other component loaded it in for processing51 .

FROM SEQUENCERS TO COMPUTERS 153

Box 5-2 (Continued)

The heart of the ST AR was the Testing and Repair Processor, or
TARP. Whereas the other components of STAR had either one or two
unpowered spares, the TARP had three active versions and two inactive
spares. Functions of the TARP were to maintain the rollback points to
which the software returned after a failure detection, to diagnose failures,
and to check itself. Each time an error check was made, TARP' s three
units would vote. If all three or two of three indicated a failure, then the
TARP issued an unconditional transfer to the rollback point. In the case
of a 2-to-1 vote, the dissenting unit was considered failed, and was shut
off as a spare was activated52. Another TARP disagreement caused the
last spare to be activated. On the third TARP failure, one of the
previously shut down units would be reactivated, so that there were al­
ways three T ARPs in action at any given time. Avizienis thought that
since most failures would be transients, it would be safe to reactivate a
unit. After all, if it disagreed again, it would be shut down.

John A. Rohr' s software group did not begin work until 1967. An
assembler, loader, and simulator were developed on a UNIVAC 1108
mainframe computer owned by JPL53 . Software was all done in as­
sembler, with a rich set of 180 single address instructions54. The as­
sembler did allow some types of higher level statements, mostly for
arithmetic. For instance, COMP Y=Y + 1 was directly compiled into the
several machine instructions necessary for execution55. In this way,
some of the tedium associated with assembly language programming
was avoided. A floating-point subroutine to extend the calculating power
of the machine was planned, but there is no evidence it was ever
implemented56. It would have had to have been done in software. The
ST ARlet, a limited breadboard version, ran its first program on March
24, 196957. The full system, save the timing processor, was on the bread­
board by April 197058.

STAR was considered as the on-board computer for TOPS59. A
control computer subsystem for the TOPS would use STAR technol­
ogy, the full 32-bit word, but just 4K of read-only memory and 8K of
the read/write memory60. The chief physical obstacle to using ST AR
on a spacecraft was size. The breadboard version filled l 00 cubic feet.
A vizienis wanted to reduce it to 2 cubic feet and 50 watts61 . By 1971,
the requirements reduced to 1 cubic foot, 40 pounds weight, and 40
watts power62. Even though progress was made in this area, ST AR
never flew on a spacecraft. Components built to ST AR specifications
found their way into the NASA Standard Spacecraft Computer 1
(NSSC-1), used in earth orbital operations, but the concept of selec­
tive redundancy was not incorporated into flight computers to the ex­
tent desired by Avizienis.

ST AR did not find its way to the outer planets for two reasons.

154 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

One was budget cuts63 . Even though the Voyagers were launched in
the late 1970s, the original TOPS program and the Grand Tour were
canceled due to budget constraints. The fact that Voyager 2 is essen­
tially executing the Grand Tour is a bonus. On-board computers used
on Voyager developed from a different line. So, even though
Avizienis designed a Super-ST AR with a rnicroprogrammable proces­
sor using large-scale integration technology, which seemed certain to
fulfill the requirements of size, power, and weight, he never sold it to
JPL 64. A second reason ST AR never flew was that engineers were
concerned that the ST AR' s TARP and its failure switches were a
weak point. The concept of a TARP, as with TMR, is always limited
by the question of "who tests the tester?"65. The actual switches
entrusted with powering down a failed component and charging up
another are the weakest link in the system. At one point, JPL sub­
contracted to the Stanford Research Institute for work on a magnetic
switch, but apparently the results were not satisfying66.

The ST AR research program was not a waste even though the
computer itself did not. fly. It contributed to the development of new,
reliable electronic components, such as those used on NSSC-1. It also
provided a constrast to the development track being taken on the
Mariner and Viking Orbiter spacecraft. One engineer involved in
Viking Orbiter computer development said that STAR-type hardware
was considered but deemed too complex. He thought that a two
machine system running in parallel would be simpler and as reliable
for a Mars orbiter/lander67. Even though the technology of computers
was not ready for STAR, it remains an innovative design and one of
the few computer research projects funded by NASA. The principles
developed remained valid for possible future applications that JPL
was about to begin.

By far the most direct and far-reaching contribution of the ST AR
program to the future of JPL projects was John Rohr's work on the
assembler/linker/loader for the software. It was the basis for the com­
mand sequence translators used through the present. Though exten­
sively reworked and redesigned, the fundamental concepts were es­
tablished by Rohr during the ST AR development68 .

VIKING COMPUTER SYSTEMS

Viking missions to Mars were among the most complex ever ex­
ecuted by an unmanned spacecraft. Two probes were launched in
1975, with landings planned for the Bicentennial Summer of 1976.
The project was controlled by the NASA Langley Space Flight Cen­
ter, making it unique among deep space projects. Major work began in
1970, with a planned 1973 landing put off until 1976 because of
budget cuts69.

ORIGINAL PAGE IS FROM SEQUENCERS TO COMPUTERS 155
c T , , 1'"'°\7 OF i' O:l li..J"\.L,.a. j_ I.J

Figure 5--4. The Viking Orbiter and Lander each carried dual redundant computer
systems. The Lander is in the elliptical shroud. (JPL photo 293-9157)

The Viking mission profile was a combined orbiter/lander. NASA
had successfully orbited Mars with two Mariners in 1971. The Viking
Orbiters were to conduct much the same science and imaging experi­
ments as their smaller predecessors. But the Lander was a dramatic
addition: it would be the first spacecraft to land on a planet that had a
chance of harboring life as we could understand it. JPL got the con­
tract to develop the Orbiter as a result of its Mariner experience. Be­
cause JPL maintained the Deep Space Network and an existing con­
trol center, it also got the mission support contract. The surprise for
JPL was that the Martin Marietta Corporation's Denver division
received the contract for the Lander. JPL had built the only U.S. un­
manned landers, the Surveyor moon probes. Despite that experience
and the difficulty of coordinating work on the Orbiter, Lander, and
mission support in sites ranging from California to Denver to Vir­
ginia, Martin Marietta was chosen.**

Both the Orbiter and Lander carried dual redundant computer sys-

**Edward and Linda Ezell make the point in their book On Mars (NASA
SP-4212) that part of the reasoning for choosing Martin Marietta was that the
project management team at Langley felt that JPL would be overtaxed handling
responsibilities for two spacecraft. Also, the difficulty of integrating the Lander
components was greater, and a large aerospace contractor such as Martin had
more extensive experience with such activity.

156 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

terns. JPL had evolved past the programmable sequencer stage and
flew a device called the Command Computer Subsystem (CCS) on the
Orbiter. The Lander carried the Guidance, Control, and Sequencing
Computer (GCSC). On both systems JPL and Martin demonstrated
exceptional competence in software engineering in the areas of
documentation and configuration control. JPL was essentially pro­
gramming its first flight computer. The standards and practices used
during the Viking project surpassed all but the Shuttle on-board
software in quality. Somehow JPL avoided the trial and error learning
process Johnson Space Center went through with the Gemini and
Apollo flight software. On the other hand, Martin Marietta typically
used good software development practice. Along with other defense
contractors such as Boeing Military Airplane Company and TRW
Corporation, it was among the leading producers of software in the
world. Whereas commercial computer companies such as IBM,
Honeywell and Digital Equipment have generally written systems
software for their own products, large-scale applications software has
been the domain of vendors supplying the military services with com­
mmand and control systems and embedded software in weapons. Mar­
tin Marietta is such a vendor and subscribed to military contract
specifications that required the use of strict software engineering prin­
ciples. That experience carried over to Viking, prompting an innova­
tive method of developing the flight program that holds promise for
future space systems.

Viking Orbiter CCS

The Viking CCS made it possible to increase the results of the
Orbiter mission many times over the Mariners of 1971. According to
one designer, the 512-word Central Computer and Sequencer would
have returned less than a hundredth of the data received from the
Orbiters 70. JPL considered several designs for the Viking computer,
finally settling on the eventual Command Computer because of its
simplicity. It had the least number of parts and was similar to prior
systems in concept 71 .

Viking's CCS was the first JPL command device to be fully
redundant. Mariner missions that retained the original hard-wired se­
quencer to back up the programmable sequencer were redundant in
the same way the Apollo lunar excursion module (LEM) had com­
puter redundancy: two different systems could accomplish some, but
not all, of the other's functions. The dual redundancy of the Viking
subsystem was more like Skylab's computer system, with two power
supplies, two processors, two output units, two discrete command buf­
fers, and two coded command buffers. Interrupts and level inputs to
the system were split and thus delivered identically to both processors.

FROM SEQUENCERS TO COMPUTERS 157

Processors and output units were cross strapped so that in case of
failures they could be reassigned. The hardware requirements docu­
ment generated by JPL called this type of redundancy "single fault
tolerance," in that each component had a backup, making possible ex-
tensive redistribution of functions 72. In practice, the two sets of com­
puters were useful because, at times, there was too much for one com­
puter to do 73 . Although the designated secondary processor and
memory were rarely on line, certain operating modes called for dual
processing. Requirements specified three operating modes: individual,
where each computer could be working on different events; parallel,
where each computer worked on the same event; and tandem, where
each computer worked on the same event and the output units were
voted in a manner similar to that used on the Mariners when the two
sequencers were in action together74.

In general, the design of the processor was exceedingly simple,
yet fairly powerful, as indicated by the use of direct addressing, a min­
imal set of registers, and a reasonably rich set of 64 instructions. The
key is that the design placed relatively light demands on spacecraft
resources while replacing both the programmable sequencer and the
command decoder used in the Mariners. The fact that the processor
was later adopted by the Voyager project as its Command Computer
and modified for use as the attitude control computer is not only a
statement of JPL's frugality but also a testament to the versatility of
the design.

Software Development Practices for the

Viking Command Computer Subsystem

By the time Viking was under development, JPL had over a
decade of ground software experience, with resulting institutional
development standards. Most space-related software done at JPL in
the 1960s was for the Deep Space Network and the large computers in
the mission support area. Viking was the first flight software project,
so it was remarkable that effective software standards were in effect
from the beginning.

JPL 's project organization assigned each subsystem a Cognizant
Engineer responsible for the overall development of the component.
For the CCS, Wayne H. Kohl was the "Cog Engineer." Samuel
G. Deese and T. K. Sorenson also signed the hardware and software
requirements documents and were heavily involved in the develop­
ment of the computer. Significantly, JPL also assigned a Cognizant
Software Engineer, R.A. Proud. JPL 's project management apparently
believed that software could be engineered, like hardware. Both
hardware and software had requirements documents that set forth the

158 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

CO DE D TO USER S
2. 4 kHz POWER ,....- COMMAND -

SU PPLY BUFF ER

INTEllllUPTS AN D
DATA A-I - DI SCRETE TO USERS LEVEL INPUT S PRO CE SSOR OU TPUT COMMAND

A UN IT 1 - SUFFER ,.
DATA A- 2

-
TELEMETRY FD S

-
DATA 6-1

INTERRUPTS AND .J
LEVEL INPUT S DISCRETE TO US ER S

PROCE SSOl O UTPUT CO MMA ND
DATA 6- 2 -a UN IT 2 SUFFER --

•
CODED TO USERS

2.4 kHz POWER __,.. COMMAND -SUPPLY BUFFER

Figure 5-5. A block diagram of the Viking Orbiter Command Computer Subsys­
tem hardware. This basic dual computer configuration was used for both Viking
computers and all three Voyager computer systems. (From Kohl , Viking Orbiter
Computer Command Subsystem Hardware)

functional specifications for the Command Computer and its software
load75. These were followed by detailed design documents.

Design documents generated for the Vi!ang software and avail­
able to programmers were based on a software design description.
That volume contained an overview to the mission and the software
architecture, and, for each routine, detailed process descriptions,
entry/exit points to other routines, variables and their descriptions,
constants, and other relevant notes. A flowchart followed each
routine's narrative description. Appendices to the document included
a hardware description and a reference guide to the instruction set.
Programmers were expected to use the design description as a manual.
Volume two of the document contained the assembly listings of the
resulting flight routines. By opening both volumes to the same
routine, it was possible to easily follow the logic of the programs by
reading both the narrative and the comments on the listing.

FROM SEQUENCERS TO COMPUTERS 159

Box 5-3: CCS Hardware

The Command Computer's central processor contained the
registers, data path control and instruction interpreter76. The machine
was serial in operation, thus reducing complexity, weight, and power re­
quirements. It had 18-bit words and used the least significant 6 bits for
operation codes and the most significant 12 for addresses, as numbered
from right to left. This permitted 64 instructions and 4K of direct ad­
dressing, both of which were fully utilized. Data were stored in signed
two's complement form, yielding an integer range from -131,072 to
+ 131,071. Average instruction cycle time came to 88 microseconds.
Thirteen registers were in the Command Computer, mostly obvious types
such as an 18-bit accumulator, 12-bit program counter, 12-bit link
register that pointed to the next address to be read, and a 4-bit condition
code register that stored the overflow, minus, odd parity, and nonzero
flags 77 .

Timekeeping on the Orbiter was in three units. The clock issued in­
terrupt pulses every hour, second, and 10 milliseconds 78 , similar to the
sequencer clocks used in Mariner, save that the IO-millisecond pulse
provided finer timing. Pulses entered an interrupt processor that collected
and interpreted them before transmission to the central processor. The
interrupt processor had 32 interrupt levels, and constantly scanned for
the highest priority task being requested79. Thus, the Command Com­
puter had the same interrupt-driven concept used in the Apollo and Shut­
tle manned spacecraft computers and the NSSC-1 , but it was ac­
complished in hardware rather than software.

Viking's Command Computer used 4K of plated-wire memory80,
divided into four equal parts . The first three could be set as either read
only, write protected, or read/write, but the last lK was always
read/write81 . On Viking the first 2K was specified as read only, and the
program instructions stored there . The second 2K was read/write, and the
data resided in that segment.

Software development was guided by the "Viking 1975 Orbiter
CCS and Support Equipment Software Development and Control
Plan," which set the standards for production of the flight software
and software for ground support and testing equipment. The Cog­
nizant Software Engineer, Cog Engineer, Subsystem representative to
the Systems Engineer, and all software design team members
reviewed each routine as it was designed and coded82. Coding was
assisted by the Orbiter Sequence Translator Program, or OSTRAN.
Code produced by the programmers was verified by running it in both
the CCS Breadboard and the CCS Programming System. The former
was a complete hardware version of the Subsystem, and the latter a
software simulation. The Commmand Computer Subsystem Tech-

160 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 5---6. Different types of packaging used in the Viking computer system.
Note the discrete components in the leftmost device . (}PL photo 360-276-AC)

nical Manager, hardware Cog Engineer, and Cog Software Engineer
each compared the performance of the routines on these devices83 .

Testing and system integration was done from the bottom up.
Programmers tested individual routines through all options at ex­
pected times, all expected branches, and all expected interaction with
other routines, and then through selected failures84. As with any real­
time system, it was impossible to test for all possible failures. After
this unit testing, the programmers integrated the routines with related
code and ran it on either the breadboard or the flight hardware.

As with the most successful software development projects, JPL
exercised strict configuration control. Even though the memory was
eight times larger than that on the programmable sequencers, so many
functions were transferred from hardware to software that memory
was constrained from the beginning. Viking Orbiter Data Manage­
ment Office handled changes to the documents. The Configuration
Control Board, consisting of the Subsystem Technical Manager, the
CCS Support Equipment Tech Manager, the hardware Cognizant En­
gineer, and the CCS Software Engineer, decided on software changes
or what to do about discrepancies between the design and code or
perf ormance85.

ORlGINAI.; PAGE IS
OF, POOR QUALITY

FROM SEQUENCERS TO COMPUTERS 161

Box 5-4: CCS Software Structure

The Viking Command Computer software structure appears dif­
ferent from others described in this volume because of the apparent lack
of an operating system or executive program. The funct ional block
diagram used in the CCS requirements document (reproduced here)
shows that all inputs, either interrupts, or "level" inputs, enter a software
block that contains conditioning routines. The TRAP routine maintains
32 memory locations that correspond to the 32 levels of the interrupt
processor. Each location contains an instruction to be executed or an ad­
dress to branch to if the appropriate interrupt occurs 86.

After clearing the input conditioning block, signals are either routed
to the command decoding software or to the generation software. The
command decoder does just what its title implies: examines the bit
streams of commands routed to it for specific orders and then routes
them to either the event generator, the output unit driver, or the telemetry
processor.

The event generator block contains the most complex software in
the system. Its chief routine is the Master Table Driver. Software re­
quirements documents specified that the Master Table Driver handle all
time sequenced events, maintaining up to 20 tables at once87. Thus, it
was the replacement for the programmable sequencer carried on previous
missions. Implementation of the Master Table Driver was the T ARMEX
routine: Timing and Region Management Executive containing many of
the common executive functions centralized in other machines. TAR­
MEX is referred to as a "time-sharing executive" in the software
documentation, but that is perhaps too ambitious a title88 . It did regularly
scan through the event tables and maintain the time countdowns for a
number of mission events. At 454 statements, it was one of the largest
routines on the spacecraft. Functionally, it acted like any other sequencer
JPL built, the difference being that it was implemented in software and
thus highly flexible , which contributed to its success on the Viking mis­
sion and later on Voyager.

Other routines in the event generator were used less comprehen­
sively than T ARMEX. The Data Acquisition and Playback Routine con­
trolled science instruments, imaging, and data storage until broadcast to
earth. The accelerometer control routine was needed because for the first
time an unmanned spacecraft would have active control over engine
bums, rather than depending on precalculated timed firings. In the past,
the maneuver and insertion firings were made based on calculations done
before the flight and implemented as timed sequences in the Central
Computer and Sequencer.

162 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box 5-" (Continued)

Viking carried accelerometers and a computer, making it possible
for the spacecraft to fire its engines and calculate when to tum them off
in real time based on velocity figures uplinked in advance from naviga­
tion computers. A Launch/Hold/Reset routine handled spacecraft func­
tions as a fixed sequence during the prelaunch, launch, and early cruise
phases of the mission, with the capability to reset its timers if holds oc­
curred in the countdown89. This was a more robust version of the se­
quences carried for the first phase of previous missions. An Error
Recovery routine included a programmable version of the 66 2/3-hour
command loss sequence implemented in Mariner missions. The com­
puter could be programmed to check for commands at varying times.
During cruise, the command loss routine could be set to check just once
a week or more, and changed to check at much closer intervals near
encounter90. Deep Space Network resources were thus less tied up
during relatively dormant periods of the mission, as commands did not
need to be sent just for the reason of keeping the command loss sequence
from starting.

Remaining software blocks were the output driver, which trans­
ferred output signals to the appropriate output unit for distribution to the
command buffer and eventually the affected systems, and the telemetry
processor. The telemetry routine took over some of the functions
previously done by the hard-wired Flight Data System. The Flight Data
System on Viking had its own dual lK memories of 8-bit words. Com­
mand Computer software helped manage that memory and prepare data
streams for transmission. The Checksum routine was similar to that used
in the Central Computer and Sequencer, except that a range of addresses
could be specified, instead of the entire memory being summed.

Viking Orbiter software had to be written in an assembler, which
fortunately had relocatable addresses, simplifying the maintenance task.
The 64 instructions were mostly common to other computers, but there
was no multiply or divide. There were two sets of loads, stores, incre­
ments, and subroutine calls: one used during independent operation and
one aimed at dual operation, so that the two memories could be kept
equivalent91 . Even though many interrupts were available, most routines
as coded had all but the internal error and counting interrupts disabled92.
Many routines were free to run out without being interrupted, in contrast
to the highly interrupted Apollo and shuttle software . Programmers
avoided the memory and processing time overhead required to preserve
the current accumulator and register contents during an interrupt.

FROM SEQUENCERS TO COMPUTERS 163
OF POOR QLJALlTYj

Figure 5-7. A circuit board with integrated circuits used in the Viking Orbiter
computers. (JPL photo 360-371-AC)

Figure 5-8. One of the Viking Orbiter plated wire memories in a vibration test
device. (JPL photo 360-276-AC)

164 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Instituting concepts of full documentation, configuration control,
and engineering principles, such as modularization in software
development, made it possible to have a successful flight program at
launch and to remain successful throughout a long mission. Some of
the people involved in Viking left the project before the Orbiters
reached Mars, either to other projects, or to leave the Laboratory.
With the materials and techniques available to maintain the computer
software, it was possible to bring new people into the project and have
them make necessary updates and upgrades to the flight program. This
capability is as important to a long-term mission as the reliability of
the hardware. JPL's concern for Grand-Tour-length reliability in
hardware, exemplified by ST AR, also extended to software. Without
such an attitude the later Voyager would be much more difficult to
maintain as an active project.

The Viking Lander GCSC

Martin Marietta's Denver division developed the computer sys­
tem for the Viking Lander in an innovative way. To this point the
stories of the development of various on-board computer systems
have a similar theme: Project managers determine the expected
specifications of the system, choose the hardware, and develop the
software. By the 1980s, the danger of this approach became evident to
computer and software engineers and to some of their customers.
Choosing the hardware first and then developing the software for an
embedded computer system runs the risk of the eventual software ex­
ceeding the hardware's capabilities or capacity. If the hardware is
chosen before the full requirements of the mission are known, which
was often the case, then the software is written in such a way as to
compensate, thus exceeding the memory size because the compensat­
ing programs were not in the original software estimate. If the
hardware turns out to be more powerful than needed, the software is
expanded to take advantage of the additional capability, so it pushes
the hardware to its limits. Either way, the development of the com­
puter system and its software becomes more complex, expensive, and
late. The Gemini, Apollo, Shuttle, NSSC-1, Mariner X, and Galileo
projects all suffered because of insufficiencies in computing power or
memory, largely because of poor specifications.

Martin Marietta did a number of military projects that repeated
the same mistakes that the space program had made in regard to on­
board computers. In 1970, when the company received the Viking
Lander contract, it determined to follow a different course of develop­
ment by adopting a policy of "software first"93. This was one of the
earliest attempts to break the paradigm of specification/ hard ware
selection/ software development/ reaction to changed requirements, a

-

-

CCS INTERRUPTS

4. 2 COMMAND DECODING

4.4 OU DRIVU

I

CC/DC
COMMANDS

FROM SEQUENCERS TO COMPUTERS 165

OR IGINAL PAGE IS

OF POOR QUALITY,

4. I INPUT CONDITIONING

4. 1. 1 TRAP

4 .1.2 INTERRUPT MANAGEMENT

TO CCS OUTl'UT UNITS

CCS LEVE L IN PUT S

4.J EVE NT GENERAT ION

4.J.1 DATA ACQUISITION
AND PLAY&ACK

4 . J . 2 MASTER TABLE DRI VE R

4. J.J ACCELEROMETER
CONTROL

4. J . 4 LAUNCH HOLD RE SET

4.J.5 ERR°" RECOVERY

4.5 TELEMETRY PROCESSING

4. 5.1 TELEMETRY

4.5.2 CHECKSUM

,~

TE LEMETltY
PROCESSOR
WORDS

Figure 5-9. A block diagram of the Viking Orbiter software. This same software
structure was used for the Voyager Command Computer Subsystem software
(From Kohl, Viking Orbiter Computer Command Subsystem Software)

166 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

cycle that crippled many projects. The decision turned out to be highly
successful. The Air Force studied the results and disseminated the
technique. Thus, it contributed to a shift in attitude which, though only
barely established 15 years later, is still a turning point in the history
of computing.

"Software first" techniques make it possible to compensate for the
severest deficiency of most projects, incomplete or incorrect require­
ments specification. Hardware decisions and software sizing are based
on the requirements document developed early in the program. Users
of the eventual product must be careful in contributing to this docu­
ment. In the Apollo program, NASA gave MIT a broad statement of
requirements, basically to develop a guidance system capable of
navigating a spacecraft to the moon and back. Painful lessons learned
as a result of the Apollo project included a greater appreciation for
more detailed specifications. As a result, the requirements for the
Shuttle were among the most outstanding written to that time. Still,
memory estimates were far off, stretching the computer system to its
limit. In contrast, the Viking Lander software developed contem­
porary to the Shuttle kept to its original boundaries, staying within the
hardware capabilities of its computer. Both Shuttle and Viking had
extremely high change traffic, and both project management teams an­
ticipated many changes; but the software first philosophy handled
change differently. Martin Marietta recognized that it is easier to
change software independently of hardware than to react to revised
specifications. More importantly, it recognized that if it is necessary to
change hardware requirements, it is easier to change before it is
purchased than afterwards. If the software is developed first, the
hardware can be bought to fit it. Martin Marietta completed the flight
software for the Lander 1 year before the hardware was delivered,
which was only 2 months before the launch94! The company ac­
complished this feat because detailed timing and sizing experiments
gave confidence in the eventual hardware selection95 .

To implement the concept of software first, Martin developed a
Viking Controls Mock-up Unit (VCMU) using two Standard Com­
puter Corporation IC-7000 computers. IC-7000s had a two-section
CPU. The Viking team microprogrammed one processor as an
emulator of the proposed GCSC on the Lander; the other processor
acted as a simulator of the other spacecraft systems96. This system
could be linked to an IBM 360/75 used at JPL for mission control,
thus providing simulations of flight operations97.

Differences between an emulator and a simulator are rather fine
but very important in this case. A simulator imitates a computer using
software that functions interpretively. For example, a simulator run­
ning a program written in the machine language of the target com­
puter executes a set of instructions in its own machine language that
has the same effect. The problem with this method is that it has vari-

FROM SEQUENCERS TO COMPUTERS 167

able results. Even though most simulations are done on computers
more powerful than the target machine, performance is far less, and a
real-time simulation is virtually impossible. Even such simple in­
structions as an ADD, which can usually be simulated using a single
instruction, run much slower because of the software overhead in­
volved in maintaining pseudoregisters and fake memory. Programs
that run in a minute on the target machine might take as long as an
hour on a simulator.

An emulator runs the target machine's program in near real time.
In fact, its performance on some instructions is likely to exceed that of
the target due to the performance difference between the emulator and
the actual hardware, but other instructions run slower, creating some­
thing of a balance. Microprogramming makes it possible to achieve
these results. Older computers had the control unit that handles the
flow of signals in the computer permanently hard-wired during
manufacture; therefore, the way a particular computer executed in­
structions was fixed throughout its operating life. As early as 1950,
Maurice Wilkes of Cambridge University suggested representing the
control paths in the form of special software. He called these control
programs "microprograms" and their instructions "microinstructions"
to differentiate them from higher level programs and code98. Such
"microcode" could not be implemented in the 1950s because suitably
cheap and permanent memory was not available. The IC-7000 was a
microprogrammable machine, so its microcode could be changed by
Martin Marietta to make the processor execute instructions like
another computer. Martin started with a reasonable set of instructions
and tried to write the software. If a problem or change arose that
would be better handled by hardware or a new instruction or two, the
microprograms for the new operation codes were installed99. In this
way, the hardware evolved along with the software, and when a fully
functioning software load was complete, the hardware requirements
were also complete.

Ironically, other constraints eventually thwarted Martin's plan for
the computer hardware. Developers working on other subsystems of
the Lander had trouble delivering hardware that could accomplish all
the mission goals without increasing its weight. So when the time
came to purchase the computer, the weight gains by the other systems
had to be compensated for by the only system without hardware.
Therefore, the computer that flew on Viking was actually the "third
best" of those available, its chief deficiency being a poor instruction
set, but it weighed less than the first choice100. Martin changed the
software affected by the less powerful computer. Even though the op­
timum computer did not fly, the principle of software first was
demonstrated. Additionally, Martin introduced the concept of using
off-the-shelf equipment for unmanned spacecraft projects. Despite
the care taken to anticipate problems, some of the most common

168 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

development difficulties occurred. In an environment created to an­
ticipate change, the lack of detailed software requirements and a large
number of change requests still caused serious problems 101 . At one
point, testing came to a standstill, which turned out to be fortunate in
that the Systems Engineering Director began to take software
seriously and to treat it like hardware, a lesson painfully repeated on
project after project102. And again, memory sizing, though controlled,
posed difficulties. Martin completed the prototyping for the Lander
software in July 1971. Its actual size at that point was 13K. Martin
engineers specified 18K, anticipating inevitable growth to accom­
modate new requirements and set up a control group to ensure that the
memory stayed under that size. Twice during development the
software exceeded memory limits, first in March-May 1973, when it
topped off at 18.5K, and then in June 1974, when it hit 19K. Both
times the flight program was reduced to the correct level 103. These
overruns are minimal compared to those of the Apollo and Shuttle
programs.

Eventually the soft_ware for the Lander reached 20,000 words and
required 1,609 man-months to produce (the reason more than 18,000
words are shown here is that some routines used after landing overlaid
landing software). Over 200,000 instructions of emulator and
simulator software were produced, requiring just 494 man-months 1°4.

Differences in the proportion of development time to instructions
are because the Lander software was hand-coded, whereas the
simulators could be written with the aid of assemblers and higher
level language compilers. Langley Research Center project managers
determined that the flight software would be verified by an independ­
ent organization, so TRW Corporation was contracted to provide such
services on site at Langley 105. Such completely independent verifica­
tion is somewhat more useful than an "independent" quality assurance
group within a company, as it has a more adversary relationship.

FROM SEQUENCERS TO COMPUTERS 169

Box 5-5: Viking Lander Computer Characteristics

The GCSC consisted of two Honeywell HOC 402 processors, each
with 18K of 2-mil plated-wire memory. These processors had the
capability of eight levels of interrupt and an average 4.34-microsecond
instruction cycle time 106. Original plans for the Viking Lander specified
a single computer for the landing phase and another for on-surface
operations, but when the project was delayed this changed to a dual
redundant system similar to the Orbiter CCS 107 . Honeywell's computer
had a 24-bit word size, with 47 instructions, and used two's complement
representation for data. Compared to the NSSC-1 and Viking Orbiter
computer, it is slightly faster than the former and much faster than the
latter, with better numerical precision than both.

Lander software structure reflected common short-cycle real-time
control concepts such as those used in the Space Shuttle Main Engine
Controllers. During descent, the software executed a 20-millisecond
control loop, cycling through a set of routines 1°8. Martin claims that the
executive was a "virtual machine" facility, in that each process "thought"
that it had its own machine and was not sharing resources with other
processes 109. Galileo Command and Data System software developers
used the same terminology, but on that spacecraft the virtual machines
resided on several microprocessors and were more truly "virtual."
Martin's system is more like the cyclic time-sharing executive found in
the Shuttle Backup Flight System.

One problem Lander software developers had was that no adequate
assembler was ever written for the computer, perhaps because of the
changing nature of the instruction set1 lO _ Patches had to be hand-coded
in octal, with many jumps to unused memory space because of the lack
of an assembler with relocatable addressing. A programmer trying to
trace a routine thus had to contend with having to go back and forth on
the memory map to follow the logic. JPL's Viking programmers could
keep their routines in contiguous memory locations by reassembling the
code after changes. The assembler would automatically move the data
around to accommodate the modifications.

Lessons learned in the Viking Lander computer system develop­
ment program influenced Martin Marietta's future work. After the
VCMU outlived its usefulness, the organization and equipment were
renamed EMULAB to reflect what takes place inside it. The Air Force
requested that Martin study its software development practices during
its participation in the space project, resulting in a report entitled
Viking Software Data 1 ll and issued by the Rome Air Development
Center at Griffith Air Force Base, New York. This report and the ex­
perience gained influenced the continuing shift from "hardware first"
to "software first" among some contractors in the late 1970s and early

170 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

1980s. As microprocessors become military- and space-rated, it will
become easier to adopt such a sequence because readily available
microcomputers can be adapted to specialized functions. Users are
also becoming more likely than before to adopt microprogramming to
tailor instruction sets, as in the shuttle general-purpose computers and
the Galileo attitude control computer.

ON TO THE OUTER PLANETS

Experience and the appreciation of the flexibility of computer
processors are the legacy of the computer systems development for
the inner planet probes. Consistent and detailed documentation,
simple, reliable, and reusable hardware designs, and the practice of
many missions contributed to the later and continuing success of
Voyager. Just as management experience gained during Apollo ap­
plied to the shuttle, JPL 's success with Viking made the concurrent
development of Voyager and Galileo easier. People like Samuel
Deese, who gained practical experience in the 1960s, led subsystem
management in the 1970s. Viking's Wayne Kohl went on to Galileo
after the Mars landings in a position similar to the one he held on the
former project. Both Voyager and Galileo are better projects because
of the continuity of techniques and personnel.

6

Distributed Computing

On Board Voyager and Galileo

172 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Voyager and Galileo are two outer planetary spacecraft that carry ex­
tensive computing capability. In spectacular encounters with Jupiter
and Saturn, Voyagers 1 and 2 returned science data and imaging that
far exceeded results of previous planetary flybys. Uranus was the suc­
cessful 1986 objective of Voyager 2, nearly 10 years after launch.
Galileo is designed for a Jupiter orbiter and probe mission.* Both
types of spacecraft carry multiple computer systems, distributing
functions among several machines, rather than using one central com­
puter system as on the Viking Orbiter and Lander.

Distributed computing on large unmanned spacecraft developed
conceptually from several sources. In 1967, Marshall Space Flight
Center commissioned a study by General Electric Corporation's Mis­
sile and Space Division in Philadelphia as part of preparation for a
huge "Voyager" Mars lander to be launched on a Saturn V booster in
the early 1970s. Marshall asked GE to compare the advantages of a
central computer configuration versus separate computers for different
subsystems. General Electric used a highly mathematical approach to
develop power, size, and weight comparisons of the different
proposals in light of "reliability considerations. Computer physical
limits were set as high as 100 pounds and 300 watts due to the large
size of the booster. This would allow computers such as the IBM 4Pi
series, Autonetics D26J, and IBM's Saturn Launch Vehicle Digital
Computer (L VDC) to be considered. Planners expected that the func­
tions that later showed up on advanced Mariners-such as ac­
celerometers, programmable sequencers with 512 words of memory,
and telemetry registers-would be part of the proposed computer's
capabilities and responsibilities. However, GE found that economies
gained by a central system were outweighed by reliability advantages
intrinsic to a distributed system 1.

Another approach came from Edward Greenberg, a Jet Propulsion
Laboratory (JPL) engineer who programmed for the Mariner VI and
VII Central Computer and Sequencer and contributed to the Viking
Command Computer Subsystem (CCS) design. In December, 1972,
he proposed that the Viking computer be standardized as a multimis­
sion processor2. His intent was to reuse hardware and software
development tools such as assemblers and simulators. Since one
Viking computer could never handle all the functions needed on
Voyager, several computers, each with a limited domain of functions,
were needed.

Aside from the GE study and Greenberg's proposal, JPL

*Originally set for launch in the early 1980s, the mission slipped to May of
1986, but the grounding of the Shuttle fleet and cancellation of the Shuttle Cen­
taur upper stage program in early 1986 led to an indefinite postponement and
probably a change of launch vehicle.

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 173

developed an additional argument for distributed computing. Edward
H. Kopf, Jr., a JPL engineer specializing in attitude control, pointed
out that different sections of the Laboratory needed computers to per­
form their assignments on Voyager and Galileo. Each group wanted
its "own" computer, so that it would not be constantly competing for
resources with other groups3. Therefore, a distributed system would
help keep the peace.

The attractions of distributing computing, reliability, potential
reusability, and separation of tasks, proved true in the development of
the Voyager and Galileo spacecraft. Each has a functionally dis­
tributed set of computers. Voyager makes use of two of the Viking
machines and a third, custom-built, computer. Each concentrates on
processing different functions, such as attitude control, data format­
ting, and commanding. Galileo has dual processors for attitude con­
trol and six in a network for command and data handling. Both
spacecraft were designed for long-duration, autonomous flight, a goal
difficult to attain without the use of distribution.

Figure 6-1. The Voyager spacecraft with the radioisotope generators on the left
boom and the scan platform on the right boom. (JPL photo P l0727B)

VOYAGER-THE FL YING COMPUTER CENTER

After the cancellation of the Thermoelectric Outer Planet
Spacecraft (TOPS) project as such, JPL proposed, and NASA funded,
a project called Mariner-Jupiter-Saturn 1977. It was given the name

ORIGINAL PAGE IS
OF. fOOR QUALITY

174 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Voyager in the mid-1970s. Although TOPS' original mission was to
conduct the Grand Tour of the four gas giant planets, Voyager was
limited to flybys of the innermost two, Jupiter and Saturn. However,
favorable gravity assists and hardware longevity made it possible to
plan for a Uranus flyby by the Voyager 2 spacecraft and, potentially, a
Neptune encounter. After visiting Jupiter and Saturn, Voyager 1 is to
travel out of the plane of the planetary orbits and leave the solar sys­
tem.

Voyager employs three dual-redundant computer systems per
spacecraft. The first, the CCS, is nearly identical to that flown on
Viking, performing sequencing and spacecraft health functions along
with new ones necessitated by the addition of the other computers.
Telemetry data formatting and transmission handled by the Flight
Data System are done on Voyager with the help of a custom-built
computer. Attitude control and articulation of the scan platform are
accomplished with the third computer system. One concept from the
STAR computer proposed for the TOPS, applicable to Voyager, is
dormancy. JPL's project staff believed that equipment would last
longer if unpowered . Although both CCSs are always powered,
rarely are both Flight Data Systems running, and both attitude control
computers are never turned on at the same time. Full bit-for-bit redun­
dancy is not maintained in the dual memories. For example,
"expended" algorithms, such as the deployment sequence executed
shortly after separation from the booster, need not be maintained5.
Both memories are accessed by the single active processor in each
system. The Flight Data System keeps a copy of its instructions in
both memories, but intermediate data and variables can be stored in
either memory. This seemingly casual attitude toward memory
duplication tightens up considerably near encounter periods, which is
one time that both CCS processors are in tandem mode.

Since there are three computer systems on Voyager, JPL had to
establish another layer of organizational control over its flight
hardware and software development. Whereas Viking was assigned a
single Cognizant Software Engineer, Voyager had three, managed by
a Spacecraft Software Engineer. H. Kent Frewing of JPL assumed this
position in early 1974 and sent out a series of organizing memos
during the first half of that year.** Frewing' s February 20, 197 4 note
set out his duties and a project time line through the summer 1977
launch dates6. Manpower estimates for software development ranged
from one programmer in 1974 and 1977, with a peak of four full-time
programmers in late 1975. The small group allowed most work to be

**He was replaced in early 1976 by Christopher P. Jones , who designed the
integrated fault protection algorithms used on the mission, but Frewing laid the
groundwork for management of the software.

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 175

done informally, easing communication. To provide some structure,
Frewing established a Mariner-Jupiter-Saturn 1977 On-Board
Software Design Team consisting of himself, Donald R. Johnson, the
Flight Data System Cog Engineer, Stanley Lingon, the CCS Cog En­
gineer, and an Attitude and Articulation Control System
representative7. They helped ensure the same close control of
software development as on Viking, with good documentation and ef­
fective subroutine interfaces. The validation end of the software
development process was handled by the Capability Demonstration
Laboratory (CDL). Completed after the initial software was produced,
it was a collection of either breadboard or flight surplus computer and
science hardware, and its interfaces interconnected in the same way as
those on the actual spacecraft. Its function is identical to that of the
Shuttle Avionics Integration Laboratory (SAIL), in which both
software and hardware changes could be tested to see if they func­
tioned successfully8. Under this management umbrella, and with Cog
Engineers constantly elucidating requirements from the science side
and interpreting them to software engineers, each of the three com­
puter systems took shape.

Voyager CCS: Parameters and Problems

NASA reeled from massive budget cuts during the 1970s. A
changed political climate ended the Apollo era of near "carte
blanche." Hampered by expensive Shuttle contracts as well as other
factors, NASA management reduced its plans for unmanned explora­
tion of the solar system. As Voyager developed under the new con­
ditions, cost savings became a key ingredient in all engineering
evaluations. JPL thus conducted a "CCS/CCS Memory Subsystem
Design Inheritance Review" on January 17, 19749. Held a year after
Greenberg's proposal for standardizing the Viking computer, the
Review resulted in the adoption of the Viking CCS as the Voyager
CCS. The eventual hardware functional requirements document reads
like a copy of the Viking document10. I/0 interfaces with the new
Flight Data System and Attitude Articulation and Control System
computers are the major differences. Software such as the command
decoder, certain fault processing routines, and others are fundamen­
tally identical to Viking 11 . Here again, differences are related to the
new computers. All command changes and memory loads for the
other computers are routed through the CCS 12. This required the ad­
dition of the routine MEMLOAD 13. Another routine, AACSIN, was
added to evaluate power codes sent from the Attitude Control com­
puter as a "heartbeat" to inform the CCS of its health 14. The fre­
quency of the heartbeat, roughly 30 times per minute, caused concern

176 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

that the CCS would be worn out processing it. Mission Operations es­
timated that the CCS would have to be active 3% to 4% of the time,
whereas the Viking Orbiter computer had trouble if it was more than
0.2% active 15. As it turns out, this worry was unwarranted.

Part of the reason why the more complex Voyager spacecraft
could be controlled by a computer with the same size memory as
Viking is the ability to change software loads. In-flight reprogram­
ming, begun when the programmable sequencers flew on Mariners,
and brought to a state of high quality on Mariner X, was a nearly
routine task by the time of Voyager's launch in 1977. Both the CCS
and Flight Data System computer have been reprogrammed exten­
sively. No less than 18 loads were uplinked to Voyager 1 during its
Jupiter encounter. During long-duration cruise, such as between
Saturn and Uranus, new loads are spaced to every 3 months 16. As
pioneered on Mariner X, a disaster backup sequence was stored in the
Voyager 2 CCS memory for the Uranus encounter, and later for the
Neptune encounter. Required because of the loss of redundancy after
the primary radio receiver developed an internal short, the backup se­
quence will execute minimum experiment sequences and transmit data
to earth; it occupies 20% of the 4K memory 17. CCS programmers are
studying ways to use some bit positions in a failed Flight Data System
memory to compensate for the shortened memory in their system. A
readout register in the Flight Data System has a failed bit, giving the
impression that the entire memory has a one stored in that position in
each word. Remaining "good" areas may be assigned to the use of the
ccs 18.

Voyager Attitude Articulation and Control System Computer

JPL has been committed to three-axis stabilized spacecraft since
it began designing probes in 1959. Attitude control systems maintain
the proper pointing. The tasks assigned to the systems later expanded
to include the actual operation of scanning platforms for imaging and
other remote sensing instrument pointing. On the early Mariner mis­
sions the control systems consisted of analog circuits made up of
hard-wired logic. By Mariner VIII, digital circuits replaced the analog
electronics, and those were used on Mariner X as well as the Viking
Orbiter19. Viking's Lander used the Honeywell central computer to
run its independent attitude control system20. A landing craft engaged
in a powered descent needed far finer pointing than a spacecraft in
free flight, and the bandwidth of a hard-wired system was insufficient
to provide such control 21.

Future probes, however, might need computer-controlled attitude
electronics due to complex mission requirements or unusual

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 177

spacecraft configurations. NASA's Office of Aeronautics and Space
Technology funded a study of extended life attitude control systems as
the TOPS project wound down in 1972. The result was a combination
analog and digital programmable attitude control system. Dubbed
"HYPACE," for Hybrid Programmable Attitude Control Electronics, it
was a byte-serial processor with substantial power22. Using the same
4K, 18-bit-wide plated-wire memory from the Viking Orbiter com­
puter, HYPACE added transistor-transistor logic (TTL) medium-scale
integrated circuits to create a relatively fast (28-microsecond cycle)
processor with index registers for addressing. Byte-serial architecture
was possible because the TTL chips were designed for 4-bit parallel
operation, so the 18-bit words could be moved around in five cycles
instead of the 18 a serial machine would need, increasing overall
speed. Index registering meant that the same block of code could be
used for all three axes, reducing memory requirements. It appeared
that the attitude control systems of future spacecraft would almost cer­
tainly benefit from such a computer.

Voyager was the first to do so, due to new requirements. One dif­
ference between Voyager and Mariner and Viking is that the latter
two were fairly rigid in construction. Voyager's radioisotope ther­
moelectric generators, however, were mounted on a boom to keep
radiation leakage away from scientific instruments. In addition, the
magnetometer was boom mounted to avoid interference from
spacecraft magnetic fields caused by motors, actuators, power buses,
and electronics. Finally, the scan platform was also on a boom to give
a better field of view. The extended booms made Voyager much less
rigid in flight, with thruster firings and maneuvers causing the booms
to flex, complicating the attitude control problem23. Additionally, the
Titan III booster used for Voyager required a "kick stage" to success­
fully inject Voyager into the transfer orbit to Jupiter. Since the kick
stage was kept simple, the spacecraft itself was required to do attitude
control during firing, which entailed much narrower margins of con­
trol than the three-axis pointing in cruise24.

JPL 's Guidance and Control Section wanted to use a version of
HYPACE as the computer for the Voyager. However, there was con­
siderable pressure to build on the past and use existing equipment25 .
Greenberg proposed using the same Viking computer in all systems
on the Voyager spacecraft that needed one26. A study showed that the
attitude control system could use the CCS computer, but the Flight
Data System could not due to high I/O requirements27. Wayne Kohl,
the Viking computer Cog Engineer, thought that the Voyager project
could save $300,000 by using the Viking machine for the attitude con­
trol function28 . His division chief, John Scull, supported that idea,
possibly because of budget pressure from NASA29. Raymond
L. Heacock, as Spacecraft Systems Manager in the Voyager Project
Office, and others from that organization were the key personnel in-

-
J

178 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

volved in making the final decision, influenced by the economy and
feasibility of the idea30. Money could be saved in two ways by using
the existing system: avoidance of new development costs and retrain­
ing of personnel.

Guidance and Control grudgingly accepted the CCS computer on
the condition it be speeded up. Requirements for active control during
the kick stage bum meant that real-time control programs would have
to be written to operate within a 20-millisecond cycle, roughly three
times faster than the command computer31 . An executive for the at­
titude control computer differed in nature from those for either the
command computer or the Flight Data System computer. Basically,
the attitude control computer needed to run subprograms at different
rates, requiring several cycles, as in Apollo, Skylab, and the Shuttle.
Guidance and Control asked for a I-megahertz clock speed but wound
up getting about three quarters of that32. The attitude control en­
gineers also added the index registers that proved so useful during the
HYP ACE experiment. Documentation for the system still refers to the
attitude control computer as HYP ACE, even though its heart was the
command computer. General Electric, which built the command com­
puter, naturally built HYP ACE, but the rest of the attitude control sys­
tem was constructed by Martin-Marietta Corporation in Denver.

Teoguer A. Almaguer was the hardware Cog Engineer for the at­
titude control computer, whereas H. Karl Bouvier led the software
development group. Bouvier actually worked on an analysis team
within the Guidance and Control Section, but the team members were
afraid to use the word "software" in their name because their tasks
might have been taken away and given to an existing software team in
another division33 . The programmers must have done an outstanding
job, considering the slow processor and limited memory. At launch,
only two words of free space remained in the 4K of plated wire34.
Tight memory is now a problem because the scan platform actuators
on Voyager 2 are nearly worn out, and software has to compensate for
this during Uranus and Neptune encounter periods.

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 179

Box 6-1: Voyager HYPACE Operation

HYPACE had four execution rates. Scan platform stepper motors
and thruster actuators were among the routines executed during the 10-
millisecond cycle. Attitude control laws and thruster logic executed in
the 20-millisecond cycle. Scanning control and tum execution were
placed in the 60-rnillisecond group, and the command interpreter and
heartbeat were 240-millisecond routines35 . In operation, the standard l 0-
millisecond time interrupt would cause all IO-millisecond routines to ex­
ecute. If it was time for one of the 20-, 60-, or 240-millisecond routines
to run, it would be scheduled. Sometimes if the computer got too busy,
the 240-millisecond cycle slipped to up to 350 milliseconds, but routines
in that cycle were less critical than a routine to shut off an engine on
time.

One thing needed on Voyager that did not exist when only single
computers flew on unmanned spacecraft was an interface between the
machines. The command computer could directly request data from ei­
ther of its partners. A primary function of the command computer was to
check periodically on the health of the other computers. Programmers in
the Guidance and Control Section originally intended to send a
"heartbeat" to the command computer each second36. This was later
raised to once about every 2 seconds, partly because of the command
computer overload problem mentioned above. To carry the heartbeat, six
direct input lines, similar to the 3-bit synchronization bus on the Shuttle,
ran from the HYPACE to the command computer. A "power code" was
the content of the 6 bits 0transmitted on those lines. For example, power
code 37 was the simple heartbeat. Others related to passing information
such as pointing commands. Power code 66, called "the Omen," told the
command computer to save disaster parameters, because a failure was
irnminent37. Every eight 240-millisecond cycles the heartbeat was sent.
Between times, the attitude control computer conducted its self tests. If it
failed, the heartbeat generator was bypassed. After about lO seconds
passed with no heartbeats, the command computer would issue a switch­
over command to the backup processor.

A switch-over to the backup attitude control computer took place
on Voyager 2 16 seconds after separation from the solid rocket stage38 .
Separation was so rough that the spacecraft was sent off attitude . Simul­
taneously, the booms were being deployed by the command computer. A
thruster configuration initialization involving the plumbing for the
thrusters delayed their acting to correct the attitude error.

180 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box 6-1 (Continued)

Since this was one of the mission-critical times that the command
computer was running in dual mode, the attitude control computer got
two commands to initialize the plumbing. Executing the second com­
mand pushed back the attitude control recovery even farther. Soon the
computer exhausted its options and voluntarily stopped the heartbeat.
When the backup came on-line it had no record of the gyro readings. Not
knowing how bad things were was a blessing, as it executed a simple
orientation and stopped the spacecraft roU39. Here is an instance where
maintaining bit-for-bit identical memories would have been disastrous,
as the backup computer would also have tied itself in knots.

Developing Voyager's Flight Data System Computer

Flight Data Systems handle the collection, formatting, and storage
of science and engineering data on spacecraft. If the data are to be
transmitted directly, a high rate of input and output is needed so that
nothing is lost. If data transmission is deferred because a spacecraft is
occulted from the tracking station, then the Flight Data System sends
the data to a magnetic tape recorder known as the Data Storage Sys­
tem (DSS). As JPL progressed through Ranger to Surveyor to Mariner
and to Viking, the rates of the data-handling requirements went
steadily upward. This was because of increased instrumentation,
greater sophistication in the spacecraft engineering systems, imaging
equipment with better resolution (thus needing higher bit rates), and
improved communications equipment permitting faster transmission
of data. These changes led away from hard-wired Flight Data Sys­
tems. One big step was the use of a digital memory on Viking to store
different sequences of data handling. It was much like the
microprogram in a central processor and for a similar purpose: to save
hardware40. From there it was a short step to a full-fledged computer.

TOPS feasibility studies refer to a Measurement Processor Sub­
system, the first time a separate computer was considered for flight
data41 . Although the command computer had been suggested as a pos­
sible Flight Data System machine, JPL engineers soon realized that
even though the processing part of the job was well within the power
of the computer, the I/O rates precluded its use.

JPL commissioned the development of a new computer from
scratch and assigned Jack L. Wooddell to the job. Wooddell prepared
an unusual document to tell the story of his work on the computer: a
paper for a graduate computer science course taught by Dr. Melvin
Breuer at the University of Southern California. Written around 1974,
the paper includes what appears to be the flight version of the

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 181

design42. In it Wooddell lists the tasks he performed during the design
period. He began by preparing a list of functions that the proposed
Flight Data System was required to provide. These included sending
control signals to sequence the science instruments, the ability to
handle a wide variety of data rates and formats from the various in­
struments, potential for redesigning the mission in flight (as is now
being done), monitoring engineering telemetry, and keeping to the
reliability standard that no single failure result in loss of data from
more than one scientific instrument or one-half the engineering
sensors43 .

ORIGINAL PAGE IS
OF POOR QUALITY,

Figure 6-2. The Flight Data System hardware in its package. (JPL photo
360-75 lAC)

After determining requirements, Wooddell examined possible
hardware and software tradeoffs. In an insightful memorandum, John
Morecroft explained the concept of "soft l,?fic" as a complement to
the "hard logic" in the Flight Data System . Writing in 1975, when
the actual flight software began to be prepared, Morecroft pointed out
that the program for the computer was actually a soft representation of
hard-wired circuits. Conceptually, the memo stands as an explanation
of the essential meaning of firmware in general. During the second
phase of his work, Wooddell determined which functions could be
handled by hardware and which should be left to the flexibility of

182 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

software. With those decisions made, a preliminary instruction set and
logic design could be prepared.

Uniquely, Wooddell began working with a programmer in 1973,
as soon as the instructions were ready45. Richard J. Rice of JPL began
by developing software for a breadboard version of the data computer.
The breadboard originally used the ubiquitous 4K memory of plated
wire with 18-bit words and 150 of the same low-power TTL ICs used
in other JPL machines46. Instruction execution times for this version
ranged from 12 to 24 microseconds. Rice's prototype flight program,
developed on the basis of what was then known about Voyager in­
strumentation and previous experience, showed that the processor
speed should be doubled47_

Two significant hardware changes solved this problem. One
hardware modification added direct memory access circuits and
provided for using them on each instruction cycle. Direct memory ac­
cess capability meant that some data could be sent directly to the
memory without having to go through the central processor. In other
computers, direct memory access is permitted as a sort of interrupt
and is often referred to as "cycle stealing" because it takes time away
from instruction execution. In the data computer, it would have been
foolhardy to do direct memory access in that way because the data
rate was so high that the instructions might never get a chance to be
executed quickly enough for time-critical sequencing. Wooddell
solved this by adding a direct memory access cycle to those instruc­
tions that did not already have cycles in which the memory was
accessed48. By adding that cycle all the instructions took the same
time to execute regardless of direct memory access, making it easier
to predict program run times and to guarantee the memory access
rate49. Rice, who suggested the change, later said that his program­
ming job would have been impossible without it50.

The second hardware modification to Voyager's data computer
led to a first in spaceflight computing: volatile memory. After the first
round of prototype programs, an intermediate hardware design
evolved using CMOS ICs51 . This type of circuit is very low powered,
fast, and can tolerate a wide range of voltages, making it excellent for
space use. Early in the 1970s, CMOS was still relatively new, so it
was with some risk that JPL chose the circuits. To go along with the
new CMOS processor, the data computer group fought for CMOS
memories as well. Trying to drive a slow plated-wire memory with
fast CMOS circuits would have negated the attempt to speed up the
computer. However, CMOS memories are volatile, in that if power is
cut off, the data stored in them disappear. The designers of previous
manned and unmanned spacecraft avoided volatile memories, fearing
that power transients would destroy the memories at critical mission
times. Voyager management had to be convinced that the risk was ac­
ceptable.

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 183

James T. Kinsey, a JPL manager, was instrumental in getting the
semiconductor memory accepted because a method of providing
backup power was devised52. Voyager's primary electricity is alter­
nating current. The radioisotope generators produce direct current,
which is converted. By running a separate power line from the direct
current bus fed by the generators to the CMOS memories, the only
way power would be lost is if a major catastrophe destroyed the
generators. If that happened there would not be any need for a data
computer anyway. Enough voltage is supplied to retain the infor­
mation in memory and in the registers in the processor that contain the
state vector53. Success with the CMOS memory led to the adoption of
all CMOS circuits in both computer systems on the Galileo spacecraft.
Along with the new chips, the memory changed with an expansion to
8K. Two "external" address bits were added to flag whether the top or
bottom half of the memory is being accessed54. One bit is used to
select the memory half used for data access; the other, for the half
used for instruction access.

Eventually, the cycle of prototyping and interaction between Rice
and Wooddell stopped as a final design was accepted. Wooddell wrote
that the extensive use of breadboards instead of paper designs op-
timized the process55. His method, although not strictly "software
first" was certainly software sensitive. Martin-Marietta's experiences
with a software first philosophy as described in the previous chapter
indicate that Wooddell had a clearer idea of his objective than did
Martin. The job done on the Flight Data Systems computer is a good
model of fine engineering practice in developing a total system.

Voyager Flight Data System Software

The original software development for the data computer has es­
sentially been a two-man show since 1975, beginning when Edgar
M. Blizzard joined Richard Rice to develop the flight version of the
code. Others have been involved in testing and management, but these
two JPL engineers have been the key programmers for the entire mis­
sion to date. They sit in the same area as the "Laboratory Test Set," an
Interdata computer and peripherals that contain the software simulator
of the data computer and the assembler and flight load generator.
Across from them is the CDL, the loose conglomeration of hardware
that represents the real spacecraft. From start to validation to release,
their tools were within sight, and certainly hearing, since the room is
filled with the constant hum of spinning disks, occasional clattering
printers, and the undefinable sound of computers crunching numbers.

Rice characterized the unique nature of the data computer
software this way: "We didn't worry about top-down or structured;

184 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box 6-2: Voyager Flight Data System Computer Architecture

Voyager's data computer is different from most small general­
purpose computers in several ways. Its special registers are kept in
memory, permitting a large number (128) of them. Wooddell also wrote
more powerful shift and rotate instructions because of data-handling re­
quirements. Despite its 1/0 rate, the arithmetic rate is quite slow, mostly
due to byte-serial operation. This means 4-bit bytes are operated on in
sequence. Since the word size of the machine is 16 bits, it takes six
cycles to do an add, including housekeeping cycles56. If all the arith­
metic, logic and shifting were not done in the general registers, the
machine would have been even slower. Reflecting its role, in addition to
the usual ADD, SUB, AND, OR, and XOR instructions found on most
computers, the data computer has many incrementing, decrementing, and
branchin$. instructions among the 36 defined for the flight version of the
machine::,7_

Overall, the Flight Data System requires 14 watts of power and
weighs 16.3 kilograms58 . Its computer needs just one third of a watt and
10 volts, less than the pow·er required for a temperature sensor59! At first
the estimated throughput required was 20,000 16-bit words per second60.
By flight time, the instruction execution rate was 80,000 per second, with
data rates of 115,000 bits per second, much higher than previous Flight
Data Systems61 . The dual processor/dual memory architecture of the
command computer and attitude control computer is repeated in the data
computer. There was no provision for automatic switch-over in case of
failure. A command from the ground routed by the command computer
is necessary for reconfiguration62 . Note that the attitude control com­
puter can be switched by the command computer without ground inter­
vention because it is much more critical to retain orientation.

we just defined functions" 63 . One important function is the software's
provision of basic timing for the entire spacecraft, not just itself. It is
also required to provide the capability to read out the memories of all
three computers, under orders of the command computer64. Don
Johnson, the Cog Engineer, determined other requirements and inter­
faces with the scientific instruments. Rice called him "Mr. FDS,"
claiming that Johnson often knew more about the scientific instru­
ments than the scientists themselves: "If someone forgot something,
Johnson knew it"65 . Raymond L. Heacock, Voyager Project
Manager, said that Johnson was largely responsible for the overall
success of the system, including the design66. Rice said that Johnson's
ebullient style and competence worked well in the informal mode in
which the data computer requirements were set, which was a fully
iterative process. New software needs continued to be discovered
during the mission, which is one reason why a programmable machine

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 185

was chosen. For example, at one point Rice and Blizzard were asked
to create software to determine where the limbs of satellites were so
that imaging could be started67. Development of some programs was
deferred until after launch, such as the Saturn encounter program,
when better data on the telecommunications rates and specific science
requirements would be available68.

Allowing for constant change mandated certain controls over the
data computer's memory. A limit of 90% capacity was set in 1976 by
Frewing, the Software Cog Engineer69. Though later abandoned, the
constraint indicated the software management's early concern about
memory overruns. Also, since the machine can directly address the
lower 4K of memory, pro8rams were to be kept there, with the upper
portion for transient data 7 . Later, the flight configuration of the com­
puter evolved to one processor accessing both memories. Therefore, a
copy of the programs is kept in the lower portion of each memory, but
both upper portions are usable by the single processor as a scratch
pad 71. If dual mode is required, the memories are separated. Ex­
perience has produced increased confidence in the memories. At first,
complete loads had to be sent when an update was done; recently,
pieces of software have been allowed to be inserted in the programs.
Full redundancy between the memories is not now automatically
maintained 72.

Box 6-3: Flight Data System Computer Executive

Like the command computer, the data computer has a simple execu­
tive. Time is divided into twenty-four 2.5-millisecond intervals, called "P
periods." Each 24 P periods represent one imaging system scan line.
Eight hundred of those lines is a frame. At the beginning of each P
period, the software automatically returns to memory location 0000,
where it executes a routine that determines what functions to perform
during that P period73 . Care is taken that the software completes all
pending processes in the 2.5-millisecond period, a job made easier by the
standardization of execution times once the direct memory access cycle
was added.

Voyager's Future

Voyager software development continued into the late 1980s.
Kohl, Wooddell, Greenberg, Deese, Johnson, Kopf, and others closely
connected with the hardware of Voyager's computers were then on
other projects, but Rice and Blizzard and their counterparts on the
command computer and attitude control computer were still program-

186 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

ming, preparing Voyager 2 for Uranus and Voyager 1 to discover the
boundary of the solar wind. An increasing problem as the spacecraft
recede from the earth is the reduction in the data transmission rate.
The closer a spacecraft is to earth, the higher the bandwidth possible.
Computer loads that once took minutes now take hours because error
checking by retransmitting to earth is slowed. In the summer of 1984,
a Flight Data System software load took 4 hours, and the situation
cannot improve 74. Voyager Project officials decided to use the Flight
Data System in dual processor mode for the first time for the Uranus
encounter to provide image data compression. Thus, the information
content remained high even though the transmission rate was grossly
reduced75.

Voyager's computer system did not carry on to the next JPL
project. Galileo combined the CCS and the Flight Data System into a
single Command and Data System. This is logical from JPL's
standpoint because both systems are the responsibility of the same In­
formation Systems Division. Attitude control is provided by a separate
computer. Whereas Voyager was a functionally distributed system
with dual redundancy, ·Galileo's Command and Data System contains
computers that do true distributed processing and use a new concept
of redundancy. That system may be a model for the future, as it can
impact designs aimed at complex spacecraft with extensive data
processing needs, such as the Space Station and Mariner Mark II, both
due in the 1990s.

GALILEO-TRUE DISTRIBUTED COMPUTING IN SPACE

Project Galileo began at JPL in the late 1970s with the objective
of developing an orbiter and probe for further exploration of Jupiter.
Galileo will proceed toward Jupiter, launching a probe 5 months be­
fore arrival. Plans are for the probe to enter the Jovian atmosphere at
a r~latively low angle, using an aeroshell braking system for entry fol­
lowed by a parachute system for final braking and descent. Due to the
nature of the entry, an antenna large enough to send data directly to
earth cannot be carried on the probe. Instead, it has to relay the data to
the orbiter, which will fly a parallel path thousands of kilometers
above. At the end of the probe mission, expected to last 60 to 75
minutes until the probe is crushed by atmospheric pressure, the orbiter
will execute an insertion bum. For the next 2 years, the orbiter will fly
by the four Galilean satellites (hence, the mission name), using gravity
assists to change its path after each encounter.

Great demands will be placed on Galileo 's on-board computer
systems, because of both the nature of the mission and the design of
the spacecraft itself. First, Galileo is a one-shot mission. Inter­
planetary probes have been mostly launched in pairs for the obvious

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 187

ORIGINAL PAGE IS
OE POOR QUALITYi

Figure 6-3. The Unified Data System: precursor to Galileo's Command and Data
Subsystem. (JPL photo 360-630)

reason that a full backup then exists. Such dual launches are generally
cost effective, as a second spacecraft can be obtained for 15% of the
price of the first one76. Budget constraints forced NASA to buy just
one Galileo, so there was tremendous pressure to construct a highly
reliable spacecraft. Additional pressure has been on the project be­
cause of changes in the launch date and booster rocket. Originally
scheduled for a 1982 launch, delays in the Shuttle program and other
factors caused rescheduling to 1984, then 1985 and, finally, 1986,
when the grounding of the Shuttle fleet forced an indefinite postpone­
ment. At first, the Air Force's Inertial Upper Stage rocket was chosen
for the booster. Later, the new "wide body" Centaur got the job. Cen­
taur upper stages have flown on Atlas and Titan III boosters since the
1960s. The new "fat Centaur" would carry 50% more fuel than the
earlier version. Other changes were made to adapt it to the Shuttle
cargo bay. One JPL engineer said that it is "like Abe Lincoln's axe.
The head broke and they replaced it and the handle broke and they put
on a new one, but it's still Abe Lincoln 's axe"77. However, NASA
canceled the Shuttle version of the new Centaur in the spring of 1986
due to safety considerations, leaving Galileo without a ride to Jupiter.

188 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

By early 1987, NASA decided to go back to using the Inertial Upper
Stage, but it has significantly lower lifting capability than the Centaur.
As a result, the flight path has to be changed to include a Venus flyby
and two Earth flybys to gain velocity by gravity assistance. Unfor­
tunately, the total flight time to Jupiter will nearly triple to about
seven years.

Spacecraft design also caused problems for the computer desig­
ners. All previous JPL probes have been three-axis inertial to gain ad­
vantages such as easing communication and providing a stable scan
platform for imaging. Galileo has a fixed attitude area, called the
"despun section," and also a "spun section" that rotates three times a
minute. Fields and particles experimenters required a spin to help
them differentiate local fields from external fields. Aside from the ob­
vious increase in the order of magnitude of the attitude control
problem on a dual-spin spacecraft, communication between the two
parts is hampered by the need to transmit serially across a rotary trans­
former. Four hundred milliseconds are required to send a message be­
tween the spun and despun sections 78. To overcome this time penalty
and provide more real-time control, a fully distributed system of com­
puters is mandated.

Figure 6-4. A model of the Galileo spacecraft with the probe visible at the bot­
tom center. (JPL photo 230-222A)

ORIGINAL PAGE IS
OF POOR QUALITY;

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 189

Finally, computer system complexity is further increased by the
number of science experiments on board and the fact that they are
largely computer controlled as well. Eight of the nine instruments
have microprocessors for control and data handling79. These have to
communicate with the Command and Data System, itself containing
six microprocessors. Attitude and Articulation Control has dual com­
puters, and the probe also contains a dual microprocessor system. In
all, Galileo contains 19 microprocessors with about 320K of semicon­
ductor random access memory and 41K of read-only memory80. No
unmanned spacecraft launched to date can approach Galileo in the
power and size of its on-board computer network.

JPL took great care in the selection of the computer systems for
Galileo. Procurement of the systems for the Command and Data han­
dling equipment and the attitude control equipment proceeded
separately but in a somewhat coordinated fashion. In the case of the
Command system, a 1977 study examined using the existing Voyager
computers, the National Standard Spacecraft Computer (NSSC-1),
and some form of a microprocessor distributed system like the Unified
Data System (UDS), then a research program at JPL aimed at complex
long-duration space missions81 . Although a lot of pressure was ex­
erted on Galileo's builders to choose either the existing equipment or
the NSSC-1, cost factors favored the UDS as the basis for the Com­
mand and Data Subsystem82. Similarly, the attitude control group was
pressured to use the NS SC-1, but the desire for floating point and
greater power defeated that idea. Since the star tracker is in the spun
section and thus moving, complex coordinate transformations must be
calculated, and the NSSC-l was not up to it83 .

With new computers needed for both major controlling subsys­
tems, JPL carefully explored memory requirements and software
development prospects. Prototype programs were written in HAL/S
and FORTRAN for the command computer and the attitude control
computer84. Ideas for the content of the programs came from Voyager
experience and the executive written for the NSSC-1. The project of­
fice originally specified that HAL would be used for programming all
flight software. When irreducible inefficiencies appeared in the com­
piler bought for the command and data computers, HAL was aban­
doned for that system and replaced with "structured macros"85. HAL
was retained for the other computer system. Although most
microprocessors in the scientific experiments are coded in assembler,
one is programmed in FORTH, so high-level languages finally ap­
peared on unmanned spacecraft. The project office set a limit of 75%
memory usage at launch (later raised to 85% for the attitude control
computer only) and 85% load at Jupiter insertion. Officials hoped to
avoid the tight memory problems associated with earlier missions and
even asked the Shuttle software office for advice in setting these
limits 86.

190 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

JPL considered software crucial to the success of the overall
Galileo mission. As of 1985, Neil Ausman of JPL was in charge of all
software, both flight and ground support, and he reported directly to
project manager John Casani. Patricia Molko, also of the project of­
fice, wrote a standards document for software development. At one
point, Howard W. Tindall, first introduced in the chapter on the
Apollo computer systems, was brought in to serve as a consultant. He
found that in some ways JPL was "going through the same problems
that we did when we developed our original large programs"87.
However, in some respects Galileo is more complex than Apollo be­
cause of the number of intercommunicating computer systems. Thus,
size is not the only factor contributing to the difficulty of writing the
software.

The Galileo probe mission is handled by NASA Ames Research
Center, and the entry probe was assembled by Hughes Corporation.
Even though it contains a dual microprocessor system, its function is
primarily confined to sequencing, and its architecture is similar to sys­
tems already described on Mariner, Viking, and Voyager.

Galileo's Command and Data Subsystem Origins: The UDS

STAR was JPL's foray into ultrareliable computer research in the
1960s; the UDS was its 1970s counterpart. David Rennels, who had
been instrumental in the ST AR program, led in developing the system.
Assisting him on the hardware side was Borge Riis-Vestergaard, a
visiting scientist, and Vance C. Tyree. Frederick Lesh and Paul Lecoq
did the software. One reason the UDS project started was the desire to
develop a new architecture for flight computers that would reduce life
cycle costs88. Another impetus came from 1973 studies of distributed
systems done in support of Voyager and by the Air Force89. Distribu­
tion of functions among several computers on Voyager has been
shown to be a natural result of requirements. The Air Force study
found that avionics tasks are better handled by partitioning and using
dedicated computers for specific functions. Since microprocessors be­
came commercially available at about that time, they were recom­
mended for use in such distributed systems.

Rennels' UDS project explored the difficulties in tying multiple
computers together in a flexible manner. He defined an architecture
using two levels of computers. Individual computers and associated
memories at one level were called "high-level modules (HLM)."
These computers controlled system-wide functions such as the data
buses and fault detection. Other computers were located at specific
subsystems and were called "terminal modules." They controlled one
functional area such as engineering instruments or attitude and ar­
ticulation. Each module had its own processor and memory. Com-

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 191

O RIGfNAL PAGE rg
OF POOR QUALITX

Figure 6-5. Galileo and its booster being deployed from an orbiting shuttle .
(P25722AC)

munication between modules was accomplished on a bus that carried
data from one memory to another. By using direct memory access for
all intercommunication, processor resources other than for transfer
commands were unaffected. HLMs did not have 1/0 capability other
than to the terminal modules via the bus. All input and output to
spacecraft systems and the ground was handled by the terminal
modules.

Some influence from the ST AR project can be noted in that Ren­
nels kept critical functions highly redundant and simple. Reconfigura-
tion after failures reflected ST AR concepts90. In order to avoid a
potential single-point source of failure, there was no central bus con­
troller in the UDS. Each of the HLMs controlled a separate bus, but

192 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

only one bus was needed to support all processors because any HLM
could transfer data between any two memories91 . The breadboard
built for the UDS project had three HLMs and three tenninal modules,
so it had three buses as well92. Failure of a HLM caused its functions
to be accepted by the remaining ones. Reliability is obtained by such
reallocation of functions to resources, making this a highly fault­
tolerant system.

One advantage of distributed systems is that interfaces can be
simpler than in a system using a central computer. Each local com­
puter is responsible for its own timing and control. Only on and off
commands and data transfers need be made between machines93 .
System-wide synchronization is accomplished by providing all
processors with a real-time interrupt signal. By using a cyclic inter­
rupt, the complexity attendant with priority interrupt systems is
avoided94. Every 2.5 milliseconds, a signal is sent to all components.
Basically, every processor has to be finished with its current processes
before the next interrupt occurs95 . Data transfers and scheduling of
tasks can be timed using the periodic interrupt.

Key advantages· of the UDS concept are that expanded require­
ments can be handled by adding terminal modules, software can be
highly specialized and distributed, and fault tolerance is very high.
Availability of flight-capable microprocessors in the mid-l 970s made
it possible for JPL to seriously consider the UDS as a competitor with
NSSC-1 and the old Voyager equipment. Its flexibility and potential
as a permanent architecture for space flight helped its case.

NASA chose RCA's 1802 microprocessor for the Galileo im­
plementation of the UDS. A CMOS-type device, it was "nobody's
favorite choice "96 but at the time (c. 1977) was considered to be the
only microprocessor suitable for spaceflight. Recall the use of CMOS
components in the processors and memory in the Voyager Flight Data
System. Similar advantages accrue with the use of CMOS
microprocessors: low power requirements (30 milliwatts) and
tolerance of a wide range of voltages97. However, some dis­
advantages had to be dealt with. CMOS chi~s are especially suscep­
tible to damage from electrostatic discharges 8. RCA 1802s are slow,
with a 5-microsecond cycle time and an average of two cycles per in­
struction. In contrast, the discrete component Voyager CCS had a
1.37-microsecond cycle, making it faster for functions that did not re­
quire multiple cycles99. Speed has been a major constraint to the
software development100. Carryover of the direct memory access
cycle to Galileo from the Voyager Flight Data System alleviates this
problem somewhat101 . In general, making the six microprocessors
"come toðer" has been much more difficult than originally
expected1 2. Software is the most important component in achieving
the success of the CCS.

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 193

Figure 6--0. Circuit boards for the Galileo Command and Data Subsystem. (JPL
photo 360-1756)

Box 6-..i: E\'olution of the Command and Data Subs~'stem

Galileo's Command and Data Subsystem adapted UDS technology
fairly directly. In 1978 designs, the Subsystem was shown as consisting
of three HLMs and four low-level modules (LLMs), which were the
realization of the terminal modules. Three buses were also present, each
controlled by a HLM. Functionally there was one HLM dedicated to
stored sequence control, one for real-time control, and the third as a
spare. LLMs in that configuration handled sequencing, telemetry , status
polling, and other subfunctions. Eventually one high-level processor
was eliminated, but three buses remain, though one of them is used for
test equipment only and will not function in flight 103 . Software architec­
ture is now much different than the UDS.

194 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Box 6-4 (Continued)

One major difference from the UDS concept is the way the proces­
sors in the Subsystem are separated into redundant strings. Whereas
reconfiguration after a failure was done by combining any of the remain­
ing processors into a new control string in the UDS, on Galileo two basi­
cally identical strings are configured from the start, one backing up the
other much like the backup processors on Viking and Voyager. Each
HLM has 32K of memory and a bus controller associated with it. A LLM
with a processor and 16K of memory for engineering control is con­
nected to the string, along with a data bulk memory (DB UM) of 8K and
a bulk memory (BUM) of 16K. These components are in the spun sec­
tion of the spacecraft. Another LLM with l6K of memory is in the
despun section, connected to the probe and the launch vehicle, among
other functions 104. This configuration of one HLM and two LLMs, a
BUM and a DBUM is repeated in string B. Therefore, the total system
consists of six microprocessors with 176K of semiconductor memory.
About 12K of HLM memory is write protected and used for
programs 105. B UMs are used for auxiliary storage and buffering in that
all new sets of commands are directly inserted into them from the ground
and then redistributed by the software in the HLMs. Data memories
serve as buffers for incoming science instrument data, again with direct
memory access 106. Commands and data are transferred on the buses
using packets with three-word headers. Headers contain the code num­
bers of the source and recipient, the starting address in memory of the
message, and fillers for timing. More than one address can be specified
for a message, but usually there is only one recipient 107. Data transfer is
coordinated by the real-time interrupt. Odd-numbered real-time intervals
are used for input; even numbered intervals for output.

As in previous missions, several operating modes are available for
the Command and Data Subsystem. During cruise and other noncritical
mission phases, one string is up and running and the other is in a quiet
state. Otheiwise both can be commanding in one of several ways. Dual
string mode means that the strings are executing code concurrently and
both send commands. Parallel mode is used for time-critical operations
needing closer synchronization. Tandem mode is used during maneuvers.
If a failure is detected in one string, the other halts the activity 108.

Developing the Command and Data Subsystem Software

Development of the software for this Subsystem consumed more
time and labor than any previous unmanned spacecraft. Dr. John
Zipse, the Cog Engineer for the Subsystem software, had an average

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 195

ORIGIN AL PAGE IS
OF POOR QUALITYi

Figure 6-7. Memory modules for the Galileo Command and Data Subsystem.
(JPL photo 360-1704)

of 12 full-time software developers working under him at peak
periods 109. They shared five terminals hooked to an IBM System
370/158 computer on which the assembler and functional commands
resided. Originally, HAL/S was specified as the programming lan-
guage for the Subsystem 110. A prototype compiler for the RCA 1802s
was not successful, and HAL was dropped in favor of "structured
macros" 111 . Called "functional commands" in the software documen­
tation, they have names such as IF, ELSE, DO, ASSIGN, and others
very similar to the statements of a high-level programming
language112. These functional commands make up the "Virtual
Machine Language" in which most of the software was written. Each
command causes the execution of a prepared block of 1802 assembly
code, much like a subroutine call. Project documents recognize three
layers of language associated with the Subsystem: Level A is the
hardware external to the 1802s that may provide input and receive
output, Level B is the 1802 assembler, and Level C is the Virtual
Machine Language l 13.

Recognizing the complexity of the software, JPL instituted ever

196 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

, o AEGROUNO
11/11 SEC)

CLOCl

HEAL TH CHECK
STARTUP

INIT IAL ·
IZATION

&AC KG ROUND
START\J, AND
ROLLBACK

,RIVILEGEO

FAULT
DATA
ANAL YSIS

ORIGINAL PAGE IS

OE £00R QUALITY:

NON.f'RIVILEGEO

Figure 6- 8. The software architecture of the Galileo Command and Data Subsys­
tem High Level Modules. (From JPL, 625-340-006000)

more stringent development requirements. Preparation for the
development process began with a "Galileo Software Thinking
Group" which met in 1977-1978 114. Programmers were ordered to
keep software modules smaller than 150 assembly language state­
ments and were reminded that simplicity was the highest priority 115 .

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 197

Box 6-5: Command and Data Subsystem Software Architecture

Galileo's Command and Data software is considered a "hierarchical
software architecture" and is divided into two sets of processes, with fur­
ther divisions within them. Foreground processes are executed at each
real-time interrupt, or every I/15th second. They are a self test, a clock,
and bus control. Background processes begin each 2/3 second, and are
much more complex. Functions done in the background have been
divided into six "virtual machines," a term of many meanings. In this
case, three virtual machines are considered "privileged": the administra­
tion machine, the contingency action program machine, and the fault
processing machine. These three machines consist of software that is al­
ways resident in the Galileo computers and is kept in the 12K of write­
protected memory 116. They are called privileged because the non­
privileged machines can be canceled if they do not complete processing
before the end of the 2/3-second cycle, whereas the privileged machines
can never be canceled. Nonprivileged machines include an immediate
action program machine, a delayed action program machine, and a stored
sequence program machine. So the nonprivileged machines are reserved
for commands and sequence control, whereas the privileged machines
are for executive and fault detection and correction. Nonprivileged
software is to be updated about once a week in flight 117 . Originally, the
immediate action programs were considered privileged, but with the ad­
dition of a contingency machine they were moved to nonprivileged
status 118. Software developers imagine that a "wall" exists between the
privileged and nonprivileged machines. They consider that the non­
privileged software is more error prone because it is constantly changing,
whereas the privileged software should have had a thorough exercise
over several years in testing before the flight.

Execution of the virtual machine software is related to the 2/3-
second interrupt. In each cycle the software goes through each virtual
machine pending program stack and executes what is waiting. Many
programs can be running in each virtual machine in each cycle, up to l 0
in the administration and fault protection machines, for example. As
mentioned above, the privileged machines always get to clear their pend­
ing programs, whereas the nonprivileged machines do what they can un­
til the time is up.

Software described so far is resident in the HLMs. LLMs have spe­
cialized software for their particular functions, such as monitoring en­
gineering instrumentation and talking to the launch vehicle. Data from
those tasks needed by the virtual machines are passed on the buses
during the 1/15-second interrupt.

198 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Design of the software was done in a JPL-developed Software
Design and Development Language that used statements similar to
those in high-level languages 119. Even with excellent documentation
and tools, such as a hardware-based simulator for software
validation 120, it takes (according to Zipse) a new programmer three
months to be effective. Until Galileo has flown, no final evaluation
can be made of the virtual machine architecture. Yet, future spacecraft
requiring expandability and a high degree of flexibility could probably
gain from using such an architecture as a complement to the UDS type
hardware structure.

Galileo Attitude and Articulation Control Computer System

In terms of tasks, the Attitude and Articulation Control System
has less to do than the Command and Data Subsystem, but it must per­
form its jobs faster and with more critical tolerances. During the dis­
cussion of the Voyager computers, it became clear that the attitude
control system needed a fast-cycle, real-time software architecture
running on a high-speed computer. Galileo's control requirements are
much greater than Voyager's; the dual spin problem and more com­
plex imaging equipment indicated from the beginning a need for a
completely new computer system. The computer was to provide star­
based attitude determination and control an inertially referenced,
target-body-tracking scan platform121 . Speed was the primary
criterion for the new processor122.

Kenneth Holmes, in charge of looking for the Galileo control
computer123, and the other engineers ran old Voyager attitude control
programs on several processors. One of those processors soon proved
itself superior: ltek's 2900 series 124. Itek, now a division of Litton In­
dustries, built a computer known as the AT AC, or Advanced Technol­
ogy Airborne Computer. Using 2900 series processors, each with 4-bit
woi:ds, Itek assembled a 16-bit, low-power, flying minicomputer
roughly equal in power to a Digital Equipment Corporation
PDP-11/23. Navy aircraft use this computer, although its specific ap-
plications are classified 125. AT AC' s basic cycle time is 250
nanoseconds, or more than five times faster than the Voyager
computer's cycle. However, the memory cannot cycle faster than 2
microseconds, so operations rates average 143,000 cycles per
second 126. Floating-point capability is a plus, and since it handles
eight interrupts using microcode, there is no software overhead for
real-time operation127. Another good feature is that its 16 registers are
general purpose; none are dedicated as accumulators, program
counters, address registers, and so on. Therefore, multiprocessing is
made much easier. Further advantages to the computer are that special

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 199

l'HOC! ','.·,OH ! 0

r;,19{;1 I i 100() ,u

Figure 6-9. The central processor and input/output circuits of the Galileo At­
titude and Articulation Control Subsystem. (JPL 230-l 128bc)

instructions can be added by the user for specific applications. Four
instructions added by the Galileo project saved over 1,500 words of
code in the flight program 128.

The AT AC came with a considerable amount of software support.
Target compilers were available for FORTRAN, BASIC, and
HAL/S 129. Galileo project management wanted a higher order lan­
guage used in the coding, so HAL was adopted for the attitude control
system. Unlike the Command and Data Subsystem, HAL was success­
fully adapted to the AT AC. Compilers developed by Intermetrics for
the ATAC are about 12% speed inefficient, but 36% memory in­
efficient compared with assembler130. Apparently this was within ac­
ceptable limits, and the flight applications code is written in HAL,
with the operating system in assembler. Edward H. Kopf, Jr. said,
"We love HAL/S; we could never do it without HAL/S," even though
he referred to it facetiously as "flight PL/I." Given the complexity of
the resultant software, he was probably right that a high-level lan­
guage was critical to success.

Attitude Control Electronics Software Organization

Implementing HAL/S on the AT AC involved creating a special
operating system. Ted Kopf wrote GRACOS, or the Galileo Real-

ORIGINAL p GE rs
O__E POOR QUALITY

200 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 6-10. Memory modules of the Galileo attitude control computers . (JPL
230-112lbc)

time Attitude Control Operating System, to accomplish that
implementation 135 . GRACOS begins the operation of the software by
scheduling a HAL/S module called STARTUP. Within STARTUP
are statements that set up the concurrent processes necessary to do the
attitude control and articulation tasks (a version of STARTUP is
reproduced in the HAL/S appendix as an example of the language).
Up to 17 concurrent processes may be running under GRACOS, with
at least 10 up all the time 136. STARTUP is given as much time as
necessary to complete, and then the established processes begin at the
next 1/15-second real-time interrupt137. Kopf wrote GRACOS to be
mission independent. He avoided constraining the timing of rate
groups and other things that would have been too specific 138 . Interest­
ingly, if the fault-handling routine has to come in, it restores the
registers of the failed HAL/S module where the fault occurred and
tries again, very similar to the "roll back and try again" scheme in
STARf39.

Sanford M. Krasner, the Software Cog Engineer for the Attitude
Control Electronics, reported directly to Brian T. Larman, the
Spacecraft Flight Software System Engineer. Early in the project, five
people were full time on the software development, several more than
on Voyager 140. The coding process was speeded up when HAL was
used as the software design language 141 . To make development
easier, Voyager structure was adopted whenever possible142.

ORIG rNAL PAGE IS
OF POOR QUALITY,

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 201

Box 6-6: Configuration of the Attitude Control Electronics

Galileo's Attitude and Articulation Control Subsystem necessarily
has parts in both the spun and despun sections of the spacecraft. Most
components are in the spun section, including the two redundant proces­
sors and 64K of memory. Called the ACE, for Attitude Control
Electronics, its despun partner is the DEUCE, for Despun Sec1ion
Electronics, a long way to go for an acronym. Communication between
the ACE and DEUCE is across the rotary transformer. Since the trans­
former is not considered fully reliable, input or output to the DEUCE is
not complete until an ACKNOWLEDGE interrupt reaches the ACE131 .
CMOS-type memories similar to those used in the Voyager Flight Data
System are in the ACE. Sixty-six lK chips are needed, two of which are
actually permanent read-only memory. Those two contain the Memory
Loss Recovery Routine written in ATAC assembler132. A 5-volt keep­
alive current directly from the generators is constantly fed to the
memories, but in the case of a destructive transient the Recovery Routine
can restart the software after it has been repaired or replaced.

Planning for the system included careful memory sizing. Based on
actual Voyager programs and extrapolations from them to handle the
new requirements, a 1978 study thought lOK of memory to be sufficient.
Using a policy of 100% margin and 75% limit at launch, 32K was even­
tually bought 133 . As noted above, a waiver to 85% full at launch was
given. Ground computers can reprogram the ACE in flight by sending
code to the off-line memory through the Command and Data Subsystem.
As with its own LLMs and as pioneered in the UDS, the command com­
puters can directly access the ACE memory. Commands can be placed in
the active memory where they are "discovered" by the ACE software 134.

Ironically, the advanced nature of the new attitude control system
and its control computer made it more vulnerable to space conditions
than its predecessors. A potential disaster was averted when the
"single event upset" was discovered and dealt with before launch.

The Single Event Upset Problem

Space environments are much harsher to electronics than the sur­
face of the earth. Since circuitry essentially consists of hardware that
moves electrons, creates and destroys magnetic fields, and emits
waves of electromagnetic radiation, fields and particles of the types
loose in space can affect the operation of electronic equipment. Ironi­
cally, the miniaturization of components has made electronics more
sensitive to interference. One possibility that concerns computer

202 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

designers is the effect of highly charged particle impacts on memory
cells. If a particle has sufficient energy to change the information
stored in a bit, it can affect the software in a potentially disastrous
way. Such a spurious change is called a single event upset (SEU). Suf­
ficient numbers of particles can cause so many bits to change states
that the software fails. Since primary and backup memories are
equally vulnerable, simple redundancy is not a solution. Error­
correcting codes that test for random bit flips exist but require storage
and processing time not always available on a spacecraft. Addition­
ally, bits in the processor can be affected during execution, so the
problem is not limited to memory.

Galileo's processors and memories were chosen in 1977. Voyager
had not yet reached Jupiter, so hardware decisions were based on
1973-1974 Pioneer data 143 . Nothing was known about SEU vul­
nerability, so no space for error detection and correcting codes and no
provision for special shielding was made. Some incorrect imaging
commands sent by sequencers in the Pioneers were later tagged as
SEUs. Voyager's clocks were slowed by Jovian radiation so that the
computers were forced out of synchronization occasionally 144. By
1980-1981, the nature of the SEU problem became apparent. Sulphur
ions from Jupiter's volcanic moon, Io, were being whipped up to high
energy by the Jovian gravity. In 1982, Galileo Project Chief Engineer
B. Gentry Lee was assigned the job of determining how bad the SEU
problem could be and finding a solution. Lee arranged for cyclotron
tests at the University of California's Berkeley campus in which com­
puter and other electronic parts were submitted to bombardment by
high-speed particles. Results indicated that the 2901 chips used in the
attitude control computers were highly SEU sensitive, with 20% 50%
of hits causing probable software failures 145 . RCA 1802s used in the
Command and Data Subsystem were actually much less sensitive, be­
ing of older, and thus less dense, technology.

Attitude control engineer Kopf commented, "It is not worth flying
the mission if you cannot get rid of the SEU problem." Failures were
mo~t likely at the most critical part of the probe mission when the or­
biter is very near Jupiter. In order to avoid possible further delays in
an already much postponed mission, Lee searched for solutions along
two tracks. One solution would use a radiation-hardened processor
built by Trecor called the RHEC-Rad Hardened Emulating
Computer-1750A. Even though it is an emulator capable of imitating
the 2901, a new retargeted HAL compiler would be needed. The cost
of this solution would be $20 million. Lee's second solution was to
contract with Sandia National Laboratories to custom make radiation­
hardened 2901s. No software needed be changed, just new ICs were
necessary, and they cost $5 million. Due to cost considerations and
the inherent attraction of retaining the already created and largely
validated software, the Sandia solution was chosen 146. As a footnote,

DISTRIBUTED COMPUTING ON BOARD VOYAGER AND GALILEO 203

it is interesting that if the Galileo had launched on time, a sufficient
understanding of the SEU problem would not yet have been available,
and a doomed spacecraft carrying an unknown time bomb would have
been traveling toward an unfriendly Jupiter waiting to hurl ion thun­
derbolts at it.

FUTURE UNMANNED SPACECRAFT COMPUTERS

Distribution of computers aboard spacecraft has now been done
several times. Both Voyager spacecraft inherited command com­
puters from the Viking project. Computers for specific functions such
as attitude control and data formatting were added in response to in­
creased requirements. The result was a functionally distributed system
of processors. Galileo's project managers also adopted the concept of
functional distribution, assigning microprocessors to control attitude
and, in the lower-level modules of the Command and Data Subsystem,
to connect to engineering and other instruments, including the scien­
tific experiments. Additional innovations on the Galileo spacecraft
centered on the development of virtual machine software, which dis­
tributes functions over several processors.

Advancing microprocessor technology makes the continuation of
the concept of single function computers more attractive. At WL,
plans are currently under way for the Mariner Mark II, which will be
the deep space version of the Multimission Modular Spacecraft
developed by Goddard Space Flight Center for earth orbital opera­
tions. Using the same concepts of a standard bus and modular equip­
ment, JPL hopes to reduce mission costs to $400 million each, about
half the price of Galileo 147. The staff is exploring the use of the C
programming language, a very powerful tool, for the new spacecraft.
Future missions seem certain to use multicomputers, with internal net­
works similar to Galileo's. In the 15 years since the first primitive
programmable sequencers flew with 128 word memories, JPL
spacecraft have grown to carry 2,500 times more memory. Progessing
from simple counting to complex coordinate transformations in such a
short time is remarkable, and the application of computer power to
each spacecraft function will make for ever more remarkable gains.

Part Three:

Ground-Based Computers

For Spaceflight Operations

NASA's ground computer systems are characterized by large size, by
the implementation of real-time programming, and by the use of many
computers connected together. The need for these three attributes has
caused NASA and its contractors to devise new techniques for com­
puter applications, such as operating systems for mainframe com­
puters capable of handling real-time processing and sophisticated net­
working. Through these developments NASA has had its largest im­
pact on computing in the commercial world.

Differences between ground-based computers and on-board com­
puters center on the relative ease of hardware procurement with the
continued difficulty of software development. On-board computers
evolved from custom-made systems to the largely off-the-shelf Skylab
and Shuttle computers. Ground computers followed a more conven­
tional line, as they could be, from the beginning, commercially avail­
able systems, though applied to noncommerical tasks. NASA ex­
amined many existing computer systems each time it needed a
machine. In fact, the government's bidding process gave NASA a
larger mix of different vendors' equipment than most commercial en­
terprises, causing occasional difficulties in connecting computers
together. This problem and that of adapting business machines to real­
time processing were largely solved by software. Contractors received
invaluable experience in large systems development and networking
in the process of achieving NASA's goals.

Ground-based computer systems are used for preflight checkout
and the launching of space vehicles, controlling both unmanned and
manned missions, creating simulations of rocket flight for vehicle
development and of space flight for crew training, processing
telemetry data from launch vehicles and space probes, and in basic
research. In the following chapters these functions are grouped into
launch processing, mission control, and support tasks. Chapter 7
develops the concept of launch processing from the manual era to the
fully automated Shuttle flight preparation. The chief result from this
effort was a large integrated network of computers that proved to be
highly innovative. Chapter 8 presents computer systems in both the
manned Mission Control Center in Houston and the unmanned control

206 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

centers at the Jet Propulsion Laboratory (JPL) and Goddard Space
Flight Center. In Chapter 9, the uses of computers in simulations and
data reduction are discussed.

7

The Evolution of

Automated Launch Processing

208 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Rocket technology is both old and new. Since the Chinese first
started shooting off fireworks a millenium ago, the sight of a rocket
streaking ever faster skyward, a comet's tail of fire behind, has ex­
cited even those unimpressed with machines. Fireworks rockets, and,
later, military bombardment rockets through the first three decades of
this century, shared the same components: casing, fuel, and payload.
Construction was complete when the gunpowder fuel was loaded in
the casing, warhead affixed, and a fuse planted the base. Such rockets
could be stored without maintenance and fired with little preparation,
needing only to assure that the fuse was still attached. The difficulty
came in the area of guidance. A set of fins or a balancing stick pas­
sively guided the early rockets. Frequently they would turn on the
men who launched them or shoot horizontally over the heads of
fireworks watchers. Thus, the old technology of preparing rockets for
flight consisted of keeping them dry, aiming them carefully, and light­
ing the fuse.

In Germany during the late 1930s the new technology of rockets
began to mature. Increased interest in rocketry developed in Europe
and the United States after World War I. Rocket societies flourished
in England, Germany, and the United States. Robert Goddard flew a
liquid propellant rocket, the first of its kind, in Massachusetts in 1926.
Liquid fuels, with their higher specific impulse and thrust potential,
soon replaced solid fuels as the primary area of propulsion research.
Shortly after Hitler came to power, the German army established a
rocket development program that led to the liquid-propellant A-4
(popularly known as the V-2). A-4 rockets far exceeded the
capabilities of previous ones, terrorizing the populations of London
and Antwerp in the latter stages of World War II. Over 14 meters tall
and weighing over 12,000 kilograms, an A-4 carried nearly 1,000
kilograms of explosive payload up to 400 kilometers. Its guidance
system was a radio beam-rider type with an electronic analog com­
puter controlling vanes in the exhaust and elevons on the fins. If wind
deflection caused the rocket to veer horizontally off course, the analog
computer would calculate corrections and activate the vanes. Complex
plumbing and turbopumps were needed to feed the engine with fuel.
Experience gained in nearly 2,000 expensive failures led German
technicians working on the A-4 to develop techniques of testing the
many components of the rocket during manufacture and before com­
mitting it to flight. For example, the guidance system was tested at the
factory by an electronic analog computer that simulated the flight of
the rocket so that the system's reactions could be observed 1. On the
launching pad, engineers could test various moving parts of the
vehicle by activating them using actual physical connections to the
firing room.

German rocket scientists who came to the United States after
World War II brought this new technology with them. Eventually
based in Huntsville, Alabama, at the Army's Redstone Arsenal, they

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 209

conceived an increasingly sophisticated series of rockets: Redstone,
Jupiter, Juno, and Saturn. Concurrently, the Air Force chartered the
Atlas, Titan, and Thor ballistic missiles. During the 1950s, each of
these vehicles was developed in programs marred by frequent flight
failures. Actual numbers and the complexity of components grew by
several factors over the A-4. The new devices and their failures led to
more testing, both at the factory and before launch. The concept of a
"countdown," during which each flight-critical component of the
vehicle is systematically checked, reached a high level of efficiency.

As the 1960s began, most rockets and their payloads were still be­
ing checked out by discrete connections between the components and
a test panel. When the countdown reached an advanced stage, par­
ticularly after fueling, the test engineers were cloistered in a block­
house. Through cables from the rocket to the blockhouse, the en­
gineers could monitor the status of various components and activate
tests. An engineer would flip a switch, and something would happen,
either on a dial or a strip chart, that he could actually see and interpret.
When the first Saturn I rockets were launched and the Mercury
spacecraft made their appearance, both in 1961, it became obvious
that the level of complexity of both vehicles and payloads had reached
the point where manual test methods were inadequate. Individual
NASA engineers and managers on different programs began to
evaluate the possibility of automating some of the checkout
procedures using digital computers. Eventually, this led to the
Shuttle's fully automated Launch Processing System.

The heart of the Shuttle is its computer system. Without it, no
component of the spacecraft could be adequately tested or monitored.
When a Shuttle is being refurbished after a flight in the Kennedy
Space Center's orbiter Processing Facility, a large double hangar near
the landing runway, the spacecraft's computers are connected to
checkout and launch computers located in a firing room in the Launch
Control Center. When moved to the Vehicle Assembly Building for
mating with its fuel tank and solid propellant boosters, the Shuttle is
reconnected to the firing room. After being transported to the pad, the
final preparations are also controlled from the firing room. Finally,
countdown and launch are executed from the same firing room. This
scenario came after two decades of evolution, during which the role of
computers became dominant both on board spacecraft and in launch
processing. The integrated techniques exemplified in the Shuttle
Launch Processing System developed from separate automated sys­
tems devised for vehicle checkout, spacecraft checkout, and telemetry
monitoring. Important in the evolution is the part played by on-board
computers. The journey toward full automation got great impetus
from the Saturn and Apollo programs.

210 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 7-1. Launch processing facilities at the Kennedy Space Center: the Shut­
tle Orbiter Processing Facility (left), the Vehicle Assembly Building (center), and
the Launch Control Center (right). (NASA l 16-KSC-377C-82/41)

LAUNCH PROCESSING IN THE SA TURN ERA

A Saturn V rocket with an Apollo spacecraft on top presented a
magnificent sight, which engineers nonetheless viewed with a mixture
of prideful awe and dread. No earthly booster since the Skylab launch
has been as large or as powerful. Shuttles being mated in the Vehicle
Assembly Building originally designed for the Saturn appeared as
dwarfs in houses made for giants. It looked as though there was nearly
enough room to stack them two high. The dread came from the fear of
failure among the thousands of components, many capable of bringing
disaster and killing a crew in flight. Early in the Saturn program
automation began to be introduced in the testing of the gargantuan
rockets. Marshall Space Flight Center acquired computers for Saturn
vehicle checkout. Marshall also had responsibility for the Launch
Vehicle Digital Computer (LVDC) housed in the Instrument Unit that

OPJ'.Glr~ AL PAGE IS
OE P.OOR QUALITY

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 211

was the last stage below the Apollo spacecraft on both Saturn IB and
Saturn V configurations. NASA's Launch Operations Center, later
renamed Kennedy Space Center, acquired computers for telemetry
data reduction and display and began work on the checkout systems
used for the Apollo spacecraft, a project later transferred to the
Manned Spacecraft Center in Houston. Each of these computer­
controlled systems contributed to the concepts and development of the
Shuttle Launch Processing System, now wholly based at the Kennedy
Space Center.

Checkout of the Saturn Vehicle

Marshall Space Flight Center in Huntsville had primary respon­
sibility for the design, manufacture, and flight preparation of the
Saturn vehicles. In 1951, when Marshall was still the headquarters of
the Anny Ballistic Missile Agency, Kurt H. Debus formed a launch
team that commuted to the Air Force's Eastern Test Range in Cape
Canaveral, Florida. Within a short period of time, the frequency of
launches made it necessary to establish a permanent group at the
Cape, called the Missile Firing Laboratory. When Marshall was es­
tablished on July 1, 1960, the Laboratory was renamed the Launch
Operations Directorate. By 1962, the activities at Cape Canaveral
grew to the level that the Launch Operations Center was formed
separately from Marshall and given status equal to other NASA
centers. However, its charter stated that the centers responsible for a
particular vehicle or spacecraft had to perform its checkout and test,
so during the Apollo era Marshall prepared Saturns and the Manned
Spacecraft Center worked on the Apollos. Personnel at the Launch
Operations Center performed facilities management and provided
telemetry data reduction.

Computers were used both on-board the Saturn vehicles and in
preparing them for flight.* Ten Saturn I vehicles were launched be-

*For a complete description of the evolution of the Saturn and its components,
see Roger Bilstein, Stages to Saturn: A Technological History of the
Apollo/Saturn Launch Vehicles, NASA SP-4206, 1980. Chapter 8 centers on the
use of computers in checkout and the development of the Instrument Unit and its
flight computer. Chapter 16 of Charles D. Benson and William B. Faherty,
Moonport: A History of Apollo Launch Facilities and Operations, NASA
SP-4204, 1978, describes the development of automated launch operations. Due
to these prior treatments, my account will concentrate on briefly summarizing the
use of the computers to provide the necessary introduction to the section on the
Launch Processing System, rather than retelling the whole story. Some new
evidence is presented where applicable, but the reader is urged to consult both
previous works.

212 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

tween 1961 and 1965. Each was unmanned, the series being used
primarily to demonstrate that clustered-engine first stages and high­
energy upper stages were feasible. The first five launches did not use
a computer for guidance. Each was a suborbital mission utilizing a
German-made mechanical time-tilt device for control2. On the fifth
flight, an ASC-15 computer, built by IBM originally for the Air
Force's Titan, flew as a passenger and handled telemetry
transmissions3. It guided the last five missions, several into earth or­
bit. When Saturn evolved into the IB and V series, an Instrument Unit
containing the LVDC was mounted atop the S-IVB stage on each
vehicle. Termed the "integrating element" of Saturn, IBM was not
only responsible for its computer but for its construction4. Besides the
computer, the Instrument Unit contained the Launch Vehicle Data
Adapter as an I/O front end, analog control circuits and an ST-124
guidance platform. On lunar missions the L VDC guided the spacecraft
until the S-IVB stage separation after the lunar trajectory insertion.

IBM's LVDC was architecturally quite similar to the Gemini
guidance computer5. It used nearly the same instruction set, 26-bit
data words and 13-bit instructions. One difference was that the
memory had two-syllable locations instead of Gemini's three. Con­
struction of the L VDC, however, was radically different. For
reliability reasons, triple modular redundant (TMR) circuits were
adopted. Even though the component count went up just 3.5 times, the
reliability increased 35 times6! Three logic channels, each with seven
functional modules, required 39 5 voters 7. Packaging the computer
used techniques developed under the Advanced Saturn Technology
Program commissioned by Marshall and executed by IBM8. First of
the "flat pack" integrated circuit series, IBM applied this silicon semi­
conductor technology in its System 360 commercial machines9.

Use of a computer in the launch vehicle led directly to using one
for checkout. Marshall bought an RCA 110 to communicate with the
IBM ASC-15 used in the Saturn I. Later, RCA upgraded its machine
by enlarging the memory to 32K 24-bit words of core and an ad­
ditional 32K on an associated magnetic drum. When the Saturn IBs
began to be launched, discrete circuits for interfaces with the rest of
the launch vehicle were added 10. Renamed RCA ll0As, these com­
puters continued to be augmented to handle more communications cir­
cuits, so that by the time Saturn Vs appeared, the computers could
maintain the status of each of 1,512 signal lines 11 . At first the 11 Os
simply handled communications and switching. Activating test
procedures and conducting tests were still done manually. But in
1962, IBM suggested that Chrysler convert the 110s they used for
stage checkout of the Saturn I to do the tests automatically 12. Even
though the advantages of automating procedures seem obvious, chief
among them the fact that all are done exactly alike, it was difficult to
get people responsible for checkout to convert from doing things

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 213

Figure 7-2. IBM engineers work inside the Saturn launch vehicle Instrument
Unit. (IBM photo)

manually, a theme repeated in other parts of the Apollo program 13. At
that time, computers were seldom used for on-line work, and most en­
gineers were still unfamiliar with them and wary of any more innova­
tions in an already innovative program. However, Chrysler converted
some factory tests to automatic, using a special language, "HYLA," to
define them. Additionally, several Packard Bell computers connected
to a common memory automatically checked out parts of the Saturn
I. Use of a common memory as a computer interconnection device
reappeared in several later systems and is critical to the success of the
Shuttle's Launch Processing System. Engineers wrote the language
"SOL," or Systems-Oriented Language, for the Packard Bell

214 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

machines. By late 1962, the Saturn V stage contractors accepted the
concept of automatic checkout and settled on a common system, the
Control Data Corporation CDC-924A computer, as the factory test
machine, with l l0As ass1ned to the S-1 stage and for the assembled
vehicle at the launch site1 .

By this time, it was clear to Ludie Richard, a NASA engineer,
and his team at Marshall that preparing a language to help test en­
gineers write automated procedures was the key to continued accep­
tance of the principle. A custom-designed programming language
would leave control over the definition of the tests in the hands of the
engineers, avoiding communication problems that might arise with
computer programmers inexperienced in checkout techniques15 . IBM
eventually wrote routines for the RCA computers in assembly lan­
guage, but the majority of the automated tests were ATOLL
(Acceptance, Test, or Launch Language) programs stored on tape.
Richard acquired the over two dozen RCA 11 0As that were eventually
used. His deputy, Charles Swearingen, was put in charge of managing
the flight computer, ground computer, and checkout software 1 .
James Lewis and Joseph Medlock were instrumental in developing the
checkout systems and defining ATOLL17. IBM wrote both the flight
programs and the Saturn Operating System that ran on the RCA com­
puters and executed ATOLL procedures.

By mid-1963 the final configuration of the Saturn checkout com­
puters was set by Richard's group. At Launch Complex 34, the Saturn
IB launch site, one master RCA 11 0A was in the blockhouse and a
slave underground at the pad. For Saturn Vs at Complex 39, one
RCA 11 0A was located in each of the four firing rooms in the Saturn
Launch Control Center, which was attached to the Vehicle Assembly
Building in which the Satums would be stacked. Each of four mobile
launchers also contained a computer. In addition to the l l0As, the
firing rooms also had a DDP-224 minicomputer as a display driver for
the CRTs showing output data to the engineers, as well as a controller
for slides and other visuals. Computers in the mobile launchers could
be-used for checkout in the Assembly Building as well as at the pads,
a foreshadowing of the later Launch Processing System. Due to
reliability problems with the 11 0As, the launcher computers used a
dual memory configuration. Checkout programs filled just half the
memory, so the other half acted as a duplicate for redundancy, the
same principle as applied to the L VDC memory.

Part of the credit for the perfect success record of the Saturn
vehicles (all Saturn I, IB, and V boosters flew without a failure) must
be due to the effectiveness of the checkout procedures. Without
automatic testing the confidence in the rockets could not have been at­
tained, since they were too complex for effective manual procedures.
In addition to checkout methods specific to the launch vehicle, the
launch directors in the firing rooms had access to automated test data

ILICTIIICAL
11.WOIIT
IQUll'IIINT
LAUNCH
COIIITIIOL
CINTIII

IH PIDUIII I

• A
T
u
" N

V
I
H
I
C
L
I

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 215

COWUTIII INTIIIPACI

DOAIUNIT

IIQNAL COIIIDITIOIIIIIII

DIICIIITI IN

DIICIIITI OUT

CIIT
DISPLAY c-.in11

INTIIIPACI

CCllll'UTIII INTIIIPACI

DOAI

IICIIIIAL COIIIDITICINIIII

DIICIIITI IN

LAUNCH CONTROL CENTER

ORIGtNAL PAGE IS
OF POOR QUALITY,

r------.-,...------------7

CONVUITIII UNln

DtlCIIITI INPUT

DIICIIITI OUff'UT

CONVIIITIII UNIT

ANALOG
INPUT/OUTl'UT

LINI
,tllNTIII

MAONITIC
DIIUII
ITOIIAOI

112

CAIID
PUNCH

CAIID
IIEADl!II

MAGNITIC
TAl't!
STATIONS

SENSE
CONTROL
PANEL

DATA
LINK
TtRMINAL
UNIT

L__________________ __J

MOBILE LAUNCHER

CONVIIITIII UNITS

DtlCIIITI INPUT

DATA
LINK
TtllMINAL
UNIT

DIICIIITI OUT 14--+--t DIICIIITI OUff'UT

I
I
I
I
I
I
I
I
I
I
I

CONVIIITIII UNIT

ANALOG
INl'UT/OUT'PUT

MAGNETIC
DIIUM
STDIIAOE

I 1/2

LINE
.,RINTEII

Sl:NSE
CONTIIQL
'ANEL

L--------------------~
- CONTIIOL AND CHICKOUT IQUIPMENT

Figure 7-3. A block diagram of the automated preflight checkout hardware for
the Saturn launch vehicle . (From IBM, SLCC Programming System)

216 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

TO fllCA
110A

DATA
tXCMAJrrr,fQI
CONTfllOL
UNIT

Ll'01:N0

,ec

c:::=:JcENT1'AL. LOCIC

00,, ,1:•
COM,UTI"

REFRESH
MEMOJIIY

CONTfllOL

UNIT

• • • • •
lltHfllESM

"-'EMOIIIIT

NO 10

111tE, IIIIESM

MEMOIIIT

NO 20

Figure 7-4. A block diagram of the Saturn Operational Display System. (From
IBM, SLCC Programming System)

from the spacecraft preflight test equipment developed by both the
Launch Operations Center and Manned Spacecraft Center.

Development of Apollo's Acceptance Checkout Equipment

From the first Apollo earth orbital flights through the lunar mis­
sions, Skylab, and the Apollo-Soyuz Test Project, ground testing and
countdown support of the spacecraft and its associated systems were
the responsibility of the ACE, or Acceptance Checkout Equipment**.

**The acronym ACE evolved from PACE, or Preflight Acceptance Checkout
Equipment, which appears in some of the literature. It was discovered that the
name conflicted with a commercial product, so the "Preflight" was dropped. Prior
to PACE, there was a short period when the equipment was known as SP ACE, but
apparently not officially.

ORIGINAL PAGE IS
OE £00R QUALITY.

I I I I I
AUi T(lfl!INAL. ltOOM

II I II 1

CIIIFUlltl ...

LWII
DOCUIIIITATIOlo
tlNTU

'

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 217

(O~IJ flR IW'l"

1~1-.-1-.-1 T-.1 II l l l 101 1 I rn-n
D 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 uD

--y- ---v
OOAI , r ,~r<Alllo1

I;-.... 11-.1"T1-r1-r1 T"l .,....1 ,....1 n1 I~' □ 1 I l l l l l U I 111 1 11 111 I l I
,....._ """ 0J1r---1 CL 0C• p 'F DOAI? r:=•ATt• 011r---,

1111111111 OI11_11JI o:::Illll 11
~,us ~c--, 1--mucwr:::=:J

ITTI 111111 ~AIAIDtl 11 LI 11 DD 111111111 11
r---"'"' ~c---,n1ro~~r,-___c::::;GaM0

1 ii 111 ii 111 1 mo I mm""' 1111 11 1 , 1 , 1
t---"'"' m--, ~-~~-.-, r-0 n..;..-, .,....,....,......,.T"T"'I
111111111111 1111111111 111)))11))1 r-- ,.,., m--,
111)))111111 111111111111 1,uo, llAClS

,---OIi.i l[C --,

11 1111 111 1 1 I
r---•!NDllS--, r" ,.. on--,

11111111111 [II] [II]
,_-111.1 lilt--, ,- All COIID !OU r, --1 ~mo, UCIS........,

llllllllllll I I 1 1 [II] I]]
---Ill.I I IF--- ---,IIO'[LLAOTS---

W 11 11 1 @1 1 111 1 1 I I I 1 1 I I I 13! I 1 1 I I I

---'1.l9'T COOTIOL --~ ,
11l]IIIC:ll 111111 , i 11 1 1 , m 11 1 1 I 11

~1€0,AIIICAL '-1!

----1u----1 r---1-1'11 ,-s100101TW011S1
Ill I ISII 11 1 101

OOICS :

I. 011T[Ot­
z. 0/011 LWII
J. IIIFC •AOC 18
• · 011 LYO
, . 0/lAI.IICM 011
I . LAIIIOt OIi
7. lSC 011
I. 011 SCD
I . APCI.LD/SAl'\a ·-· DFJltll
10 . Ml.IC AFFAIIS

0HIC!I

GJ DlsPLAY~B

Figure 7-5. Typical firing room layout during the Saturn era. Nearly 250 en­
gineers would crowd this area during a countdown. (From IBM, SLCC Program­
ming System)

218 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

ACE stations were located in the Apollo Operations and Checkout
Building in the Industrial Area of the Kennedy Space Center, at
Launch Complexes 34 and 37, at the Johnson Space Flight Center,
and at North American Aviation and Grumman Corporation assembly
plants. Two of the North American stations were modified for use in
assembling the Shuttle in Palmdale, California18.

ACE resulted when a spacecraft checkout engineer figured that
there had to be an alternative to manual methods. Thomas Walton
transferred from a job in the computer room at Langley Space Flight
Center to the Cape Canaveral Launch Operations Center in early
1961. Assigned to the checkout of Mercury spacecraft, by September
he had enough of manual testing and applied his background in com­
puters to devising another way of doing things 19. Walton convinced
his boss, Harold G. Johnson, to let him build a digital ground station
for telemetry from the capsule. Using the Mercury missions as
prototypes, he proved that digital equipment could display the en­
gineering data previously shown on dials and strip charts. His success
led to a search for a computer system to handle the data in real time.
With NASA's Gary J. Woods, he traveled to several companies in
search of a machine. Wal ton did not believe that a computer like an
IBM mainframe of that era could do the job. Since they were designed
for large-scale batch processing, the difficulties of adapting such a
computer to the real-time world of telemetry displays and automated
checkout would be too great. Instead, he and Woods looked for
simpler minicomputers such as the Digital Equipment Corporation
PDP-1 and the Control Data Corporation CDC-16820. Walton con­
vinced the Gemini Project Office to buy a pair of CDC-168s to be
used for checking out their spacecraft. Meanwhile, plans continued to
create a system dedicated to the Apollo.

Marshall and Launch Operations personnel met in 1963 to deter­
mine whether the checkout equipment for both the Saturn vehicle and
the Apollo spacecraft could be combined. Richard's and Walton's
teams decided to continue separate paths21 . The results were the
Saturn checkout system and the first ACE unit using General Electric
discrete equipment and CDC-168 computers going on line in late
1964.

Although the first ACE stations were under construction, a small
political battle was raging over who would have ownership of the
program. Joseph Shea, then at NASA Headquarters in Washington,
wanted to control it from the Apollo Project Office there. Transferred
to Houston in 1963 to take over management of Apollo, he moved the
ACE development group of between 50 and 60 persons there
instead22. This act reinforced the feelings that the Kennedy Space
Center was to be strictly an operations center, staying clear of research
and development activities.

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 219

ORIGIN AL PAGE IS
OF POOR QUALITY. ..___,"'_

"'

~

--,
w~ ;;:,;

Figure 7--6. An ACE station with twin Control Data computers. (NASA photo
107-KSC-67C-9 l 9)

Each ACE station used two digital computers with a common
memory. One was the Digital Command Computer, which processed
commands from the control or firing rooms to the spacecraft and was
interconnected with the ground support equipment. A second machine
was the Data Processing Computer, which drove the displays and con­
trolled peripherals. Memory could be directly accessed by discrete cir­
cuits in the ground station, so data for both computers could be placed
there23. ACE stations could function in manual command mode,
semiautomatic, or fully automatic with manual override. Stations in
the Kennedy Industrial Area serviced the spacecraft both before and
after mating with the Saturn V boosters. When Launch Complex 39
went into use, checkout wires carrying digital formatted data ran over
15 kilometers from the ACE stations to and from the pad and firing
rooms in the Saturn Launch Control Center using a video wideband
transmission system24. Of course ACE had to cooperate with the RCA
1 l0As at various points, so interfaces between the different computers
consisted of dedicated I/O registers, sense lines, and priority
interrupts25 . ACE also had to talk to the Apollo guidance computers
in the command module (CM) and the lunar excursion module
(LEM). On the average, the CM computer operated for 50 hours in
support of the countdown. A CRT display controlled by ACE dupli­
cated the data shown on the display and keyboard while the Apollo
computer was in operation. 26

220 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Walton judged that the development of ACE did a lot to stimulate
the technology of on-line processing. Certainly it helped create tech­
niques of interconnecting multiple different computer systems. Also,
this was one of the first times that data transfers in the megabit range
were accomplished over distance.

Digital Displays of Telemetry

Telemetry transmissions from the vehicle are one important
source of data for rocket engineers. In the early days of rocket flight
research, the causes of failures often could only be guessed. When the
larger size of later rockets made it possible to carry radios for sending
back data, sensors were added to supply engineering data from critical
components throughout the flight of the vehicle. If a failure occurred,
it was often possible to determine which components contributed most
to it by examining the reams of data sent back and originally recorded
in analog form on the • ground. However, Tom Walton's pioneering
digital ground station for Mercury displayed the data in processed
digital form. In 1962, the Atlas-Centaur project automated postflight
telemetry data reduction27. By the mid-l 960s, digital telemetry dis­
plays were standard at Kennedy Space Center, provided by a pair of
mainframe computers in the Central Instrumentation Facility.

Kennedy acquired two General Electric 635 computers for
telemetry monitoring and batch processing of institutional programs.
GE 635s were 36-bit processors capable of double-precision
arithmetic28 . Programmers prepared separate code for each of the
Delta, Atlas-Centaur, and Saturn flight vehicles. Delta and Atlas
launch pads, as well as Complexes 34, 37, and 39, could be switch
connected to the computers at any one time. Forty different displays
were possible and could be transmitted to the appropriate blockhouse
or Launch Control Center firing room29. NASA's Bruce Miller was in
charge of systems programming for the GE computers, with Bradley
Hughes as the chief scientific programmer.

These computers had the longest operational life of any installed
at the Kennedy Space Center. GE delivered the first machine in late
1965. A second came on line in early 1966. Until May of 1983-18
years later!- one was still in use driving blockhouse displays for
Delta and Atlas-Centaur. GE had long been out of the computer busi­
ness by then, having sold its digital computer division to Honeywell in
the early 1970s. Kennedy retained a permanent systems programmer
from GE (who later moved to Honeywell) to keep the operating sys­
tems going and used a retired blockhouse 635 from Wallops Island as
a source of parts30. From the beginning the computers had a dual
operating system. Batch institutional jobs could be run at the same in-

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 221

stant a real-time telemetry program was running, except when a
Saturn was being supported, as its program was so big it pushed out
the batch programs. When Kennedy Space Center officials searched
for a second machine for the Central Instrumentation Facility, they
considered other vendors. IBM's branch manager in Cape Canaveral,
W. 0. Robeson, sent a letter suggesting a System 360/50 as an ad­
ministrative computer, pointing out that evidence from prior telemetry
computers indicated that they rarely failed31 . The dual operating sys­
tems could then be abandoned. However, Kennedy bought the second
635 to provide a redundant backup anyway, accepting the loss of
batch processing during Saturn operations.

Telemetry data reduction computers thus provided yet another
source of information to the launch directors in the Apollo/Saturn era.
Still, some engineers were convinced that the computer data were
never accurate, just as their colleagues in the checkout world had to be
dragged into automation32. Regardless, telemetry displays became an
integral part of the technology of launch processing.

Impacts of the Apollo/Saturn Era on the Shuttle Launch
Processing System

Developing the major computer components of the launch
processing system for Apollo/Saturn provided software contractors
such as IBM and the Kennedy Space Center staff valuable experiences
later transferred to the Shuttle Launch Processing System and on­
board software for the Shuttle program. Additionally, some tech­
niques known in theory, but never properly applied, found justifica­
tion during the Apollo/Saturn programs. The areas of impact included
the modularization of software, lessons learned by IBM as a key fu­
ture contractor, and Walton's continued influence on ground computer
concepts.

Software written for the L VDC and the GE 635 computers started
as single monolithic programs and evolved to modularized programs
at just about the same time. Flight software for the ASC-15 computer
used on the Saturn I vehicles was necessarily monolithic because it
had to be sequentially executed and strictly timed33. Any changes im­
pacted on the execution time, and therefore had to be carefully in­
tegrated. The computer could not handle waiting for an interrupt to in­
stigate an action. Actions had to be initiated by the program relative to
its starting time. When the ASC-15 gave way to the L VDC, a more
powerful and flexible machine, programmers continued in the
monolithic mode. Finally, IBM staff realized that by preparing the
software in essentially free-standing chunks, the impact of changes
would be limited to the modules and not spread side effects through­
out the software. This discovery came late in the Saturn program but

222 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

early enough to affect the development of the Skylab on-board
software. Also, IBM separated the modules into groups consisting of
the control subsystem and applications subsystem, which is a
prototype of the Shuttle on-board software organization34. IBM
helped transfer this concept to the Shuttle by moving people such as
Kyle Rone and Lynn Killingbeck from working on the Saturn com­
puter directly to the Houston office to support the Shuttle software
development. NASA also independently moved toward modulariza­
tion when, in 1973, it broke down the programs used on the GE 635s
to support telemetry data reduction. Before then, it took an average of
3 months to implement a simple change in the monolithic version of
the program, because of the massive debugging necessary to eliminate
side effects35 . Thus, modularization came to be expected by NASA as
part of software design. If modularization was not used on the Shuttle
on-board software, preparing new flight loads would have been im­
possible within the projected time between flights of an individual or­
biter.

Besides modularization, Apollo/Saturn significantly influenced
IBM's later work on the Shuttle 's on-board software, especially the
company's design of the system used for Shuttle launch processing.
IBM summarized its conclusions in a document released in late 1972,
just at the time both Shuttle ground and on-board software contracts
were being Iet36. The study recommended that the vehicle's flight
software be capable of reloading all programs on board37. This was
implemented on the Shuttle, as the mass memory units (MMUs) con­
tain all preflight and flight software for the primary avionics com­
puters, the display computers, and the engine control computers.
Ground software recommendations required that all checkout func­
tions use a higher order language and that checkout be conducted
using one computer system38.

During Saturn, both A TOLL and machine language programs
controlled preflight tests, the machine language routines absorbing a
considerable amount of development and maintenance time. This les­
son helped spur the creation of an improved checkout language,
GOAL. In regard to consolidating all functions in one computer, IBM
thought that the difficulties of integrating the two RCA computers, the
DDP-224 display computer, and the telemetry reduction computers
were excessive. By taking that position, IBM found itself squared off
against the distributed concepts envisioned by Tom Walton and his
team for the Shuttle system. Walton refused to move to Houston when
Shea transferred the ACE team. By staying at Kennedy, he was able to
influence the structure of the Shuttle Launch Processing System and
help make the Center fully responsible for all checkout and launch
operations for the entire vehicle, a significant change from the
Apollo/Saturn program.

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 223

THE SHUTTLE LAUNCH PROCESSING SYSTEM

When NASA began planning for the Space Transportation Sys­
tem (STS), it espoused ambitious requirements, such as an eventual
launch rate of 75 per year. A projected fleet of three orbiters would be
limited to a maximum 2-week turnaround between flights and a 2-
hour countdown in order to achieve that many firings39. Compared to
the 5-month checkout of a Saturn V and its 3-day countdowns, this
seemed outrageous, especially since the Shuttle would be no simpler
than an Apollo/Saturn. NASA put considerable effort into examining
commercial aircraft maintenance techniques to see what could be
adopted for Shuttle use. One study indicated that only 53% of the tests
done on a Saturn V would need be repeated if the spacecraft were
reusable40. Even with this reduction, nearly 46,000 measurements
have to be made and monitored in real time in the process of prepar­
ing a Shuttle for launch41 . Clearly, there was no way NASA could do
the Shuttle checkout with Apollo concepts42. As Henry Paul, who
headed the Launch Processing System development for NASA, said,
"Automation ... becomes a requirement for operations, not an
elective"43. Still, some engineers needed to be convinced that hard­
wired testing could be successfully eliminated, even though the last 20
hours of a Saturn countdown was 85% automated44. Building the
present system, during which almost all preflight testing and prepara­
tion is done under control of software, and in which much of the
countdown, sometimes even including the calling of "holds," is done
by computing machinery, was a remarkable effort45 . One of the big­
gest changes from the Apollo/Saturn preflight checkout systems is
that Kennedy Space Center became responsible for the development
of the Launch Processing System. Given the organization of NASA at
the time, this was one of the biggest surprises as well.

Kennedy Space Center Gets the Job

During the late 1960s NASA began studies of the configuration
of the eventual STS. Most designs were predicated on a winged
booster, which would return to the launch site immediately after
separation from an orbiter with internal fuel tanks. Such a design
could theoretically be launched from anywhere in the United States
isolated enough to handle aborts safely. Project staff examined a
number of sites and made projections of the cost of an "ideal launch

224 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

site" that would have all the facilities necessary for handling the Shut­
tle. Chief among these were a hypergolic and cryogenic fuels facility,
a hangar for the orbiters and boosters, a mating building, a control
center, the launch pads, and a runway with a safing bay for emptying
residual fuels after landing. One study placed the cost of a new facility
with these characteristics at $1.9 billion. On the other hand, modifying
existing Apollo/Saturn facilities at Kennedy and adding new equ*­
ment where needed would cost $355 million, a significant savings 6.
In March 1972, NASA selected the solid rocket booster/external tank
configuration for the Shuttle. All inland launch sites were thus
eliminated, and just Kennedy Space Center, Vandenberg Air Force
Base, and a site in Texas remained under consideration47 . Since exist­
ing facilities could be modified at both Vandenberg and Kennedy, the
cost-conscious administrators settled on those two launch sites. Van­
denberg was expected to handle polar orbit launches and most military
payloads. Kennedy would launch eastward, continuing the established
situation and giving Kennedy the opportunity to try for the develop­
ment of the checkout system.

Phase B Shuttle studies conducted by a number of contractors in­
cluded concepts of the checkout system48. Some hinted at the direc­
tion the eventual system would take. One pointed out the need for ef­
ficient and simple man-machine interfaces, and called for having
ATOLL, FORTRAN IV, and COBOL compilers available to the
engineers49. Kennedy's own early study, based on Rockwell and
McDonnell-Douglas Shuttle configurations, called for a central data
processing facility connected to every part of the Shuttle handling
equipment, including a mission simulator on site and by communica­
tions link to Mission Control in Houston50. Meanwhile, remnants of
the old ACE group at Johnson had started work on a Shuttle checkout
system.

A "Checkout Systems Development Lab" at the Johnson Space
Center did research on new concepts of preparing manned spacecraft
for flight51 . Individual BIC, for "built-in checkout," cells would be lo­
cated at test points throughout a spacecraft, each cell with I/O
registers. Automated tests would read and write to these cells.
Johnson's development team wanted a single central computer to be
connected to several sets of Universal Test Equipment consoles and
thence to the Shuttle52. General Electric built a prototype of a
"Universal Control and Display Console" for the Laboratory. Each
control console would have two color display tubes and be capable of
supporting tests on any specified parts of the spacecraft53 . The system
was similar to earlier Apollo/Saturn concepts, with a big computer in
the middle doing all the testing and displays, communicating with the
spacecraft, and so on. One improvement was that the Universal Test
Equipment meant that units could be mass produced and assigned to
different checkout tasks without significant hardware changes. When

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 225

the time came for the Shuttle project office at Johnson to make a deci­
sion about preflight checkout, the hometown lab made a proposal that
was "underdeveloped" and vague54. Most likely, the engineers in the
Development Lab thought the job was theirs because in all previous
programs the center responsible for the spacecraft was responsible for
checkout. When Kennedy had tried to do some ACE development, it
was moved to the center responsible for the Apollo. Therefore, a full­
blown proposal did not seem necessary. They were in for a surprise.

Impetus to make Kennedy the development center for the Launch
Processing System came from many levels. The center's director,
Kurt Debus, made his support clear to his engineers in 197255. Walton
saw a chance to do another ACE, but this time as a fully integrated
system for all parts of the spacecraft. The consensus was that by
having Kennedy Space Center do the development, much mane;
would be saved and civil servants would be more actively involved5 .
Even though the work originated with Walton 's Design Engineering
Directorate, talent for developing the Launch Processing System came
from across the Center57. A study group of about half a dozen en­
gineers, led by Theodore Sasseen and including Henry Paul, Frank
Bryne, George Matthews, and others who had key roles in the later
implementation of the system, met and began work on a prototype58.

Making the prototype turned out to be one of the key factors in
landing the Launch Processing System development job for Kennedy.
The engineers made a small model of a liquid hydrogen loading
facility, with real valves and tanks. Using a Digital Equipment Cor­
poration PDP 11/45, they devised software that graphically displayed
a skeletal view of the piping and valves, with actual pressures printed
next to the appropriate valve. The prototype could transfer fuel to the
model spacecraft under software control, with the user able to monitor
flows and pressures at the console. Confidence in their ability to
create automated procedures encouraged the engineers, and they also
now had a physical version of their system to help in selling it.
Johnson's Universal Test Equipment had no counterpart in terms of
functionality.

The prototype represented a single, and complete, part of the total
system, a system quite different in concept from previous ideas.
Launch processing and mission control prior to the Kennedy develop­
ments were based on using a minimum number of mainframe com­
puters. Frank Byrne had the technical vision to develop a distributed
computing system, in which dozens of small computers would do the
checkout functions. Walton provided the leadership and tenacity to
hold to the concept and see it put into place59. Several important ad­
vantages result from using distributed computers. First, the tasks more
closely fit the power of the machine. Using a mainframe computer for
relatively simple forocedures such as solid rocket booster checkout
would be overkill 0. Second, a distributed system would free software

226 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

developers from worrying about fitting their programs in with others
in a big machine's memory. Each discipline, such as engines,
cryogenics, and avionics, would have a separate console61 . Third,
parallel testing could be done62. A mainframe would have to be in­
ordinately large to contain all the checkout programs. Therefore, they
would have to be loaded and run serially, as in the RCA 11 0As,
defeating the short countdown requirement. Finally, Paul was con­
vinced that overall hardware costs would be reduced compared with
mainframe configurations63 .

In 1972 Robert F. Thompson was the head of the Shuttle project
office at Johnson and in charge of deciding where to place the check­
out development. Faced with a choice between a homegrown system
similar to tried and true predecessors and a new concept developed at
Kennedy that even had opposition there, he ruled in favor of
Kennedy's proposal against the opinions of his advisors. The winners
are gracious toward Mr. Thompson, calling him an "honest manager"
and a "nonterritorial individual"64. Thompson judged Kennedy's to be
the best proposal, but he also thought it more efficient for NASA to
develop the Launch Processing System where it would eventually be
used and by the people who would use it.

Getting Started: Contracting For the Launch Processing System

Due to the earlier site studies and the building of the prototype,
Kennedy Space Center had a good idea of what it wanted in the
Launch Processing System. Reflecting the detailed requirements
developed for the Shuttle on-board computers, the Design Engineer­
ing Directorate's engineers started in March 197 3 to prepare the
"Launch Processing System Concept Description Document"65.
Released in October, the document specified the architecture and con­
cepts of the system in detail, before any major contractor
involvement66. Kennedy's efforts on the Launch Processing System
are reflected by the fact that nearly 100 civil servants were involved in
the planning between 1973 and the March 1976 freeze of the
design 67.

Plans for the System included extensive remodeling of Saturn
facilities. The Processing System itself is largely contained in the
Launch Control Center. Hardware is divided into the Checkout, Con­
trol, and Monitor Subsystem (CCMS), the Central Data Subsystem
(CDS), and the Record and Playback Subsystem (RPS). Small, task­
dedicated computers are in the four firing rooms of the Control Center
and are the primary component of the CCMS. Large mainframe com­
puters located on the floor below the firing rooms make up the biggest
part of the CDS. NASA's Joseph Medlock, Thomas Purer, and Larry

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 227

Dickison envisioned test engineers developing their own procedures
using an engineer-oriented language like A TOLL in concept but better
and easier to use68 . These procedures would then be developed on the
mainframes and tested against simulations stored on the mainframes.
When verified, they would be included in the system and stored on
disk. When a firing room became active to support a vehicle, the en­
gineer would load his test procedure from the mainframe to the min­
icomputer attached to his console and execute it from the console.

Depending on which spacecraft subsystem is involved, the
tendrils of the Launch Processing System may follow it wherever it
goes on the Space Center site. The firing rooms are connected to the
Vehicle Assembly Building, the launch pads, the Cargo Integration
and Test Equipment, and the new orbiter Processing Facility, a two­
bay horizontal hangar. At each location, hardware interface modules
make it possible to test and monitor the orbiter and other parts of the
spacecraft from the firing rooms. So the System is locally distributed
computationally, but physically centralized---especially compared
with the RCA 1 l0As and GE 635s of the Saturn era.

One critical side effect of using a mix of mainframe data base
machines and minicomputers for individual system checkout, as well
as the need to talk to a pervasive on-board computer system, was that
for the first time, several different network architectures had to be
combined into one69. The inherent difficulties involved led NASA to
award the software contract before choosing hardware so that the
software contractor could help in the computer selection 70. Further,
the minicomputers were chosen apart from the contract for the con­
soles and other hardware associated with the CCMS. Four source
selection boards eventually convened: one each for software, min­
icomputers, the CDS, and the CCMS71 .

Since test engineers would write the applications software, the
software contractor would be primarily responsible for the operating
system under which the applications would run, the new test language,
GOAL (for Ground Operations Aerospace Language), and any
modifications to the microcode for the minicomputers and other
equipment needed to successfully connect them. Interfacing largely
became a software problem because the changes were to be imple­
mented in microcode. Six contractors tried for the job, with IBM beat­
ing out General Electric, TRW, Computer Sciences Corporation,
McDonnell-Douglas, and Harris Computer Corporation 72. The initial
$11.5 million contract ran from May 1974 to March 197973. This con­
tract was extended several times due to delays in launching the first
Shuttles, but IBM's involvement ceased in the operations era. The
company did its usual good job, and users of the eventual system
believed it fulfilled the requirements74. IBM used a top-down struc­
tured approach in designing the software, holding weekly formal
reviews during the development stage so that NASA could closely
monitor activities 75.

228 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

By winning the software contract first, IBM found itself in the un­
usual position of having to program other people's computers. One
IBM employee said that his company was encouraged not to bid on
the hardware contracts 76. According to Byrne, IBM was not kept out
of the hardware bids so much as they lacked a suitable minicomputer
to offer. The System 34 was under development at that time, as was
the Series/I, but IBM chose not to make its new minicomputers
public 77. Three companies made the final round of bids on the min­
icomputers: Prime, Varian Data Machines, and a small new company
called Modular Computers, Inc 78. Design Engineering had built a
prototype of a launch processing console set for the solid rocket
boosters using Prime computers. (Later shipped to Marshall for
awhile, it finished its career in the Vehicle Assembly Building nearly
10 years after construction. 79) Because of this, many thought Prime
had the contract won, but it was edged out by Modular Computers,
much to the surprise of Byrne and Walton80. ModComp initially con­
tracted for 60 machines at a cost of $4.2 million, a number later ex­
tended considerably as console sets were placed in all four firing
rooms, the cargo integration facility, the Shuttle Avionics Integration
Lab (SAIL) at Johnson, and the hypergolic maintenance facility, as
well as at Vandenberg. Two months after the computer contract was
let in June of 1975, Martin-Marietta defeated Grumman Aerospace
Corp., Aeronutronic Ford, and General Electric for the remaining
CCMS hardware.

By November 1976, IBM received the first minicomputer for
software development, and by February of 1977, the first station for
GOAL applications development was delivered81 . Honeywell won the
CDS hardware contract in the fourth quarter of 1975, and John Con­
way of NASA managed the acquisition of equipment and personnel
for that Subsystem during 1976-197782. By 1977, the Launch
Processing System began to take physical shape.

The Common Data Buffer: Heart of the System

Most diagrams of the physical components of the Launch
Processing System show an inordinately large rectangle at the center
of the drawing, with all other components either directly or indirectly
connected to it. That rectangle represents the common data buffer,
which Thomas Walton called the "cornerstone of the system"83. The
biggest problem with creating distributed computing systems is devis­
ing a method of intercomputer communication that is reliable, fast,
and simple. In a system such as the Launch Processing System, which
depends on a number of computers "knowing" the same data about the
spacecraft, some method of protecting and centralizing the common

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 229

ORIGIN~ PAGE IS
OE POOR QUALITY

V,deo
Patch
Interface

Hardware
Interface
Module

Slmu!Jt 1on

Interface

Largt> Host
Computer

GSE
Front Enn
Proces10 1 (51

• I

Operator
Console
CPUs 1141

9 6KBS & Sf't< 3S

Onboard CPUs
-~--....1 v,a 1/ 0 Processor

Onboard
Telemetry Vehicle Data Bus

I 128 KBS

vJ

to Onboa,c! Computer

PCM
Front End
Processor (9)

LOB
Front Enrl
Proces sor (2)

Common Data
Buffer

Master
Console
CPU (11

IS,g ndl
Plon ,ng
,CPUs (21

External
Communicat,on
F rant End
Processor (1 l

t
E ng,neer,ng
Management
Monitor
CPUs (21

l
Raw Data
Recorct ,nrJ
Subsystem

Processed
Recording
CPU 111

Data
Re tr ieval
CPU (1)

Kev LOB - Launch Data Bus GSE - Ground Supn ,irt E9u•pmt'n1
PCM-Puls~ Code Moduldt1on 1/0- tnrut/Ou tp u t
CPU -Cer,tral Proce ss ,ng Unit KES-Kdob,ts cit' ' Second

I-comput er s allocd;~u

Figure 7-7. Shuttle Launch Processing System hardware structure. (Courtesy
IBM)

data is needed. Frank Byrne, who was involved in the planning for the
Processing System from the start, took on the job of designing a
device to keep track of commonly needed data that also made it pos­
sible for the various computers to communicate with each other. Ken­
nedy followed a plan to use commercially available equipment in as
many parts of the Launch Processing System as possible. Minicom­
puters and mainframe computers are used largely unchanged.
However, since no organization had tried to closely connect such
large numbers of machines, some of which were quite different in ar­
chitecture from the others, there was no commercially available solu­
tion to the common data problem. Byrne had to design one on his
own: the common data buffer.

Byrne noted that as the number of computers in a distributed sys­
tem increases, the complexity of intercomputer communication in­
creases. He wanted to remove the complexity. By placing the common
data at a central location he eliminated the need to update multiple
copies of the data in separate machine memories. Possibly he got the
idea for a common data area from his work on the GE 635s in the
Central Instrumentation Facility. Those machines had a "data core"

230 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

which could be accessed by both84. ACE stations also used common
data areas. Basically the common data buffer provides each machine
in the system with a set of "post office boxes." Specific parameters,
such as valve pressures, voltages, and fuel levels, are assigned a loca­
tion in the buffer memory. Each machine can read any location in the
memory, but only the machines explicitly assigned to the task of
maintaining a certain parameter can write to that parameter's location.
That way a secondary machine cannot spuriously change a
parameter's value. Programmers do not have to worry about where
any particular parameter is kept. As long as it is ref erred to by its
proper name in a GOAL program, the system build process will assign
it its correct address as the program is compiled and integrated. In ad­
dition to acting as a common storage area for data, the buffer main­
tains the entire system interrupt stack and flags and status variables.
Since it is centrally located, it is also used to temporarily store ap­
plication programs as they are loaded from the repository in the CDS
to the individual minicomputers. As such, it acts as a "way station."

Box 7-1: Inside the Common Data Buffer

Even though the common data buffer is a unique design, it uses
standard commercial chips and boards. Nothing was custom built85 .
Memory chips are made of negative metal-oxide semiconductors (N­
MOS), with each section consisting of 64K of one bit and 32 sections
making up 64K of 32-bit words, matching the word size of the Mod­
Comp computers in the firing rooms and the error-correcting code used
in transmissions86 . Memory can be read in 200 nanoseconds, very fast
by any current standard. Motorola 6800 microprocessors are used in the
buffer as controllers, each with 2K of read-only memory and 1 K of
read/write memory87. The 64K main memory has the first lK words set
aside for interrupts, the next lK as a common read/write area for flags
and other variables, and the remainder as the protected memory area88 .
Data can move through the temporary storage areas and out to the com­
puters at a rate of 8 megabytes per second89.

A common data buffer can have up to 64 devices (computers or
other buffers) hooked to it at one time. Each device is connected to a
buffer access card. The cards are scanned by the buffer in rotation, look­
ing for incoming data or requests for data. If a device is needing the buff­
er and its request is noted on the access card, the device then has a slice
of time to do its work, after which the scanner (which has been "looking
ahead") goes to the next card indicating a usage request90. In this way,
when one machine is writing or even reading , all other machines are shut
out, preventing both contention for resources or simultaneous attempts to
update data91 .

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 231

An early criticism of the common data buffer concept was that it
would be a single point of failure92. Standard protections were built
into the buffer, such as dual power supplies and the use of triple
modular redundancy in some components93. However, the biggest
problem in a system of this type is protecting against communication
errors. Millions of bits are speeding throughout the network each
second, providing considerable opportunity for lost or garbled data.
Byrne's answer was to include a powerful set of error-correcting
codes, which he created with the help of Robert W. Hockenberger of
IBM, who was brought in specifically to work on the problem94.

The resulting codes enable the data buffer to successfully operate
with any 2 bits of the 16-bit words in error! When a word is being
transmitted between computers and the buffer or vice versa, it is sent
as a 32-bit message. The first 8 bits are data, the second error­
correcting code, then the next word's first 8 bits are code, and the last
8 data. Data are alternated in this way to protect against "big" signal
losses95. Individual bits are checked using the correcting codes at
each end of a transmission. One hundred per cent of the 1-bit errors
can be corrected, 99%+ of the 2-bit errors can be fixed, 70% of 3-bit
errors, and even half of the four bit errors. Since the memory chips are
arranged in 64K by 1-bit banks, the loss of an entire sector of memory
means the loss of just 1 bit per word, which can then be corrected. The
error-correcting codes themselves are generated by software on read­
only memories96. Even though such extensive protection is provided,
in a decade of operation there has been no failure of a common data
buffer, and internally never more than 1 bit has been garbled97.

In terms of the architecture of distributed systems, the common
data buffer was a pioneer. Currently, many distributed systems exist
partly because of the proliferation of minicomputers and microcom­
puters. Micros, especially, can be connected to common data bases on
shared hard disks. NCR Corporation briefly marketed a system called
Modus from 1982 to 1984 that featured the ability to connect with dif­
ferent types of microcomputers, a shared data base, and microproces­
sor control of communications that effectively locked out other com­
puters from corrupting data being updated by another one on the net­
work. In general, though, no commercial system is as effective as the
Launch Processing System in terms of speed, simplicity, and
reliability. Most intercomputer communication is clouded by dif­
ferent protocols, nonadherence to declared international standards,
and lack of speed. Frank Byrne's work stands as an original and bril­
liant solution to the key problem in implementing the Launch Process­
ing System. Fittingly, Byrne received proper recognition for his ach­
ievement. NASA granted a $10,000 bonus and an award98. The buffer
itself was patented, a rarity for the government side of the space
program 99.

232 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

CCMS Hardware

The hardware of the CCMS consists of the common data buffer
and everything else in the four firing rooms of the Launch Control
Center. Even though the buffer appears on the charts as the largest
item, in reality it is one of the smallest, filling two electronics racks in
the back of a firing room. Most of the equipment in a room is blue­
colored consoles and boxes: the ModComp computers and their con­
soles. The number and arrangement of consoles are dependent on the
function of the particular room. Firing rooms one and three are for
flight operations, with three capable of being made secure for DOD
launches. Rooms two and four are for software development and test­
ing, number four used for secure operations 100. Firing room two has
three buffers to facilitate multiple parallel software development101 .
Operations firing rooms normally are confiftured for 12 consoles, plus
a master, integration, and a backup console 02.

During a countdown, consoles in the adjacent software develop­
ment room are kept active as a further backup103. Each ModComp has
three display terminals, and those three make up one console. These
are mounted in a half semicircle, so two computers and their attached
consoles located side by side look like a "D" with the rounded part
facing the front of the room. Each of the computers contains either a
5-megabyte hard disk or 80-megabyte hard disk for storin§ applica­
tions programs uploaded from the mainframes in the CDS 1 O . Early in
the program each engineer had his own disk, and could carry his
programs to different computers, but when configuration control
began to be needed the removable disks were replaced 1 OS. Loading an
entire firing room through the buffer to the ModComps takes a full
shift. Each computer can run up to six GOAL programs concurrently.

Individual consoles have marvelous capabilities. NASA commis­
sioned Mitre Corporation to do a human factors study for the Launch
Processing System106. Some of the resulting concepts make the
usa]?ility of the system outstanding, and it is superior to many
workstations in existence today. Color displays, programmable func­
tion keys that make it possible to replace long strings of keystrokes
with a single push, full cursor control, and other features make it pos­
sible for an engineer to create applications programs that can be run
without using the keyboard 1°7. This concept antedates by 10 years the
now ubiquitous "mouse" found on such machines as the Apple Macin­
tosh. In addition, the consoles can be switched to become a terminal to
the CDS for procedure development and to examine data recorded
during operations. Special keys on the console enable program execu­
tion to be temporari1J; halted or single-stepped, aiding debugging of
GOAL applications 1 8. As a further convenience, each console has
hard-copy capability; "snapshots" of displays can be made, with all

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 233

the graphics intact, but in black and white. Graphics use is assisted by
special keys that provide comers, standard symbols for valves,
transducers, and other components that can be put at cursor positions
on the screen. Thus, the engineers can build pictorial skeletons of the
systems they are testing for greater clarity. In general, these consoles
are among the best available in any computer installation and are
ideally suited to the purpose of the Launch Processing System.

Besides the use of ModComps attached to consoles, other Mod­
Comps are used as front end processors to provide interfaces between
the spacecraft and ground service systems and the buffer. ModComps
used for applications programs have 64K words of memory, but the
front end processors have 48K, 64K, or 304K, depending on their con-
nections to other devices109. Hardware interface modules at the actual
points of entry to the ground support equipment plugged into the
spacecraft send and receive data from the front end processors. Those,
in tum, examine the data for parameters that are approaching their test
limits. If a parameter nears a limit, the processor issues an interrupt
and calls in a "control logic" program to handle the matter110. Control
logic is a subset of GOAL used for making sure things are not done
outside their proper order and within specific time constraints. For or­
biter communication, a launch data bus front end processor communi­
cates directly with the on-board general-purpose computers. Other
"downlink" front end processors only receive pulse code modulated
data to be processed for orbiter, main engine, and payload com­
ponents.

Between the console computers and front end processors, a typi­
cal operations firing room contains over 30 minicomputers, each inter­
connected through the buffer. These computers can control tests and
monitor the Shuttle anywhere hardware interface modules are avail­
able to connect it to the firing room, whether in the orbiter processing
facility, the Vehicle Assembly Building, or the pad. Since each con­
sole can do the functions of any other console simply by changing its
software load, the system has tremendous flexibility.

CDS Hardware

Supporting the CCMS is the CDS. Two sets of two Honeywell
66/80 mainframe computers are the heart of the CDS. NASA pur­
chased the original pair of these 36-bit machines with half a million
words of main memory each and an additional half a million words
for sharing. As software for the Launch Processing System grew in
size, the memories were upgraded to 1.5 million words each and 1
million words of shared memory 111 . One hundred seventy-two disk
drives are connected to the machines as mass storage, with a total
capacity of almost 30 billion bytes. Originally, the computers used

234 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

I

"' . ~':~ .,_y I ,,¥ , ,
~

4~ ~ ,, : '", . ..:-' . . ~

1l
/.

:~¼

Figure 7-8. Typical firing room layout for the Shuttle. Less than 50 engineers are
needed for the countdown. (NASA photo 108-KSC-78PC-240)

Honeywell's 4JS l operating system, which is no longer supported by
the company. One NASA computer scientist said that "we have taken
almost every piece of standard software and modified it" to meet the
unique needs of the Launch Processing System 112. Most often the
first pair of Honeywells support an operations firing room, whereas
the second set is being used for software development. If one of the
pair notices that it has failed self-tests for 10 machine cycles, it
automatically switches control to its partner.

The third part of the Launch Processing System is the RPS. In­
itially implemented with Apollo-era equipment, it was later moder­
nized with new recorders and computers. The RPS records most data
telemetered from the spacecraft for later playback and produces
records and printouts in real time for immediate analysis by system
engineers conducting tests 113 . Firing room engineers can play back
tests or other data directly to their firing room consoles for problem
resolution or trend analysis 114. At first, the RPS only had enough
equipment to support one Shuttle at a time, so to switch from one to
another required rearranging a number of connections 115 . This situa­
tion was corrected during the modernization so that the RPS can now
handle multiple Shuttle data flows.

ORIGINAL PAGE IS
OF POOR QU.A.iITJ:'i

·o o
~~ ,
;~ 0
0 ::; 0 .._.
JN ► r'
t:) '"'1
C: ►
~ o
~ t;:rj

R C!j

~
r,Q·
= '"I
l't)

t
"°
::i::

2.
(')

0
"O
'-<:
0,
$),

0.
cii .

"O
~

'-<:

8
3
0
:i
(I)

0, -~
(I)

[
OCl

a
0
3
(')

0
:l
C/J
0
(i'
C/J

•c- • i ' •r··•• '40 It·'T '••s lli', ' .1'11'.J l ' .' ! ,.- .., ,1-~Fp;~•-,Jl'ii'l.'i~;:;i :.?J l;,'11(1:Cll -; J::rr,;•1 :c :•1 : ~~"". ·; , :;i
J. QIJ • I.),_, I l 1 I..J 11,.i·j,' ift b!:!.f ,,:, .. .i.--..~&~:~ Eii!,!.~ .'t!ml .. ~~ _,b : &F.;:.::.:, ... : ~~
SM S ,:. lj 1 'i!J D 1 ·i 3 E 1 2 3 ti:·i B ·2 A E: '.;: A 8 4 AB S AB 6 A 8 $ S Y S F l. ·;: . :: '·I ~--(~
TCGS@
SS/O::;: C•STMCN12'2S CG,·IMANO 1,)ALID 0NLY FR0M C1~1NS1:)LE ~HTH SYS. l1 ·lll(jFITI'

--··-·----------~ m·- SYSTEM STATUS s N 'es LP CL CG s s N BS LP CL C
T A UL 00 F 0 0 0 H T A UL 00 F 0 0
A t-! (.: () GR I A M I :~ t-1 C ~1 GR I A M
T r:: ~~ T T fj D M T I T E I< T T G r, M

G, .-
0 W

I
T

GS 1 ►◄ 00 1 * - - - I Ci 07 21 * -1-,-GS2,~ 00 '2 - - - - I C:'2 07 23 - - - -
GS3 00 3 - - - - C3 07 24 - -
GS4 00 Lf - - - - C1+ 07 2S - -
-,-i.:
l,.;i .") - · 00 s - - -· -· cs 07 26 - _,_,_
GPCh '2 '/. e. * * :t: * I CE- 07 27
0IA 22 7 * - - - I C7 07 28
S~·H::tF ::: F 8 -· - - - C8 o·, 29
SI,~ [1 F 3F 9 - - -· - C9 0·7 30
ET 02 10 - - - - C10 07 311-,-,-,-·
t-1E1 0'2 1 1 - - - - C11 07 32 - - - -
ME~ 02 1 '2 - - - - C1'2 07 33
ME'.';; 0·1 13 - - - - MSTR '2A 34

*l*l*I* S[181 15 14 - - - - INTG - 0'? 35 * :+: * * PLO 1. E, 15 - - - - 8i<UP 07 :::E- * - - -
Su8 ;~ 00 16 - ·- - - I E:: A 1 31 37
LD8.-~ 15 17 :t: * :t: * I PDR OA 38 *I* *l*II HO ::-C 02 j_ s - - - - SPH 18 39 :t: :t: :t: :t:
UPI .. ~: 05 19 * * * * PPi 00 40 'f' I + . ._ I 'f.

pp -~ 15 41 :t: -
L D E: D I 3 S I 2 i I - I - I -· I - : . ,, _

_ EGC I ILJ REF DES
L---···-· ··-- -·--·--··•-- ·-·· ------.. .1 !.. __ __ ______ _ --·--·-----·· --

s N BS LP CL C GI S
T A U I_ 1Z1 0 F O O 1:• • I -!
. "1 - - -r: I . t' ' T A 1· I.: 1:.1 i.l ~-~ H ·1 1· · :

T E hT : G D M ,

TCGi OF
TCG·~ iF
TMD·.:- 1r-
'.JL)A 3F "'' . G~:-iS 1 t:" -·
G~:;25 00
GFCS 02
(:1 IS •'":· ·i ... '-

l..l) t:: ~- 00

[:::-t:·:::: I 1 lt

E::-D i ·::· E

(.

~t 2 * :+: I :t: I {1 I : \
43 :t: :+: :t: ~-

Lr 4 * :t: I : f:
4 5 :f: ·- --
41=. - -
I~ -~, - - I - -·
4:::: - - · I ... -I
it ·3 • . -· 1-- -. I
~:o - - - ·· I

I
j
I
I

I I I
I I I

s:,, I ·- I .. I -· i • I
s·:1 J :t: l +

1
.:: I !

I
I

. I
[J ·1 [F i I · I li ·. i i

-l
:::i::
t"l
t"l
<
0
I:""
~
-l ...
0
2
0
~

>
~
-l
0
:::
>
-l
t"l
0
I:""
>
~
2
('j
:::i::
-= ,i:,

0
('j
t"l
rJJ
rJJ ...
2
~
N
u,

236 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Launch Processing System Software

Software for the Launch Processing System is of three types: ap­
plications software, written in GOAL, performs the test and integra­
tion functions; simulations software enables engineers to verify their
GOAL programs before using them on the real equipment; and sys­
tems software controls the execution of the other types. In the Launch
Processing Division at the Kennedy Space Center, two branches sup­
port the hardware of the Launch Processing System, one for each
major subsystem, whereas the Applications and Simulations Branch
supports software by developing simulations and assisting test en­
gineers in GOAL procedure writing. One of the reasons for the utility
and success of the System is that civil service operations and main­
tenance personnel have been included in software planning and design
from the beginning in order to make the System better meet their
needs 116. They essentially built their own tools 117. That policy con­
tinues in the Applications and Simulations Branch, which helps the
engineers refine their test requirements118.

GOAL applications programs are the largest part of the Launch
Processing System software, totaling 14.2 million words by the early
1980s. As a comparison, the displays, control logic, and test control
software added up to less than 700K words 119. Despite the early resis­
tance of engineers to the automation of testing, they found that they
learned more about their assigned part of the spacecraft by writing
ATOLL or GOAL programs 120. In instructing a computer, saying
"pressurize the tank until the pressure is high enough" is too vague.
Engineers writing programs are forced to think through the proper
parameters and values and to account for anomalies ahead of time.

Kennedy engineers abandoned A TOLL because it had
deficiencies in ease of use and in comprehensiveness. Too often as­
sembly languages had to be used to do something A TOLL could not.
Henry Paul assigned A TOLL veteran Joseph Medlock of Kennedy to
head the GOAL development group 121 . Medlock and his team of civil
servants received help from Martin-Marietta Corporation in defining
the language, and then IBM implemented GOAL. The result was a
highly readable, self-documenting procedural language. Just over four
dozen statements are available, and training time is short, taking half
days for 3 weeks (see Appendix III for an example of a GOAL
program) 122. IBM designed GOAL's compiler to disallow any un­
defined branches or procedures, making it more strict than FORTRAN
compilers123. GOAL is highly flexible and permits engineers to
decide for themselves the degree of interaction required to do a
test 124. GOAL pro~rams are run within the computers in time slices
of 10 milliseconds 1 5.

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 237

When an engineer is developing a GOAL procedure, he writes the
procedure on his console using it as a terminal to the CDS. After the
procedure is complete, it is tested against a simulation in the
Honeywell computers, if a simulation is available. A Shuttle Ground
Operations Simulator, consisting of GOAL-like statements, is avail­
able for developing models to test programs relating to ground equip­
ment such as fueling systems and external power12 . However, due to
the lack of an AP-101 processor and Shuttle on-board software,
procedures for checking out the flight equipment are limited or nonex­
istent. There is no way at Kennedy to test those procedures except
against an actual spacecraft, so they must be sent to SAIL at the
Johnson Space Center127. In addition to that restriction, simulations
programs are limited to 256K words, the largest program a Honeywell
66/80 can run, since it is not a virtual memory machine. As a result,
some models have to be run in parts 128.

A subset of GOAL is used to write control logic. Control logic
prevents things from being done out of the proper order and within
specific time constraints, avoiding disaster. It is necessary because of
the parallel nature of testing. For example, before liquid oxygen can
be moved through pipes and valves, they must be prechilled to near
the temperature of the liquid, or the oxygen will flash evaporate. Con­
trol logic of the "prerequisite sequence" type checks to make sure the
prechilling has been done. Or, if a valve pressure or voltage is nearing
a dangerous level, "reactive sequence" control logic programs are
automatically called by the front end processors to eliminate the
anomaly 129. Control logic thus makes parallel operations safe.

GOAL and control logic procedures must be integrated with the
rest of the System before use to resolve potential conflicts and assign
real addresses in the buffer to logical addresses in the programs. In­
tegration is done in a laboratory containing the "Serial O"
ModComp/console, the first set delivered 130. Integration requirements
led NASA designers to abandon some of the flexibility envisioned in
the early stages of the program 131 . Originally, they thought the en­
gineers would have more responsibility for their programs and
changes, but the complexity of the system required some measure of
configuration control. Some 200 GOAL prof:rams are needed just to
load the liquid oxygen tank automatically 32. With thousands of
GOAL procedures to integrate, engineer autonomy had to be limited.

Cargo Integration and Test Equipment

One part of the Kennedy Space Center with an important role in
the Shuttle program and also a user of Launch Processing System
resources is the Cargo Integration and Test Equipment (CITE). With

238 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

hundreds of Shuttle flights planned to carry a variety of payloads from
all over the world, the process of properly integrating cargo with the
orbiter is a large task. Both electronic and physical interfaces must be
checked in order to verify, for example, that a Spacelab module built
in Germany will properly fit to a vacuum-proof seal in the cargo bay
and be able to "talk" to the Shuttle computers as well.

Soon after beginning work as the prime contractor, Rockwell In­
ternational and NASA did a study to find out how much and what
kind of Interface Verification Equipment (IVE) would be needed for
the operations era. By doing things the "traditional" way, in which the
payload supplier did the interface verification, an estimated 20 sets of
very expensive equipment were required. Robert Thompson favored
sense over politics and decided in early 1976 to let Kennedy develop a
centralized version of the IVE and do all the final interface testing for
all the customersl33.

During June, July, and August of 1976 the formal requirements
for the cargo facility were baselined. But when a source selection
board met to begin choosing equipment, the members realized that
they were about to violate the basic principles of the Launch Process­
ing System by bringing in new equipment and doing things in a
unique way instead of using existing contracts and computers 134. Ac­
cordingly, Kennedy stocked the cargo facility with the same physical
and electronic interfaces present in the orbiter, permitting the same
contractors and maintenance contracts to be used. In 1978, an AP-101
was added to provide a means to test software interfaces. Equipment
in the cargo facility can also directly connect with the Launch
Processing System so that payloads can be further integrated. CITE is
another user of the simulations kept on the CDS 135.

Payloads delivered to Kennedy are checked out and further
prepared in either the horizontal facility (Spacelab would be worked
on there) or the vertical facility (communications satellites are in­
tegrated vertically). After completion of the integration tests, a special
transporter with cargo space as large as the Shuttle's bay moves the
payloads to the Vehicle Assembly Building for installation in the or­
biter.

The Launch Processing System in the Operations Era

Originally, Henry Paul had a goal of reducing the number of tech­
nicians in a firing room from the 250 of the Apollo era to about 45.
Although he succeeded, in the early 1980s, the Launch Processing
System was still labor intensive, with 75 civil servants and 700 con­
tractors involved 136. However, in late 1983, NASA awarded the shut­
tle maintenance contract to Lockheed, which is now responsible for
physical equipment and software relating to Shuttle launch process-

THE EVOLUTION OF AUTOMATED LAUNCH PROCESSING 239

ing. That award marks the end of the multicontractor development era
and the beginning, for the first time in NASA's history, of an opera­
tions era for a manned spacecraft. Before the Shuttle, each flight and
the preparations beforehand were idiosyncratic. Now some degree of
standardization and routine is possible, largely because of the nature
of the Launch Processing System. Carl Delaune, a NASA engineer in
the Applications and Simulations Branch, is exploring ways of apply­
ing artificial intelligence to checkout procedures, such as creating a
program that makes suggestions to test engineers if strange values
occur 137. If his inquiry bears fruit, eventually the amount of human
interaction during checkout will shrink even further.

As the development effort at Kennedy matured, the purposely
staggered development of a Launch Processing System at Vandenberg
Air Force Base began. Plans were to build the military facility after
most of the developmental bugs were out of the NASA model. The
Air Force saved money at its installation by modifying facilities built
for the Gemini-technology Manned Orbiting Laboratory program in
1966138. Originally designed as a Titan III launch site, the complex
provides for mating orbiter, tank, and boosters at the pad, as no
Vehicle Assembly Building exists there. Ground checkout facilities
are split between locations at North Vandenberg and South Vanden­
berg, so the CDS, CCMS, and RPS are physically separated 139. With
the commissioning of the western launch site in the early 1990s, the
Shuttle program will have reached its full flowering.

Summary

Distributed computing, connecting different vendors ' equipment
successfully, good user interfaces, and automation are all topics of
continued concern and research in the computer industry. The Launch
Processing System solves all those problems in a specific arena. It is
difficult to think of a system better suited to its task. A marvel of in­
tegration, efficiency, and suitability, it reflects the ingenuity and clear­
sightedness of its originators. Lessons learned in the 1960s during the
first attempts at automating checkout were applied in toto to the
Launch Processing System. Rarely has a second system so com­
pletely eliminated the deficiencies of its predecessor.

8
Computers in Mission Control

242 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Mission control begins when launch processing ends. At the point a
missile is committed to flight-as when the Shuttle solid rockets are
fired or a liquid-fueled booster rises an inch off the
pad-responsibility for monitoring and control of the spacecraft shifts
from the launch director and his crew to the flight director's team.
Three major tasks occupy the flight controllers: sampling the
telemetry stream to make certain everything is going well and to col­
lect science data, doing navigation calculations, and sending com­
mands. Manned and unmanned spacecraft require this support, with
manned spacecraft having the advantage of carrying observers and
decision makers to supplement what can be done from the ground. To
successfully support both types of missions, digital computers must
operate on massive amounts of data in real time. Mission control tasks
are beyond the abilities of humans alone.

Mission control centers and their equipment are located far from
the launch site. NASA's manned mission control began in 1961 with
Project Mercury at the Cape Canaveral launch area, but its computers
were at Goddard Space Flight Center near Washington, D.C. Since
1964, early in the Gemini program, both computers and controllers
have been housed in Building 30 at the Johnson Space Center in
Houston. NASA's unmanned near-earth missions are controlled
mostly from Goddard, with most deep space missions handled through
the Jet Propulsion Laboratory's (JPL) Spaceflight Operations Facility
in Pasadena, California.

In addition to control centers, mission support requires numerous
tracking stations to collect and format telemetry and radar data to help
in monitoring and navigation and to transmit commands. These
widely scattered stations and the control centers are linked together by
the NASA Communications Network (NASCOM), headquartered at
Goddard. The Space Tracking and Data Acquisition Network
(STADAN), used to specialize in unmanned spacecraft but, having
combined with the Manned Spaceflight Network (MSFN) in 1972, has
become the general network. When all the specified Tracking and
Data Relay Satellites are in place, they will take over much of the
manned flight communications, yet tracking is still a ST ADAN
responsibility. Lunar and planetary probes are the venue of the Deep
Space Network, which operates three main stations at Goldstone, Cal­
ifornia, Madrid, Spain, and Canberra, Australia, each with a variety of
antennas ranging up to 64 meters in diameter. The Deep Space Net­
work helped with manned lunar missions when the Apollo spacecraft

COMPUTERS IN MISSION CONTROL 243

passed a distance of 10,000 miles from earth*.
In contrast with on-board computers, computer systems used in

control centers and tracking stations have primarily consisted of off­
the-shelf equipment. NASA could take this approach to procurement
because, so far, adequate processing power to achieve mission objec­
tives has been available in commercial systems. When mission control
began in the late 1950s and early 1960s, software technology had not
reached the necessary level of sophistication. The prime contractor
had to develop completely new operating system software for the
Vanguard, Mercury, and Gemini programs, but was able to incor­
porate large chunks of existing operating systems into those used for
Apollo and Shuttle, as well as some later deep space missions. This
was possible in part because experience and techniques learned from
designing the original operating systems were used in new commer­
cial products.

MANNED MISSION CONTROL COMPUTERS

As with manned spacecraft on-board computers, computer sys­
tems used in manned mission control are more sophisticated and
larger than those used for unmanned missions. Even though un­
manned satellites and space probes pioneered the use of computers in
mission control, the need for quick response and redundancy, the in­
herent complexity of manned spaceflight, and the rigors of the race to
the moon forced rapid improvements and innovations in systems used
in manned mission control so that they surpassed the older systems.

The story of computers in manned mission control is largely the
story of a close and mutually beneficial partnership between NASA
and IBM. There are many instances of IBM support of the space
program, but in no other case have the results been as directly ap­
plicable to its commercial product line. When Project Vanguard and
later NASA approached IBM with the requirements for computers to
do telemetry monitoring, trajectory calculations, and commanding,
IBM found a market for its largest computers and a vehicle for
developing ways of creating software to control multiple programs ex-

*For the story of the tracking and communication networks, see William
R. Corliss, Histories of the Space Tracking and Data Acquisition Network
(STADAN), the Manned Space Flight Network (MSFN). and the NASA Com­
munications Network (NASCOM), NASA CR-140390, June, 1974, and N.A. Ren­
zetti, ed., A History of the Deep Space Network From Inception to January 1,
1969, Jet Propulsion Laboratory TR 32-1533, September l , 1971. Each has con­
siderable detail about the technical developments involved, including the decision
to use computers at stations.

244COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

ecuting at once, capable of accepting and handling asynchronous data,
and of running reliably in real time. These things the company was
able to do quite successfully, and the groups it assigned to the job im­
pressed their NASA counterparts. When asked about IBM's perfor­
mance in this field, one NASA manager said without hesitation, "IBM
is the best" 1.

The company maintained its lock on mission control contracts
through Gemini, Apollo, and the Shuttle. At each point, some ex­
perienced personnel were transferred to other parts of the company to
share lessons learned. Several individuals contributed to OS/360, the
first multiprogramming system made commercially available by
IBM2. One became head of the personal computer division3. NASA
also used successful managers from mission control work to help
other programs. Howard W. "Bill" Tindall started with Mercury and
Gemini ground software and later made a significant contribution to
the quality of the Apollo on-board software. No other software system
developed under NASA contract in the 1960s was as well thought out
and executed as manned mission control.

Beginnings: Vanguard and Mercury

America's most spectacular contribution to the International Geo­
physical Year (1957-1958) was the Vanguard earth satellite, which, in
ignorance of Russian preparations, was thought to be the world's first
orbiting spacecraft. In June of 1957, Project Vanguard established a
Real-Time Computing Center (RTCC) on Pennsylvania Avenue in
Washington, D.C, consisting of an IBM 704 computer4. The 40,000-
instruction computer program developed for Vanguard did data reduc­
tion and orbit determination5. Orbit calculations needed to be done in
real time so that ground stations could be warned of the approach of
the satellite in time to listen for its signals and know where in space
the data came from. Thus, IBM gained early practical training in the
primary skills needed for mission control. In 1959, when NASA was
ready to contract for a control center for Project Mercury, IBM had
experience it could point to in its proposal, as well as an existing com­
puter system about to be freed from Vanguard work.

NASA awarded Western Electric the overall contract for the
tracking and ground systems to be used in Project Mercury on July 30,
19596. By late 1959, IBM received the subcontract for computers and
software 7. Washington remained the site for the computer system be­
cause it could benefit from centralized communications already in
existence8. NASA founded Goddard Space Flight Center the next
year, and since it was less than half an hour from downtown
Washington, the same advantages would accrue from locating the

COMPUTERS IN MISSION CONTROL 245

computers there. Combined NASA and IBM teams used the old com­
puter system downtown until about November 1960, when the first of
Mercury's new 7090 mainframe computers was ready for use at God­
dard. James Stokes of NASA remembers the first time he and. Bill
Tindall went to the new computer center, they had to cross a muddy
parking lot to where a "building" with plywood walls, window air
conditioners, and a canvas top confounded the IBM engineers who
were trying to keep the system up and running under field conditions9.
That structure evolved to become Building Three of the new Space
Flight Center and housed the system through the Mercury era 10.

IBM's 7090 mainframe computer was the heart of the Mercury
control network. In 1959, the DOD issued a challenge to the com­
puter industry in the form of specifications for a machine to handle
data generated by the new Ballistic Missile Early Warning System
(BMEWS). The 7090 was IBM's response. Essentially an improve­
ment of the 700-series machines like the one being used as a develop­
ment machine for Mercury, the 7090 adapted the new concept of 1/0
channels pioneered in the 709 and was so large that it needed up to
three small 1410 computers just to control the input and output. The
DOD's needs for BMEWS closely paralleled those of Mercury in
terms of data handling and tracking. Thus, IBM was in a good posi­
tion with its hardware.

To provide the reliability needed for manned flight, the primary
Mercury configuration included 7090s operating in parallel, each
receiving inputs, but with just one permitted to transmit output. Called
the Mission Operational Computer and Dynamic Standby Computer,
the names stuck through the Apollo program. This was NASA's first
redundant computer system. Switching from the prime computer to
the Dynamic Standby was by manual switch, so it was a human
decision 11 . During John Glenn's orbital mission, the prime computer
failed for 3 minutes, proving the need for an active standby 12.

Three other computers completed the Mercury network. One was
a 709 dedicated to continuously predicting the impact points of mis­
siles launched from Cape Canaveral. It provided data needed by the
range safety officer to decide whether to abort a mission during the
powered flight phase and, if aborted, information about the landing
site for the recovery forces. Another 709 was at the Bermuda tracking
station with the same responsibilities as the pair at Goddard. In case of
a communications failure or double mainframe failure it would be­
come the prime mission computer. Lastly, a Burroughs-GE guidance
computer radio-guided the Atlas missile during ascent to orbit13.

Locating the computers near Washington while placing the mis­
sion control personnel at Cape Canaveral led to a communications
problem that resulted in a unique solution. In early digital computers,
all input data went to memory by way of the CPU. Large amounts of
data that needed to be accepted in a short time often backed up, wait-

246 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

ing for the central processor to handle the flow. A solution is direct
memory access, which sends data directly from input devices into
storage. Transfers of large blocks of data directly to memory are con­
ducted through data channels, first used by IBM on its 709 and then
on the 7090. By using channels, processing could continue while I/O
occurred, increasing the overall throughput of the system. Mercury's
7090s were four-channel systems. Normally, the peripherals handling
input and output would be connected to the channels physically close
to the machine, but the peripherals (plotters and printers) driven by the
Mercury computers would be about 1,000 miles away in Florida. The
solution was to replace Channel F of the 7090 with an IBM 7281 I
Data Communications Channel, a device originally created for Mer­
cury that has had great impact on data processing14.

Four subchannels divided the data handled by the 7281 device.
One was an input from the Burroughs-GE guidance computer to
provide data used in calculating the trajectory during powered flight.
The second input radar data for trajectory and orbit determination.
Two output subchannels drove the displays in Cape Canaveral's Mer­
cury Control Center and locally at Goddard 15 .

Connecting the two ends of the system was a land line allowing
transmission at 1,000 bits per second 16. Although this was a
phenomenal rate for its time, now a simple microcomputer routinely
transmits at 1,200 bits per second on nondedicated public telephone
lines. The distance and newness of the equipment occasionally caused
problems. Once in a while during a countdown, data such as the lift­
off indicator, which was a single bit, would get garbled and give er­
roneous signals 17. Most times such flags could be checked by other
sources of information, such as radar data contradicting the lift-off
message. Also, up to a 2-second time lag on the displays in the control
center was common 18. During powered flight, such delays could be
significant; thus, the need for a separate impact prediction computer
and another machine in Bermuda.

Software development for the Mercury program was another area
in which IBM advanced the state of the art 19. In the beginning of the
computer era, operators ran programs on computers one at a time.
Each program was assigned peripherals, loaded, run and, if errors oc­
curred, stopped individually. As machines grew larger and the number
of users increased, some way of making the process of loading and
executing programs more efficient was needed. The result was the
concept of "batch" processing, in which a set of several programs
could be loaded as a unit and executed in sequence. A special control
program called a "monitor" watched for errors and aborted programs
trapped in loops or that spun off into corners. To handle the many jobs
needed by manned spacecraft mission control, IBM set up a method
for programs to be interrupted and suspended while other programs of
greater priority ran, and then resumed when the high-priority jobs

COMPUTERS IN MISSION CONTROL 247

ended. Thus, a number of programs could be loaded into the machine
and run, giving the illusion of simultaneous execution, even though
only one had the resources of the central processor at any one time.
This was the only way the processing of radar data, telemetry, and
spacecraft commands could be accomplished in the split seconds of
time allotted.

IBM called the control program the Mercury Monitor, but that is
a misnomer in that it superceded the capabilities of the known
monitors of the time. It was event driven, which means that certain
flight events (lift-off, sustainer engine cutoff, retrofire) formed the
basis of the starting times of certain processes20. The Mercury Pro­
gramming System's primary functions included capsule position
determination, retrofire time calculation, warning ground stations of
the acquisition times, and impact prediction after retrofire. Three
separate groups of processing programs, each stored on tape until
needed, did these functions at different times: launch, orbit, and
re-entry21 . No matter which group of processors was loaded into the
machine, the Monitor frequently checked a table listing processes
waiting for input or output. Software placed entries in the table when
the Data Communications Channel signaled that data were ready to be
transferred22. The Monitor then handled the requests in priority or­
der. Within a processor group, such as orbit, a set of different single­
function processors would be defined. Thus, the entire mission control
program was highly modular, allowing easier maintenance and
change. In fact, some modules from the Vanguard programs could be
adapted to Mercury use.

NASA wanted to take over the software as soon as possible, so 15
or so civil service employees were assigned to the IBM group while it
was still in downtown Washington. However, the Space Task Group
retained direct control over the software development, a somewhat
frustrating situation for NASA engineers much closer to the actual
project and in a better position to make suggestions23 . At the time,
NASA saw its role as that of a knowledgeable user and recognized it
lacked the expertise to handle some of the calculating tasks involved.
James Stokes, a NASA engineer, admitted that "we didn't know
enough to specify the requirements" for the software24. IBM was not
much better off and acquired its expertise by contracting for the ser­
vices of Dr. Paul Herget, then director of the Cincinnati Observatory,
who had privately published a book on orbit determination in 194825 .

The Mercury network provided continuous height, velocity, flight
path angle, retrofire time, and impact points. During powered flight,
the main computer center, the Cape impact prediction computer, and
the Bermuda tracking station computer all would give GO/NO GO
recommendations to the flight director. After engine shutdown, the
system needed to give GO/NO GO data within 10 seconds, so that a
safe recovery could be effected if orbit had not been reached. During

248 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

the orbital cruise, the astronaut could be given updated retrofire times
each time he came in contact with a ground station26.

As the Mercury program wound down during 1962 and NASA
began to accelerate preparations for Gemini and Apollo, the Agency
decided to place both the computers and flight controllers for manned
spaceflight mission control in a combined center in Houston. Goddard
staff proceeded under the assumption that the new control center
would not be ready in time for the first Gemini flights, which turned
out to be correct. Gemini I, II, and III used Goddard as the prime com­
puter center, with the new system in Houston acting in an active
backup role for flight three. Beginning with flight four, the second
manned mission, Houston took over as prime, with Goddard acting as
the backup throughout the Gemini program27.

For IBM and NASA, the development of the Mercury control
center and the network was highly profitable. IBM's Mercury Monitor
and Data Communications Channel were the first of their types28 . Fu­
ture multitasking and priority interrupt operating systems and control
programs owed their origins to the Monitor. Large central computers
with widely scattered tenninals, such as airline reservation systems,
have their basis in the distant communications between Washington
and a launch site in Florida. For both organizations, the experience
gained by staff engineers and managers directly contributed to the
success of Gemini and Apollo.

Second System: The Gemini-Apollo RTCC

Before the first Mercury orbital flight was off the ground, NASA
engineers working on mission control tried to influence the design of
the new center in Houston. Bill Tindall, who worked on ground con­
trol for NASA from the beginning, realized that locating the Space
Task Group management at Langley Research Center, the computers
anq programmers at Goddard, and the flight controllers at Cape
Canaveral created serious communication and efficiency problems. In
January 1962, he began a memo campaign to consolidate all com­
ponents at one site, obviously the new Manned Spacecraft Center29.
On February 28, just 8 days after John Glenn's flight, Tindall made
his strongest case in a detailed essay in which he noted that IBM was
the only company capable of creating real-time software. He wanted
the Ground Systems Project Office, then in charge of oversight of the
RTCC development, to allow representatives from the Flight Opera­
tions Division to assist in mission programming30. As the eventual
users of the system, it made sense to include them.

COMPUTERS IN MISSION CONTROL 249

/
I

I
I

Figure 8-1. IBM 7094s in the Gemini Real Time Computer Complex. (IBM
photo)

In April, the Western Development Laboratories of Ford's sub­
sidiary Philco Corporation began a study of the requirements for the
new mission control center. One aspect of the study was to take
numeric data and give it pictorial content, making the jobs of the
flight controllers less hectic but necessitating much more sophisticated
computer equipment31 . As Philco worked through the summer,
NASA Administrator James Webb announced on July 20 that there
would be an expanded replacement for Mercury Control. A "request
for proposal" was prepared, including concepts developed by Philco
and documented by them in their final facilities design released on
September 7.

Philco's design was broad in scope, covering physical facilities,
information flow, displays, reliability studies, computers, and even
software standards. Philco specified that modularity in program
development was a must, as it would ease maintenance and allow the
use of ''lower caliber" people to code subprograms, leaving the real
stars to do the executive software32. This organizational rule became
standard for large program projects. Another specification required
that the probability of successful real-time computer support for a
336-hour mission be 0.9995. Also, due to rendezvous plans for
Gemini and the dual-spacecraft Apollo lunar missions, the center had
to control two spacecraft at one time.· To meet the reliability and
processing goals, Philco examined existing computer systems from

ORIGINAL PAGE IS
0.E £00R QUALITY: • J

250 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

IBM, UNIV AC, and Control Data Corporation, as well as its own
Philco 211 and 212 computers, to determine what type and how many
would be needed. The calculations resulted in three possible con­
figurations: five IBM 7094s (the immediate successor to the 7090, es­
sentially a faster machine with a better operating system, IBSYS);
nine UNIVAC 1107s, IBM 7090s, or Philco 21 ls; or four Philco 212s
or CDC 3600s33 . No matter which group would be chosen, it was ob­
vious that the complexity of the Gemini-Apollo Center would be
much higher than its two-computer predecessor. To help keep the sys­
tem as inexpensive and simple as possible, NASA specified to poten­
tial bidders that off-the-shelf hardware was essential.

IBM moved quickly to respond to NASA's call for proposals,
delivering in September a 2-inch thick, three-ring binder full of
hardware and software bids, including a detailed list of personnel they
would commit to the project, complete with employment histories. Al­
though the company knew it was the leading candidate (Tindall 's en­
dorsement could hardly have escaped notice), it carefully matched the
specifications, such as clearly stating that modularization and unit
testing would be the norm in software development. One area in
which they differed from Philco' s calculations was the number of
machines needed. Perhaps to keep the total bid low, IBM proposed a
group of three 7094 computers. By splitting the software into a Mis­
sion Computer Program and a Simulation Computer Program, one
machine could run the Mission Program as prime, another run it as the
dynamic backup, and the third run the simulation software to test the
other two, thus fulfilling requirements for redundancy and preflight
training and testing. This forced IBM to explain its way around the
0.9995 reliability requirement. Three machines yielded reliability of
0.9712, slightly over four being needed to achieve the specification
(thus, Philco's suggested number of five). IBM made a case that the
reliability figures were misleading and that during so-called "mission­
critical" phases the reliability of three machines would exceed
0.999534 .

. Eighteen companies bid on the RTCC, including such powerful
competitors as RCA, Lockheed, North American Aviation, Computer
Sciences Corporation, Hughes, TRW, and ITT. NASA assigned Chis­
topher Kraft, the eventual chief user, to chair the source board that
studied the responses to the request for proposal. Tindall served also,
with James Stroup, John P. Mayer, and Arthur Garrison, all of the
Manned Spacecraft Center. They awarded the original contract NAS
9-996, covering the Gemini program, to IBM on October 15. Worth
$36 million, it was to run until the end of August 1965. Extended to
December 1966, the total cost came to $46 million35.

With 6 weeks of preparation already done before the contract
award , IBM's core of engineers were ready for business in Houston
by October 28. J. E. Hamlin started as project manager and interim

COMPUTERS IN MISSION CONTROL 251

head of systems engineering. He had 12 years of IBM experience,
first as a hardware engineer, later as a group leader for SAGE
software, and then manager for the Mercury system implementation.
He had barely started work at JPL's Deep Space Instrumentation
Facility when the RTCC contract came up. In his first report in
January 1963, he was able to announce the arrival of the first 7094 to
be used for software development. The computer and, later, two
others were installed in an interim facility on the Gulf Freeway. Each
started with 32K words of memory and 98K words of auxiliary core
storage, with a 1401 as a front end for input and output36. On the
negative side, Hamlin's early projection of a peak staff of 161 had
leaped to 228 by the time of the first report. Eventually, 608 IBM
people worked simultaneously on the project, with 400 of them on
software development. The magnitude of the task was greatly under­
estimated both by IBM, which made the bid, and NASA, which ac­
cepted it.

Hardware needs grew along with the staff. The original three
machines moved from the interim center to Building 30 at the Manned
Spacecraft Center. Two more were added, fulfilling Philco's
prophecy. The size and rating of the machines was also increased to
model 7094-IIs with 65,000 words of main core storage and 524,000
words of additional core as a fast auxiliary memory37. In the new con­
figuration, one machine was the Mission Operational Computer, the
second, the Dynamic Standby Computer, and the third, the Simulation
Operations Computer as before, with the two new ones used as the
Ground System Simulation Computer and a standby for future
software development. The Ground System simulator acted like the
tracking network and other ground-based parts of mission control to
test software.

IBM's original proposal projected completion of the new system
within 18 months. As time passed and problems occurred, the plan al­
tered to begin with support of the Gemini VI mission. But slips in
Gemini and steady progress on the software enabled the use of the
Center for passive parallel computations during the Gemini II un­
manned flight on December 9, 1964, just under 26 months after the
contract award. On Gemini III, the Houston control center did its final
test as an active backup. The results were so promising that from
Gemini IV on, mission control shifted from the Cape to Houston.

Gemini Ground Software Development

NASA's requirements for the Gemini mission control software
resulted in one of the largest computer programs in history. In ad­
dition to all the needs of the Mercury system, Gemini's proposed ren­
dezvous and orbit change operations caused a near-exponential in-

252 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

crease in the complexity of the trajectory and orbit determination
software. Placing a computer on board the spacecraft made it neces­
sary to parallel its computations as a backup and also necessary to
devise a way to use the ground computer system to update the Gemini
flight computer. Also, by the the time the Gemini program matured,
all data on the tracking network were in digital form, and thus com­
putable, so the amount of data that passed through the ground system
increased further38.

IBM reacted to the increased complexity in several ways. Besides
adding more manpower, the company enforced a strict set of software
development standards. These standards were so successful that IBM
adopted them companywide at a time when the key commercial
software systems that would carry the mainframe line of computers
into the 1970s were under construction39. IBM approached the more
difficult areas by acquiring the services of specialist consultants and
sponsored a group of 10 scientists pursuing solutions to problems in
orbital mechanics. It included Paul Her§et and some men from IBM's
Cambridge, Massachusetts "think tank" 0.

Key to the flight system was the Mission Computer Program. It
centered on a control program called the Executive, which took over
the functions of the Mercury Monitor. Under the Executive, three
main subprograms operated in sequence. NETCHECK performed
automatic tests of equipment and data flow throughout the entire
Manned Spaceflight Network, certifying it ready for the launch of the
spacecraft. It succeeded the CADFISS (Computation and Data Flow
Integrated Subsystem) program used in Mercury41 . ANALYZER did
postflight data reduction. However, the Mission Operations Program
System remained the heart of the software, responsible for all mission
operations, such as trajectory calculations, telemetry, spacecraft en­
vironment, backup of the on-board computer, and rendezvous calcula­
tions. It divided into a number of modules: Agena launch, Gemini
launch, orbit, trajectory determination, mission planning, telemetry,
digital commands, and re-entry, with several subprograms within each
section42. Each subprogram was highly sophisticated and very power­
ful. The re-entry profram, for example, could calculate retrofire times
22 orbits in advance 3.

IBM found it impossible to complete this complicated system
with the tools used in the Mercury program. All of the Mercury con­
trol software was in assembly language. Aside from the assembler,
software tools were minimal, reflecting the state of the art circa 1960.
Partly inspired by the difficulties of developing a large system such as
Mercury and SAGE and partly to help commercial customers creating
new software to match the size and capabilities of the new line of
mainframe computers, IBM provided a much better set of tools with
its 7094 series machines than with earlier models. A fairly robust
operating system, IBSYS, could be used with the 7094, and a

COMPUTERS IN MISSION CONTROL 253

modification of it gave the Gemini software developers a decent editor
and compilation tools for high-level languages. Called the Compiler
Operating System, it included a combination FORTRAN/Mercury
compiler called GAC (for Gemini-Apollo Compiler), making it pos­
sible to do some programming in FORTRAN. The Mercury compiler
contained all the functions of SOS, the Share Operating System,
which was IBM's standard system of the late 1950s and the predeces-
sor to IBSYS44.

Besides using better tools, the Gemini programmers tried to keep
the architecture simple and changeable. Using process control tables
was an important design decision, as they could be changed to fit dif­
ferent mission requirements with some ease and without disturbing
software in place. Their use continued throughout the Apollo and
Shuttle programs45. The Executive was a further refinement of the
real-time control program first approached in Mercury. A relatively
spare 13,000 words in size, the Executive provided priority-based
multiprogramming. It could transfer needed data to supervisory
routines which, in tum, started processes46. At the lowest level, con­
tention between cyclic processes and demand processes characterized
the RTCC47. Its obvious success helped form NASA's ideas of what a
good real-time operating system should be, which later influenced the
nature of the operating system on board the Shuttle. NASA personnel
were close to the Gemini-Apollo ground system development, some­
times defining test cases and duplicating programs to check whether
requirements had been met48.

Even with better tools and a more powerful computer, the
processing needs of the mission control software quickly exceeded the
capacity of the 7094. IBM recognized that the usual 32K memory of
the machine would be insufficient when the company prepared its
proposal. Therefore, it suggested the use of look-ahead buffering,
which meant the next set of programs needed during a mission would
be loaded over the ones going out of use49. The commercial practice
of using tape storage for waiting programs became impossible due to
the size and speed demands of the Gemini software. Thus, IBM added
large core storage (LCS) banks to the original machines. These banks,
even though not directly addressable, provided a higher speed secon­
dary memory. Tapes would be loaded to the large core and then trans­
ferred to primary storage as needed50. An IBM engineer credited
work in the use of LCS and paging memory as being influential in the
development of IBM's version of virtual memory, the main software
technological advance of its fourth generation 370 series machines of
the early l 970s5 1. As the Gemini program continued, NASA grew
more concerned about the ability of the 7094s to adequately support
Apollo, considering the expected greater complexity of the navigation
and systems problems. Kraft expressed concern that the "real time" in
the RTCC needed enhancement52. As the large core filled, loading

254 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

from tape for certain programs became common practice. Once, when
President Lyndon B. Johnson was visiting the control center, the
NASA official leading the tour wanted to show the president a fancy
display. Not fully conversant with the software, he chose one that ran
off tape, so the entire party stood uncomfortably, minutes seeming
like hours, while the machine dutifully found the program and put up
the display53. NASA wanted a change.

It was about this time that IBM announced its System 360 series,
a compatible line of several computers of different sizes using a new
multiprocessing operating system that owed some of its characteristics
to the company's NASA experiences. NASA thought the upper level
machines of the new product, specifically the 360/75, would have suf­
ficient power to replace the 7094s for Apollo, although the LCS
would have to be continued due to the sheer size of the software.
IBM's announcement, as is usual with the company, preceded the
shipping dates of the machines by some months. It did not take long
for NASA to realize this and become impatient. Control Data Cor­
poration (CDC) released its 6600 line of computers in 1965 and was
actually shipping to customers as IBM failed to deliver. Robert
Seamans of NASA Headquarters suggested that the Manned
Spacecraft Center buy 6600s and let IBM retain the software
contract54. CDC's machine was actually faster and more powerful
than the 360. Later, CDC sued IBM, claiming its premature 360 an­
nouncement sought to hold the market and that claims made for the
360 were not realized when the product actually came out. IBM
settled out of court with major concessions totaling nearly $100 mil­
lion, rushing delivery of the first 360 to Houston in time to stave off
the movement to other vendors. NASA announced the conversion to
the 360 in a news release dated August 3, 1966.

Transition to Apollo

Although the four remaining 7094 computers continued to sup­
port flight operations through the first three Apollo (unmanned) mis­
sions, IBM used the first replacement 360 to begin software develop­
ment for the Apollo lunar flights. As in Gemini, two spacecraft, the
command module (CM) and the lunar excursion module (LEM),
needed support, with five computers each contributing to the overall
system. Again, LCS provided added memory. Unfortunately, all the
software could not be moved directly from one machine to the other
due to the change in operating systems. The new operating system for
the series, OS/360, had the multitasking capability developed during
Mercury days but operated primarily in batch mode. Many programs
could be entered, either by cards or through remote entry from ter­
minals, and run together, but not in real time. The priority-interrupt

COMPUTERS IN MISSION CONTROL 255

provisions on the standard operating system were not sophisticated
enough to handle the sorts of processing Apollo needed. Beginning in
1965, IBM modified the operating system into RTOS/360, the real­
time version55 . Extensive use of modularization helped in the tran­
sition. Separately compiled subprograms in FORTRAN, moreover,
could be moved to the 360 with relative ease, but the assembler-based
code had to be modified. This work continued for nearly as long as it
took to get the original system operating, even though the architecture
remained essentially intact.

One problem would not go away: memory. Each 360 had 1 mil­
lion bytes of main memory, about four times the size of 7094 main
store. A further 4 million bytes of LCS was added to each machine56.
Even with some of the NETCHECK functions transferred to the new
twin 360s in the Goddard Real-Time System (GRTS) and with
seldom-used programs such as the radiation dosage calculator and
ground telescope pointing program permanently located off-line,
memory use rose to match the additional space. Simply meeting the
requirements for ascent filled the main store57. At this time, NASA's
Lynwood Dunseith, who had worked on the ground software since
Mercury, realized that the worry over memory was causing program­
mers to develop idiosyncratic, "tricky" code in an effort to save a few
words58. Dunseith knew the danger of that attitude, since it made the
programs even more complex than their absolute complexity war­
ranted. During the period he managed the software development, he
tried to reduce the dependence on such expedients. It helped him that
the 360s made it possible to develop significant parts of the software
in FORTRAN59. Although FORTRAN is not as easily readable as
some other procedural languages, it far exceeds 360 assembler in un­
derstandability.

As the Apollo system moved into the operations phase, the use of
the Dynamic Standby Computer waned. During the first manned
flight, Apollo 7, the Mission Control Center used a single computer
for just under 181 hours of a 284-hour support period, which included
countdown and postflight operations60. During Apollo 10, a dual
spacecraft flight with LEM operations near the moon, the plan was to
use the standby for 5 hours before a maneuver. Therefore, on only six
occasions in an 8-day flight would there be two-computer support. To
assist an off-line standby in coming to the rescue of a failed primary,
operators made checkpoint tapes of current data every 1.5 hours. A
failure of the Mission Operations Computer occurred at 12:58 Zulu on
May 20, 1969. By 13:01, the standby had been brought up, using a
checkpoint tape made at 12:0061 . No significant problems resulted,
which is actually a good summary of mission control operations
throughout the Apollo era, Skylab, and the Apollo-Soyuz Test
Project.

256 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 8-2. A display and control panel m Mission Control for the Shuttle
program. (NASA photo S-80-26315)

ORIGINAL; PAGE IS
OE POOR QUALITY

COMPUTERS IN MISSION CONTROL 257

Reducing Mission Control: Conversion to the Shuttle

During planning for the Space Transportation System, with fre­
quent launches and multiple missions aloft expected, NASA studied
ways to make the spacecraft more autonomous and thus reduce the
functions of mission control. IBM again won the ground support con­
tract, this time over primary competitor Computer Sciences
Corporation62. Beginning in June 1974 and continuing into the 1980s,
IBM worked on a new software system and mission-specific
changes63. Five System 370/168 mainframe computers make up the
Shuttle Data Processing Complex, the nominative successor to the
RTCC. Each has 8 million bytes of primary storage, and, being virtual
memory machines, do not need auxiliary storage of the LCS type.
Disk is used instead. Three computers are involved during operations:
One computer is the Mission machine, one, a Dynamic Standby Com­
puter, and a third, the Payload Operations Control Computer. Now, in
the late 1980s, these computers are being replaced by IBM 3083 series
machines, marking Mission Control's fourth generation.

By this time, quite experienced and fairly knowledgeable about
what would be needed, NASA and IBM approached the ideal of
thorough design before coding began64. Reflecting the structure of the
on-board software, the requirements documents proceeded through
different levels of complexity. For the first time in ground software
development, a quality assurance group from outside the development
organization watched over software production65.

The efficiency of the software developers increased with the con­
version from batch processing to interactive processing. During Mer­
cury, Gemini, and Apollo, programmers tested new software in batch.
With the main IBM Federal Systems Division office nearly a mile
from the actual computers housed in Building 30, it was necessary for
a courier to pick up card decks, deliver them to the Computing Center,
and later return the results. In this manner, an average of only 1.2 runs
per programmer per working day was possible. During 1974-1976,
NASA commissioned a study of batch versus interactive program­
ming, in which programmers using terminals could prepare jobs and
run them from the IBM building. Using IBM's Time-Sharing Option
(TSO) system, interactive processing clearly won out over batch in
terms of effectiveness. NASA accordingly ordered all Shuttle ground
software to be done under the time-sharing system66.

Regardless of the intentions of the Shuttle managers to shrink the
ground operations software, the ground support functions provided by
the Data Processing Complex have not been reduced. Some parts of
the original tasks are handled more completely on-board, but the con­
tinued addition of new equipment and concepts increased the size of
the software. It supports over 40 digital displays and 5,500 event

258 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

lights. The total size of the system is 600,000 lines, roughly 26%
larger than Gemini and rivaling Apollo67. Shuttle missions are ap­
proachinf the complexity that a single computer can no longer
support6 . In addition, high between-flight change traffic delayed the
transition to the operations era. As late as 1983, 8% of the total code
changed each mission, keeping 185 programmers busy. New and
more powerful computers can always be added, but the process of
changing software must be automated or the expense of labor inten­
sive maintenance will continue to the end of the Shuttle program.

UNMANNED MISSION CONTROL COMPUTERS

Mission control of unmanned spacecraft is significantly different
from that of manned spacecraft. Most important of the differences is
the long duration of many unmanned flights. Except for Skylab, no
American manned flight has lasted more than 2 weeks. In contrast,
when Voyager 2 encounters Neptune in 1989, it will have flown for
12 years. During that time, the Voyager Project staff must monitor the
health of the spacecraft and gather and interpret the data it is collect­
ing. Few of the original engineers will still be associated with the mis­
sion, so conceptually mission planning for a long-duration unmanned
flight must concentrate on an extended view of operations and the
development of detailed documentation69. Another difference is that
the manned mission control centers are used for one project at a time,
whereas the unmanned centers may be controlling a wide variety of
missions. So far, there has been no overlap in the manned programs in
the sense that no Mercury flights continued after Gemini flew, and so
on. In contrast, the Jet Propulsion Laboratory (JPL) commanded Sur­
veyors, Lunar Orbiters, Pioneers, and Mariners all at once in the
mid-1960s, and has continuously been responsible for multiple mis­
sions.

Control of Near-Earth Missions
at the Goddard Space Flight Center

NASA formed Goddard Space Flight Center with the Naval
Research Laboratory's Vanguard Project team as a nucleus. After
Vanguard ended, use of the IBM 704 in downtown Washington
ceased, and a model 709 was installed at Goddard on May 23, 1960,
as a replacement machine for use in working with earth-orbiting satel­
lites. Within 2 months, the first of six 7090 computers also arrived.
Folklore has it that Goddard soon housed 1 % of the total computing
power in the entire United States. Although two of the 7090s and later

COMPUTERS IN MISSION CONTROL 259

other computers supported Mercury flights, Goddard's most substan­
tial customer base has been the plethora of scientific, navigational,
communications, mapping, and weather satellites launched in the last
quarter of a century.

Goddard pioneered the use of dedicated small computers for
specific missions, thus eliminating the complexity of handling mul­
tiple missions on a single mainframe. This occurred in spite of the
presence of large numbers of big computers. Some command and con­
trol and definitely navigation calculations are carried out on large
machines, but each project has a small computer to handle data reduc­
tion and the day-to-day operation of the spacecraft. As examples, the
Nimbus weather satellite program used Control Data 160A computers,
the Orbiting Geophysical Observatory had Scientific Data Systems
SOS 910 and 920 computers, and so did the Orbiting Solar
Observatory 70. These machines could be sent on to another project
when their current job ended, and in fact some of the SOS machines
had rather long lifetimes of nearly two decades. In addition to using
small computers at the control center, Goddard installed UNIVAC
1218 computers in the Manned Spaceflight Network ground stations,
originally for control of Gemini and Agena and later for Apollo. Both
the 160As and 910s were among the first products of their respective
fledgling companies, and, with the 1218 and Digital Equipment
Corporation's PDP series, the forerunners of the minicomputer boom
of the 197 Os.

Relatively little changed in the general techniques of mission con­
trol at Goddard for about two decades. As the 1980s continue, the
trend is for the majority of unmanned satellites to be commercial
rather than scientific in nature. Commercial satellites are controlled by
their owners, although NASA provides orbit determination and some
command services on a reimbursible basis. However, sufficient mis­
sions exist, such as the expected 17-year duration Hubble Space Tele­
scope, to keep Goddard involved in ground control activities for some
time, along with its continued commitment to NASCOM and
STADAN.

To the Sky's Limit: Mission Control at JPL

As Goddard strove to standardize earth orbital operations and dis­
tribute its functions, JPL approached the similar problems in a dif­
ferent way, centralizing operations as much as possible. In many
respects, Goddard and JPL are fraternal twins. Each has a set of
ground-tracking stations, .plus on-site control centers for a variety of
missions. The difference is that JPL is responsible for deep space ex­
ploration. In fact, the lower limit of its responsibilities is set at 10,000
miles. For a short period, it did satellite work. JPL developed the

260 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

guidance system and propulsion for the Sargeant battlefield missile
and studied adapting clusters of the motors as upper stages to the
Redstone missile. The resulting Jupiter-C launch vehicle put
America's first satellite into orbit on the night of January 31, 1958.
Called Explorer I, the satellite carried IPL-developed instrumentation.
A room near the office of laboratory director Dr. William Pickering
became an active unmanned mission control center since it contained
communications equipment connected to the tracking network that
confirmed Explorer reached orbit. That same year NASA was formed
and JPL became closely affiliated, changing its mission to deep space
work.

In 1959, the early Pioneer flights aimed at the moon. JPL built a
series of tracking stations, beginning at Goldstone in the high desert of
California, to track the missions 71 . Unlike earth orbiters, whose close­
ness to the planet make it necessary to have a large number of stations
to stay in contact, deep space probes needed only three stations spaced
so that one would always face the spacecraft. Initially, the stations
were located in Australia and South Africa as well as at Goldstone,
but later one in Madrid replaced the African station and the Australian
one moved from Woomera to Canberra72. The stations were collec­
tively named the Deep Space Instrumentation Facility.

From the beginning, JPL considered using computers in the sta­
tions as data-gathering devices. One 1959 rerort suggested using IBM
650 machines, which were small computers 3. In 1962, Dr. Eberhardt
Rechtin, head of the Instrumentation Facility, sent Paul Westmoreland
and Carl Johnson to evaluate the computers of Scientific Data Sys­
tems, a new company 74. Westmoreland and Johnson thought that the
SDS 910 could be used as the data gatherer, with the slightly more
powerful 920 as a data processor. Accordingly, Rech tin directed that
the machines be ordered and got the first 920 built and the second
910. The 910s and 920s still functioned in similar tasks as late as
1985!**

Functionally, the SDS computers took data received from the
spacecraft and formatted and recorded it on magnetic tape. A com­
puter at JPL processed the data more completely. Initially, an IBM
704 similar to the one used for Vanguard did the work. JPL installed
the computer in late 1958 to use with Pioneer 3 and 475. Early Ranger
lunar impact flights later had all data reduction done off tape on that
machine. Data in analog form on the tapes would be translated into
numbers that spewed out on teletypes and punched paper tape.
Aerojet-General Corporation also owned a 704 that JPL used as a
backup 76.

**After 1968, the SOS machines were known as XDS 910 and 920. Xerox
bought out SOS and renamed the products "Xerox Data Systems."

COMPUTERS IN MISSION CONTROL 261

Planning for the first Mariner missions revealed that more com­
puting power would be needed at JPL to handle the increased data
generated both by more instrumentation and longer mission lifetimes.
Dual 7090 computers similar to those installed at Goddard were
bought for data reduction. To provide flight controllers with more up­
to-date information about spacecraft telemetry, a Digital Equipment
Corporation PDP-1 computer served as a near-real-time data proces­
sor. Data could be displayed on teletypes from 4.5 to 7 minutes after it
was received77. By this time the Deep Space Instrumentation Facility
could transmit data via NASCOM instead of having to wait for air­
mail to deliver the tapes. Operations with this equipment taught JPL at
least one useful lesson: Power fluctuations in September and Decem­
ber 1962 caused both 7090s to go down at once, eliminating the
redundant capability 78. As a result, JPL built an auxiliary power
generation facility, perhaps leading the manned Mission Control Cen­
ter, under construction at this time, to do the same.

Centralizing the Effort

During the 1960s, NASA found itself about to be involved in a
large number of critical deep space projects. Ranger would be fol­
lowed by the Surveyor series of lunar landing missions. Mariners
would continue to fly to Venus and Mars, with several targeted for
Martian orbit and imaging duty. Lunar Orbiters would look for Apollo
landing sites and Pioneers were aimed at deeper space. JPL did not
have primary responsiblity for all of these programs. Lunar Orbiter
came from Langley Space Flight Center, and Pioneer from the Ames
Research Center. If each responsible organization had to set up a con­
trol center for its spacecraft, considerable overlap and duplication
would occur. Accordingly, in 1963, NASA decided to have JPL track
and command all deep space missions, with the help of project per­
sonnel from home centers stationed at JPL79. On December 24, 1963,
JPL's director William Pickering formally established the Deep Space
Network80. Managed by William H. Bayley, with Eberhardt Rechtin
as technical head, it would serve all of NASA, just like NASCOM did
from Goddard81 .

JPL was already building a Space Flight Operations Facility to
house new, more powerful computers and the various teams from its
own projects. Anticipating NASA's decision, Eugene Giberson, then
of the Surveyor project, directed some of his money to help develop
the centralized computer center82. The combination of the Operations
Facility and the Deep Space Instrumentation Facility was the Deep
Space Network. After opening on ~ay 15, 1964, the Operations
Facility supported Mariner Mars 1964 as its first flight83.

262 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Even though expected to handle all deep space missions, some or­
ganizations fought to retain mission functions. Ames set up the
Pioneer Off-Line Data Processing System (POLDPS) in 1965 to
handle non-real-time data recorded by the SOS 910s at the stations84.
Both the Lunar Orbiter and Surveyor projects also wanted to record
their telemetry data at the stations, so the Network bought dual SOS
920s for each site. Later, Pioneer 10 and 11 data were processed with
these systems85. Langley originally wanted to control the Viking
Lander, but costs and common sense forced that job back to JPL.

Figure 8---J. The Space Flight Operations Facility central control room at the Jet
Propulsion Laboratory. (JPL photo P23358BC)

Evolution of the Space Flight Operations Facility

JPL 's Space Flight Operations Facility has had three generations
of equipment. Beginning in 1964, two strings of solid-state computers
formed the basis of the system. Each consisted of an IBM 7094
mainframe, an IBM 7040 medium-sized computer, and an IBM 1301
disk storage system placed between them. Later, a trio of System
360/75 computers replaced this configuration. More recently, the con­
trol center adopted a distributed computing strategy similar to
Goddard's.

ORIGINAL PAGE rs
OF, POOR QUALITY

COMPUTERS IN MISSION CONTROL 263

As in the manned programs, during critical mission phases both
strings of the original generation of equipment would be running at
the same time but with the data from the stations only routed to one of
them. If a 7094 failed, its associated 7040 could be connected to the
other 1301 (and, thus, the second 7094), leaving the second 7040 as
another layer of backup86. Later upgraded to a 7044, the smaller com­
puter acted as a traffic cop on the incoming data. All inputs (teletype,
telephone, microwave) went to the machine before they went
anywhere else, and the software in the 7040 routed the data to active
programs, inactive programs, or administration stations87. George
Gianopolis of JPL, one of those charged with the responsibility of get­
ting the system to work, remembers that the 7040s were especially
difficult to install88. The 7040s deposited data on the 1301 disk
storage system. A 54-megabyte hard disk, the 1301 served both the
7040 and the 7094 from the middle, so both could access data at iden­
tical addresses. This concept presages the network file servers in the
modem office and the Common Data Buffer in the Launch Processing
System. Airline reservation systems and other large data base opera­
tions utilized the same configuration beginning at about the same
time. Using a smaller computer to handle resource-hungry input and
output tasks and a common storage area is a standard network concept
today. As for the 7094, the flight operations director could control its
use by "percentage time sharing" in which higher priority jobs simply
got more machine time89. The primary functions of the 7094 were
telemetry analysis, tracking, predictive work for the stations, and
maneuver commanding. UNIV AC computers in the JPL institutional
computer center did the navigation calculations as batch jobs, separate
from the Operations Facility computers90.

Although a powerful system, the 7040/7094 combination had to
stretch to meet mission requirements. Upgrading it to 7044/7094
Model II status helped some, but the system could handle only a
Mariner mission (two spacecraft) or a Surveyor but not both91 . Sur­
veyor project officials even had to add a PDP-7 as a front end com­
puter to the front end computer, putting it between the stations and the
7044 and driving strip chart recorders92. More assistance came during
the Mariner Project when engineers realized the UNIV AC 1218 com­
puters used in preflight testing of the spacecraft could also do en­
gineering telemetry analysis93. This was not done until Mariner Mars
1971. Soon, though, the acquisition of more powerful 360 series
machines ended the reign of the 7094s.

264 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Monolithic Computer Systems

In October of 1969, JPL installed its first System 360/75, a gift
from the Manned Spacecraft Center, where it was considered surplus.
A second machine arrived in April 1970, this one left over from the
demise of NASA's Electronics Research Center in Cambridge, Mas­
sachusetts. JPL bought a third machine, which survived until August
198394. Each 360 had 1 megabyte of primary core storage and 2
megabytes of LCS, half that of an Apollo-configured machine95. Two
of the 360s controlled missions as a redundant set, with the third used
for development work. A special switch connected the 360s to the in­
stitutional UNIVAC 1108 mainframe computers so that tracking data
could be directly transferred for use in navigational computations96.
But the gift from Houston was not entirely welcome at JPL, for along
with it came the Real-Time Operating System (RTOS) developed by
IBM for the Apollo program. As Gianopolis saw it, "what we picked
up from Houston was good for Houston, but not necessarily for us"97.

Unmanned spacecraft missions needed to create large data bases
capable of handling the long series of telemetry signals that might go
on for months or years. IBM's RTOS tried to keep all data in core
memory, using disk storage as read-only devices. JPL needed to be
able to write to the disks. Also, each Apollo computer concentrated on
real-time functions and did not do development work. JPL wanted to
run FORTRAN jobs on the machine, but RTOS could not handle it98.
A crisis of sorts arose with the Mariner Mars 1971 orbital mission.
During the cruise period to the planet the ground software failed every
5 hours. By the time Mariner reached orbit around Mars, the failure
rate fell to once every 20 hours99. Still, something had to be done, so
JPL contracted for an overhaul of the operating system, culminating in
1972 with the JPL/OS, which incorporated the needed changes.

Since the 360s lacked a small computer for a front end (original
thinking being that the machine could handle the load by itself), JPL
implemented the idea of using the preflight testing computers in mis­
sion support for Mariner Mars 1971 too. Incoming telemetry went to
the UNIVAC 1230/1219 set first. Then the 360s did commanding,
tracking data evaluation, predictions for the stations, and engineering
work. Besides the UNIVAC test set, the UNIVAC l 108s provided
navigational data and, by then, the Image Processing Laboratory at
JPL had its own 360/44 for processing planetary imaging 101 .

Viking, a much more complex project than Mariner, and with es­
sentially four spacecraft (two orbiters, two landers) to control,
stretched the 360s and their helpmates to the limit. JPL assigned the
small UNIV A Cs to handle the Viking Orbiter data, since the
spacecraft were built and tested at JPL and the software was in place.
System 360s controlled the landers 102. At peak, 700 controllers

COMPUTERS IN MISSION CONTROL 265

worked the Viking mission, more than on any other space program to
date (The count was double that of Skylab, the largest manned support
group)103. Facing dual Voyager missions and Galileo, with the
prospect of continuing Viking far past the original mission life es­
timates, JPL was again looking for a way to upgrade mission control.

Distributed Computing Becomes the Answer

As JPL discovered planning the computers for the Voyager on­
board systems, functionally distributed small computers offered more
reliability and cost savings than large single processor systems. The
Laboratory implemented a distributed system to fill its Voyager
ground control needs as well. Viking was the last mission to be sup­
ported from a large mainframe computer. By the time Voyager neared
Jupiter, two strings of dedicated minicomputers performed the
telemetry, tracking, and engineering monitoring functions. A single
minicomputer shared by several projects did the commanding. Why
did the change occur? First, the Deep Space Network was unhappy
with the level of support it derived from a centralized system. Second,
even though centralizing deep space mission control at JPL was a
sound idea, putting too many missions on a single computer system
was less so. No matter how much JPL tried to standardize things, each
mission had its unique characteristics, calling for changes in the sup­
port software. With a distributed system, changes could be made with­
out affecting other software. When missions neared critical phases,
such as launch or encounter, software had to be frozen until the phase
passed. With enough spacecraft aloft, the amount of time available to
change software became quite short104.

NASA provided an additional impetus to switch to a distributed
system. Acknowledging the Deep Space Network's concern over
using the 360s in the JPL control center and worried that the Network
could not monitor its performance when supporting projects originat­
ing at other centers (such as Pioneer), the Agency directed the Net­
work to develop monitoring capability in separate computers. Be­
tween 1972 and 1974, a set of ModComp 2 minicomputers was con­
nected in a local area network at JPL to implement this directive 105.

In 1976, the control center itself converted from 360s to Mod­
Comp 2s and 4s in preparation for Voyager. Later the Laboratory
added ModComp Classics and retained some of the UNIVAC 1218s
and 1230s (renamed 1530s after upgrades) 106. These computers are
arranged in redundant sets. Each project (Voyager, Galileo, etc.) has
its own telemetry machine and shares a command machine. A routing
computer in the basement of the Sp~ce Flight Operations Facility
building is the entry point of all data from NASCOM, sending the
data to the appropriate computer. The command computer reverses the
process for outgoing data.

266 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

~a ~ I~ I'!

'I'
..

B i
~ '

& 18 ~ '
~ I!'

!~ 0 jl j f ~

~
>-
I-
::i
0
< u.
en z
0
j::;

c < • a: ! UJ
CL
0

i I-
J:
Cl

0
'-'

::i ~
u. ~
UJ \SJ <.)

< glli CL ~ I en j§ [!] 0
0

~~ I ~ ~ ~ l iJ i" ~
•

~ :,

~
t l
~ ~ I

' lil ~ ' ~
' • ; - ~ ~ •

t1~ 8
q;"' 0

~§
.
" ':';< g

V ,.ii:
I \ o-
I • \ zo
I \ ~ ~
I \ h -
I \ 8f: I \ "'• ' ~~

~
r-
' :,:~~

-.,
',

~)~ --·

Figure 8--4 , A schematic of the components of the Space Flight Operations
Facility. (JPL 333-6620)

ORIGINAL PAGE IS
0.E .£00R QUALITY

COMPUTERS IN MISSION CONTROL 267

By the early 1980s, the Deep Space Network was heavily into
distributed computing. It converted from the 920s to ModComp 2s at
the stations and ordered three Digital Equipment Corporation 11/780
VAX superminicomputers for use at JPL. Nearly 100 minicomputers
were connected on an Ethernet. The use of high-level languages be-
came the rule rather than the exception 107. Key to the future success
of the Deep Space Network is the inherent flexibility of distributed
computing centers. They mirror the use of modules in software: inter­
changeable parts in a changing field.

Software Development in the Deep Space Network

Software development for the control center and the stations has
always been a challenge, as programmers have struggled to use
machines built primarily for commercial use in the arena of real-time
control. In keeping with the centralization of the computers in 1963,
the original software developers worked under Frederick Lesh in a
"program analysis group" 108. JPL separated software development for
mission operations from that of the network stations just before
Mariner Mars 1969109. Also, at that time emphasis began to be placed
on making the software more parameter-based and, thus, more
flexible and capable of use on multiple missions110. A new manage­
ment concept led to the assignment of a program cognizant engineer
to each software system engineer. The software engineer would define
requirements, prepare test cases, and oversee the program engineer,
who would produce the code. This turned out to be quite successful
and avoided the difficulties encountered when an engineer thought
(wrongly) that he could do both jobs alone111 . In microcosm, this is
the "outside verification" concept used extensively in programming
now.

Martin-Marietta Corporation, the Viking Lander contractors, had
to do some dangerously unique software development when NASA
decided to move control of the Lander from Langley to JPL. Since Or­
biter software development and giving support to other missions tied
up JPL' s computers, Martin took the chance of developing the Lander
software in a "minimal higher or&der language," specifically a hope­
fully transportable subset of FORTRAN. Martin's solution reflected
its recent migration to IBM 370 series and Control Data 6500 series
computers at its Denver plant. These were technologically more ad­
vanced than the JPL computers and could not be trusted to produce
directly transportable software112. The idea worked, but Martin ad­
mitted that the requirement for delivering mission supfort software 10
months before the flight provided strong· motivation 11 .

268 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 8-5. The 64-meter antenna of the Deep Space Network at Goldstone, Cali­
fornia. (JPL photo 333-5967BC)

As JPL moved to a distributed system, a concerted attempt at es­
tablishing software standards has resulted in a state-of-the-art set of
documents 114. Based on structured programming and software en­
gineering principles, these documents and the decision to use more
high-level languages such as HAL, C, and Pascal make the Deep
Space Network one of the most sophisticated software organizations
within NASA. A further decision to no longer change commercial
operating systems (possible now that computers are more general
purpose), will help ensure continued cost reduction and
consistency 115.

Mission control is the most computer-intensive part of spaceflight
operations. From the beginning of both the unmanned and manned
programs, the computer industry has been constantly forced to stretch
the capabilities of both hardware and software in order to meet
NASA's needs. In this way, NASA was a driving force in the
development of multiprocessing operating systems and large com­
puter complexes.

ORIGINAL PAGE IS
OE POOR QUALITY

9

Making New Reality:

Computers in Simulations

and Image Processing

270 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

The computers discussed so far actually flew in space or worked in
direct support of launches and missions. Yet NASA found numerous
uses for computers in areas somewhat removed from flight operations.
Chief among these are simulations and image processing, which made
the training of crews, development of launchers and spacecraft, and
analysis of image data possible.

Simulations are used in hundreds of ways in the space program.
Simulation programs and hardware test the workings of vehicles and
spacecraft, determine the accuracy of flight paths, train controllers,
check out designs, and actively contribute to the software develop­
ment process. Simulations help NASA find out whether its programs
and projects will work as planned, lessening the risks for crews and
equipment. Especially important are simulations used in crew training
and simulations used to test hardware. Both provide models by which
to judge the extent and efficacy of NASA's dependence on simula­
tions and to demonstrate the dependency of such simulations on com­
puters.

Image processing was developed to make the analysis of digital
images transmitted by unmanned deep space craft more consistent and
fruitful. At first largely driven by the needs of the Jet Propulsion
Laboratory's (JPL) scientific community, imaging spread quickly with
applications such as Landsat and the Shuttle's imaging radar. From
spectacular images of distant worlds to detailed pictures of the
neighbor's farm, imaging technology has contributed to the quality of
life on earth. Without the use of high-speed computers, the analysis
and use of the billions of bits of imaging data would be impossible.

CREW-TRAINING SIMULATORS

NASA's requirements for flight simulators far exceeded the state
of the art when the first astronaut crews reported for duty in 1959.
Feeling obligated to prepare the astronauts for every possible contin­
gency, NASA required hundreds of training hours in high fidelity
simulators. Each crewman in the Mercury, Gemini, and Apollo
programs spent one third or more of his total training time in
simulators. Lunar landing crews used simulators more than half the
time 1.

Simulators must provide the astronaut trainee with as close an ap­
proximation of spaceflight as is possible on earth, without losing sight
of the need to extensively practice procedures to respond to failures as
well as nominal events. Requirements for realism increase the com­
plexity of the simulation. For example, when an astronaut fires
thrusters, the simulator must activate readouts and lights showing the
thrusters firing, fuel reducing, velocity changes, and also show move­
ment in the scene outside the cabin window. In a moving base

COMPUTERS IN SIMULA TIO NS AND IMAGE PROCESSING 271

simulator, such as a simulator in which a spacecraft cabin is
suspended on hydraulically moved pylons to enable it to tilt, physical
motion must take place. Causing all these things to happen and coor­
dinating them to happen simultaneously is the difficult task of the
simulator designer2.

A manned spaceflight program always had more than one type of
simulator. Usually there was a pair of full-function simulators, one
fixed base and one moving base, used for procedures training and ex­
tended simulations. Often, part task trainers were needed for more dif­
ficult mission phases as well. NASA built a simulator for the last 200
feet of the landing of the lunar module. One part-task trainer exists to
train astronauts in using the Shuttle on-board computer system and its
software.

Mission simulators today are so dependent on computers that it
has become necessary for proper design to think of it as large data
processing complex that incidentally is driving displays and perform­
ing other functions in a crew trainer3. For the Shuttle Mission
Simulator several dozen mainframe, mini, and on-board computers in­
terconnect to create window scenes, change displays, move indicators,
and light event lights. Reaching this level of computer involvement
resulted from a steady evolution since the beginnings of manned
spaceflight.

Project Mercury Mission Simulators

When the time came to design the Mercury flight simulators, ex­
perience with aircraft simulators and with those built for the X-15
rocket plane were all that were available. There is one critical dif­
ference between training needs for test pilots of aircraft and those of
astronauts. Although flying experimental aircraft is always danferous,
they are rarely taken to their projected limits on the first flight . Even
the X-15 had a long series of buildup missions, first with a smaller en­
gine, later incrementally increasing speed, then altitude, until a series
of full out flights sent the plane to the edge of space. In rocket flight
the spacecraft is pushed to the outer limits of stress and endurance
from the instant of ignition. Its crews must be fully prepared for all
contingencies before the first flight and continue to be prepared for
every flight afterwards.

The primary simulator for the first manned spacecraft was the
Mercury Procedures Simulator (MPS), of which two existed. One was
at Langley Space Flight Center, and the other at the Mission Control
Center at Cape Canaveral. Analog computers calculated the equations
of motion for these simulators, providing signals for the cockpit
displays5. In addition to this primary trainer, a centrifuge at the U.S.
Naval Air Development Center in Johnsville, Pennsylvania, served as

272 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

a moving-base simulator. A Mercury capsule mock-up mounted at the
end of the centrifuge arm provided ascent and entry training6. Ad­
ditionally, Langley built a free-attitude trainer that simulated the at­
titude control capabilities of the spacecraft and two part-task trainers
for retrofire and entry practice.

Analog computers commonly supported simulation in the 1950s
and early 1960s. Having the advantage of great speed, the electronic
analog computer fit well into the then analog world of the aircraft
cockpit and its displays. By 1961, though, it became obvious that the
simulation of a complete orbital mission would be impossible using
only analog techniques 7. The types and number of inputs and calcula­
tions stretched the capabilities of such machines so that when NASA
defined requirements for Gemini simulators, digital computers
dominated the design.

Computers in the Gemini Mission Simulators

Training crews for the more complicated Gemini spacecraft and
its proportionately more complicated missions required the use of
digital computers in the simulators. Aside from the tasks done during
Mercury, such as ascent, attitude control, and entry, the Gemini
project added rendezvous and controlled entries utilizing the
spacecraft's greater maneuvering capabilities. At the Manned
Spacecraft Center, NASA installed simulators to provide training for
these maneuvers, including a moving-base simulator for formation
flying and docking and a second moving-base simulator for launch,
aborts, and entry. Besides these, two copies of the primary Gemini
Mission Simulator, which had the same purpose as the Mercury
Procedures Simulator, and the Johnsville centrifuge completed the list
of Gemini trainers. One of the Mission Simulators was at Cape
Canaveral; the other at Houston.

Gemini Mission Simulators used between 1963 and 1966
operated on a mix of analog and digital data and thus are a transition
between the nearly all analog Mercury equipment and the nearly all
digital Apollo and later equipment. Three DDP-224 digital computers
dominated the data processing tasks in the Mission Simulator. Built
by Computer Control Corporation, which was later absorbed by
Honeywell Corporation, the three computers provided the simulator
with display signals, a functional simulation of the activities of the on­
board computer, and signals to control the scene generators8.

Functional simulation of various components was made easier by
the use of digital computers. In a functional simulation, the actual
component is not actually located in the simulator, its activities and
outputs being created by software within the computer. Thus, in the
Gemini Simulator, the on-board computer was not installed, but the

COMPUTERS IN SIMULATIONS AND IMAGE PROCESSING 273

algorithms used in its programs were resident in the DDP computers,
and when executed, activated computer displays such as the incremen­
tal velocity indicator just as on the real spacecraft.

Scene depiction in the Gemini era still depended on the use of
television cameras and fake "spacescapes," as in aircraft simulators.
Models or large photographs of the earth from space provided scenes
that were picked up by a television camera on a moving mount. Sig­
nals from the computers moved the camera, thus changing the scene
visible from the spacecraft "windows," actually CRTs. A planetarium
type of projection was also used on one of the moving-base simulators
at Johnson Space Center to project stars, horizon, and target vehicles.

Gemini simulations often included the Mission Control Center
and worldwide tracking network. No commercially available com­
puter could keep up with the data flowing to and from the network
during these integrated simulations, so NASA asked the General
Precision group of the Link Division of Singer Corporation to con­
struct a special-purpose computer as an interface9. Singer held the
contract for the simulators under the direction of prime contractor
McDonnell-Douglas, which supplied cabin and instrumentation
mock-ups. Fully functional simulators came on line at the Cape and
Houston during 1964.

Moving-base simulation came into its own during the Gemini
program. The docking simulator was in a large rectangular cube that
permitted great freedom of motion in training crews for station keep­
ing and docking. The dynamic crew procedures simulator that repli­
cated launch, abort, rendezvous, tethered (with the Agena upper
stage), and entry maneuvers and procedures suggested the feeling of
acceleration at lift-off by tilting the spacecraft at a rate equal to the g
buildup during launch from about a 45-degree angle to nearly horizon­
tal to the floor. This resulted in a push on the astronaut's back, which
increased from 0. 707 g to lg. Engine cutoff and weightless flight could
be suggested by returning the spacecraft to its original position, giving
a feeling of maximum comfort to the crew 10. Negative gs could be
simulated by tilting the nose down, causing the astronauts to feel their
weight on their shoulder harnesses.

Designing and using the Gemini simulators gave NASA a lot of
experience in producing high fidelity simulations. Actual flight ex­
periences from Mercury went into improving the Gemini simulators.
Gemini rendezvous and maneuver experience helped make the Apollo
simulations better. NASA adopted some of the Gemini equipment for
Apollo. The use of Honeywell's DDP-224 computers continued, while
moving-base simulators were adapted to Apollo use by changing the
spacecraft mock-up and modifying existing techniques 11 . Still, the
Apollo program requirements demanded a further increase in the
amount of computer power.

274 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 9-IA. The Apollo Command Module Mission Simulator. (NASA photo
108-KSC-67PC-l 78)

Figure 9-1B. An artist' s conception of the Apollo Lunar Mission Simulator.

ORIGINAL PAGE IS
OF POOR QUALITY.

COMPUTERS IN SIMULA TIO NS AND IMAGE PROCESSING 275

Computers in the Apollo Mission Simulators

No less than 15 simulators trained crews during the Apollo
Program. Three were the primary Command Module Simulators, with
one at Houston and a pair at the Cape. Two were the primary Lunar
Module Simulators, one at each site. At Houston, a Command Module
Procedures Simulator trained crews just to rendezvous with the com­
mand module, as there was a Lunar Module Procedures Simulator for
lunar module rendezvous and landing training. Gemini's Dynamic
Crew Procedures Simulator became the same for Apollo. Additional
moving-base simulators at the Manned Spacecraft Center were for
lunar module formation flying and docking, and a centrifuge (to avoid
trips to Johnsville). Langley Space Flight Center pioneered the
research into the final 200 feet of lunar landing by suspending five
sixths of a simulator's weight to give astronauts practice in controlling
the lander in the gravity of the moon 12. Another lunar landing
simulator used a jet engine to support five sixths of its weight and per­
mit free-flight landing training. That simulator required a simulator of
its own to keep the crews from crashing it. Finally, a pair of partial­
gravity simulators gave the astronauts the chance to walk in space
suits while having five-sixths of their weight supported. Later in the
program, Marshall Space Flight Center built a simulator for the lunar
rover vehicle.

Among the plethora of simulators, use of the Command Module
Simulators and Lunar Module Simulators nonetheless occupied 80%
of the Apollo training time of 29,967 hours 13. These simulators and
their associated computer systems were crucial to the success of the
program. The Apollo 13 emergency in April 1970, when there was an
explosion in the service module on the way to the moon, demonstrated
the high fidelity and flexibility of the simulators as all lunar module
engine burns, separations, and maneuvers could be tested and ad hoc
procedures developed as the crippled mission progressed.

In contrast to the procedures simulators, all of which were driven
by a single mainframe comguter, the Mission Simulators used net­
works of several computers 1 . Honeywell won a $4.2 million contract
on July 21, 1966 to supply DDP-224 computers for the complexes15 .
Singer-Link was again the contractor for the simulators. Singer al­
located three computers for the Command Module Mission Simulator
and two for the Lunar Module Simulator. The sets of computers could
communicate among themselves by using SK words of common
memory, where information needed throughout the simulation could
be stored 16. Later, a third and fourth computer were added, respec­
tively, to the Lunar and Command Module Simulators. These com-

276 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

puters simulated the on-board computers. By the Apollo 10 flight a
fifth computer, simulating the launch vehicle, completed the Com­
mand Module Simulator computer complex17. The two types of
simulators and the Mission Control Center could do integrated simula­
tions, thus requiring up to 10 digital computers to be working on one
large problem simultaneously 18.

Software became as important to the simulated world of Apollo
as it was in the real world. Software development for the Apollo Mis­
sion Simulators required the efforts of 175 programmers at the peak,
compared to 200 hardware persons 19. Over 350,000 words of
programs and data eventually ran in the two simulators. Using digital
computers, trainers could return the crews to a certain point in a
simulation and try again by simply recording the status of the com­
puters and data on magnetic tape and reloading memory to match the
state of the software at the time desired. This sort of flexibility made
the training task much easier.

Early in the development of the Apollo simulators, a problem
arose that would have had critical consequences if not solved. The im­
portance of the on-board computer to the guidance and navigation of a
moon-bound spacecraft was obvious. Crews interacted with the com­
puter thousands of times in a typical mission; its keyboards contained
the most used switches in the spacecraft. Initially, the Apollo
Guidance Computer (AGC) for both the command module and the
lunar module were simulated functionally, just like the rest of the
spacecraft hardware20. This meant that the major components of the
Apollo modules existed as software in a DDP-224 rather than in their
physical form in the simulator.

Even so, functionally simulating the on-board computer soon
proved to be nearly impossible. Mathematical models and algorithms
for specific Apollo missions had to be sent to the simulator program­
mers from the Instrumentation Laboratory at MIT. Although Singer
contracted for over 20 experienced IBM programmers, the develop­
ment of functional simulations lagged21 . The programmers had to
take logic and create software for the DDP-224s that executed just
like the software on the AGC. Essentially they coded programs al­
ready being coded for the real computer but in a different machine
language. Warren J. North of the Computational Analysis Division at
the Manned Spacecraft Center studied the process of creating the new
software and found it took about 4 months to write the functional
simulation. Since crews needed the software for training at least 6
months before the mission, and some buffer had to be allowed for
last-minute glitches and their solutions, software designs for the AGC,
developed at MIT, had to be available a full year before a flight, a
very difficult schedule to meet at the time22. As a result of this study
and the continued concern of the Apollo Spacecraft Project Office,
W. B. Goeckler of the Systems Engineering Division of the program

COMPUTERS IN SIMULATIONS AND IMAGE PROCESSING 277

asked James L. Raney of Computational Analysis to do a feasibility
study of using a DDP-224 to simulate the AGC23. Goeckler thought it
might be possible to make the Honeywell computer think it was the
MIT computer and execute the MIT code, thus eliminating the need
for rewriting the programs and solving the time problem.

When Raney joined Apollo in February of 1966, he faced a rather
interesting question: Could a floating-point arithmetic, two's comple­
ment representation, 24-bit computer with accumulators and index
registers run programs written for a fixed-point, one's complement
representation, 16-bit machine that buried its registers in memory?
Hardly likely, just about everybody thought--except Raney.

Instead of a functional simulation, a computer running another
computer's code uses interpretive simulation techniques. It takes a
single instruction from the other's program, executes it using as many
instructions as necessary from its own repertoire, and then goes on to
the next. Since the AGC had a unique interrupt structure and limited
arithmetic capabilities (limited compared with the DDP-224), many
Apollo instructions took multiple Honeywell instructions to get
around the differences.

Raney suggested both hardware and software modifications to the
DDP-224. He specified a switch to disable the machine's floating­
point capability. Instructions were added to enable more efficient
table searching and other operations that the AGC did well. To handle
the different word sizes, Raney let the right-most 14 bits of the DDP
word be the value of a corresponding AGC word. The left-most bit
was always set to zero to indicate that it was an Apollo word, and the
intervening bits matched the sign bit of the original word. Words that
could not be translated (i.e., executed one for one), had to be executed
by interpretive subroutines written for the purpose and stored in the
lower part of the Honeywell memory. Raney figured that since the
DDP had a 10-to-1 advantage in execution speed over the AGC,
several instructions could be used to do one Apollo instruction with­
out slowing down the program. He used the index registers in the
Honeywell DDP to act as the Fixed Bank Register, which kept track
of which core rope memory module the AGC was currently using, as
well as the address of the next instruction. Finally, to store the AGC
code, the flight program was put in the upper half of the 64K words of
core, with the interpreter used in the AGC to execute its own instruc­
tions in an area in lower core. The contents of the AGC's 2K erasable
memory and the 8K of common core addressable by all the simulator
computers also was in lower core, along with Raney' s interpretive
subroutines 24.

Despite Raney's careful evaluation of the situation and proposed
solution, many Afollo project personnel opposed it, simply feeling it
was unworkable2 . In desperation, NASA approved the attempt at an
interpretive simulator and bought the modified computers. In the end,

278 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

the simulation within a simulation was spectacularly successful. Even
though Raney and his team took care to time the subroutines so that
they matched execution of the actual Apollo code, the simulated com­
puter was faster than the real article. Following the Apollo 9 earth­
orbiting mission that tested the command module and lunar module
rendezvous techniques, pilot Dave Scott complained that he had up to
12 seconds less time to react when the computer signaled for a
maneuver to begin. This was adjusted for later flights.

Developing the interpretively simulated AGC had several impacts
on the program. MIT could use the simulator as a field test of its code
before flight. Since MIT used tape rather than core rope to send the
programs to Houston and the Cape, errors discovered could be cor­
rected and then the corrections tested in a "real" situation. Crews
could react to the way the software worked with them. Also, the
simulator cost just $4.6 million, compared to an estimated $18 million
for functionally simulating the programs.

Actually, the Apollo Mission Simulators were the last of their
type in that the analog environment of the spacecraft that dictated
hybrid and functional simulations changed to a digital environment
that lent itself to full digital simulations for the Shuttle program.
Evolution to full digital simulation, including digital imaging of win­
dow scenes, meant even more dependence on digital computers.
Making the Shuttle a more autonomous and thus more complex
spacecraft contributed to a massive increase in the size of the com­
puter systems needed to support simulations.

Full Digital Reality: Computers in the Shuttle
Mission Simulators

The difficulty of producing a fully digital simulation of the Shut­
tle may be appreciated by considering the fact that when NASA
issued the first request for proposals for the Mission Simulators, there
was no response26. Singer, which by then had converted Precision
Link to the Simulator Products Division, eventually responded with a
plan for a detailed analysis of the simulation problems of the Shuttle.
NASA had already decided that the extreme cost of developing Shut­
tle simulators would be moderated by acquiring fewer of them27.
Shuttle program director Robert F.Thompson formed a committee in
1970 to monitor development of the simulators and involve the
projected users, the Flight Crew Operations Division, and the Flight
Operations Division, in its design28 . Singer considered the require­
ments and suggested a large complex of mainframe computers
functioning through limited task minicomputers to drive the simulator.

All Shuttle simulators are located at the Johnson Space Center.
The fixed-base simulator replicates the four crew stations on the flight

COMPUTERS IN SIMULA TIO NS AND IMAGE PROCESSING 279

~ •,··- i r · , · lS
· '-1 OF i u, --- ,._ ----- · - -

, "' _, ,s-_ -,
y-- ·._ .. ~ -
-....,; I - •.

r~ ""''-- L ,,,.j ,..,
A /

,,t ·r . .

Figure 9-2. The fixed base Shuttle Mission Simulator (upper center) with some
of its electronics. (NASA photo S-81-27526)

deck of the orbiter. It has window views through both aft windows
and the overhead windows. Hosted by four Sperry Corporation
UNIV AC 1100/40 mainframe computers, 15 Perkin-Elmer minicom­
puters (mostly 8/32s) provide digital images for the windows, inter­
face with the on-board computers, and perform other functions, acting
as fancy channel directors for the mainframes29. A motion-base
simulator recreates the two forward crew stations, all forward window
views, and the heads-up display used in landing. Also hosted by four
1100s, it has 11 minicomputers due to the lesser digital image require­
ments. The fixed-base simulator not only has to display proper images
of the earth and the cargo bay but it also must image the remote
manipulator arm and any payloads, thus requiring the power of five of
the 8/32s. Supplementing the two primary Mission Simulators is the
Shuttle Procedures Simulator. Also called the "Spare Parts Simulator,"
it was often cannibalized to keep the more critical Mission Simulators
running30. In the early 1980s it was scrapped, and a Guidance and
Navigation Simulator was built out of its remaining parts. It is used
for some part-task training.

Singer quickly decided that the Shuttle's on-board computers
could not be interpretively simulated, _as the AGC was31 . IBM's
AP-101 machines used on the spacecraft were roughly as fast as the

280 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

UNIVAC computers, eliminating the time advantage the DDP
machines had over the AGC32. Functional simulation of five com­
puters working in concert was also out of the question. Therefore,
each simulator had five computers, just as in the real spacecraft, and
NASA bought two more as spares. During the course of the program,
however, the computers began failing. With training schedules calling
for simulation runs of 16 hours a day plus maintenance and reloading,
several computers reached 30,000 hours of operation, far greater than
the operational life of the flight version. Roughly 12 or 13 are ac­
tually available at any one time, with the two primary simulators al­
ways kept at a full complement of five, and the Spare Parts Simulator
using the rest33 . The mass memory unit (MMU) of the on-board com­
puter system, the magnetic tape drive that stores the software, is func­
tionally simulated. It proved impossible to keep the actual mass
memories running long enough to be cost effective. Designed for only
a few minutes of use in each flight, they fell apart under the demands
of the simulators. A disk drive controlled by an IBM Series/I proces­
sor replaced the MMU, with delays built in to make it load as slowly
as a tape would.

Software for the Shuttle Mission Simulators is based on a 20-
millisecond cycle controlled by a special real-time clock that sends a
signal to all participating computer systems34. This is about the only
way the large number of computers can be kept in step. The operating
system for the UNIV AC machines is a commercial version that is no
longer supported by Sperry, so NASA has had to specifically contract
for maintenance on the system to avoid having to change the rest of
the software to match a new one35. Singer wrote the real-time operat­
ing system used on the Perkin-Elmer machines36. Despite the large
number of programmers on Singer's Shuttle Simulator payroll (200+
of 611 people), it subcontracts with Perkin-Elmer for some software,
creating a situation where the developers are removed from NASA
managers by another layer of management, which has resulted in un­
satisfactory products37. In 1980, NASA's Robert Ernull, with years of
experience in the on-board software division, was named head of the
simulator division to help clear up problems with the complex
simulators. He tried to reduce the throughput required of the com­
puters to 70% of the total capability to allow for changes. This did not
help what he thought was a second major problem-lack of memory.
Memories were so full any modifications caused a crisis38 .

Aside from the more traditional Mission Simulators, NASA is
beginning to use microcomputers to replace the expensive part-task
trainers of the past. A system called Regency provides a programm­
able 64 by 64 spot touch screen. Detailed graphics of switches and in­
dicators can be displayed, and also component schematics, so that
trainees can communicate with the teaching software by touching the
screen in the appropriate place. The teaching software is based on

COMPUTERS IN SIMULATIONS AND IMAGE PROCESSING 281

techniques developed for the PLATO system at the University of Il­
linois. Increased use of microcomputers and other small computers for
more generalized training will come as the space program enters the
Space Station era. Simulating large spacecraft will be financially im­
possible, but simulation of critical crew stations using software and
graphics for flexibility will be possible. Given the present direction, it
appears that some sort of generic trainer with its characteristics con­
trolled by software will be the mainstay of the training program,
replacing the large computer complexes of the past and present.

l.0'21/ /

KEAS
5.0'.0'

-4.0'.0'

3.0'.0'

2.0'.0'

1.0'.0'

fZ

T 18.0' +

R ><XX
P XXX
y ><XX

STG

ASCENT TRAJ 1

5.0'

5 .0'.0'/8/
BFS

T H R U S T B U C K E T

..------ MPS PRES

....
... ...
za za

Thru5t bucket i5 a term u5ed to de5cribe a temporary
reduction in thr1..15t for aerodynamic loadir12. The thru5t level
change~- a.re control led by en~ine valve5 re5ponding to GPC
gu.idance program5. Orbiter fl i~ht requ.irement5 wi 11 determine
i:he time, duration, and thru5t levels.

Percent of t hru5t (T) i 5 di 5p 1 a'.),•ed on the BFS TRAJ 1

and on the 3 Pc(chamber pre55ure of each engine) meters on
pa.nel F7.

TOUCH SCREEN FOR ANIMATION AND CHECK THRUST LEVELS

Figure 9-3. One of the instructional screens of the Regency system used in train­
mg.

ORIGINAL PAGE IS
OF POOR QUALITY

282 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

ENGINEERING SIMULATORS

While flight simulators are the glory of the simulation business,
engineering simulations help make spaceflight possible. Many times
highly innovative systems proved themselves in extremely accurate
simulations. One example is the control moment gyro system used in
attitude control of Skylab. A large simulator constructed at the Mar­
shall Space Flight Center gave engineers valuable data about the be­
havior and feasibility of the system, which was understood by few
aside from its inventor. Also at Marshall was a simulation of the
Shuttle's main engines. These first computer-controlled rocket motors
run much hotter and closer to destruction than any predecessors.
Software for the engine controllers can be tested and certified in the
simulator. At Johnson Space Center and the Rockwell plant in
Downey, California are full-scale engineering simulators of the entire
Shuttle orbiter. Early in the program, engineers led by Kenneth
Mansfield at Johnson used these simulators to work out preliminary
concepts, flight techniques, and procedures development using func­
tional simulations (no flight hardware). After the installation of the ac­
tual hardware, changes to the individual hardware and software com­
ponents could be checked for integration with the remainder of the
spacecraft in those simulators. Thus, engineering simulators provide
engineers with help in requirements analysis, prototyping, verification
of concepts, and integration testing.

Simulation of components involved in rocket flight began in the
late 1930s with the German development group at Peenemunde,
where attitude control systems were simulated. In 1939, a one-axis
mechanical simulator of the A-4 rocket's motion about its center of
gravity provided valuable control data without the expenditure of test
vehicles39. That device led conceptually to a more robust electronic
analog simulation of the control system designed by Helmut Hoelzer
and built under his direction by Otto Hirschler. Included in that
simulator was an analog device to correct for the vehicle's lateral drift
while in flight. Completed in 1941, the simulator was the most ad­
vanced analog computer built to that time40.

Following World War II, the Peenemunde group brought the con­
cepts of simulation to the United States. Hoelzer became head of the
Computation Laboratory at the Army Ballistic Missile Agency
research site in Huntsville, Alabama. When NASA absorbed the
Agency's Huntsville facilities in 1959, Hoelzer continued his work
and gathered a powerful set of digital and analog computation devices
at the Marshall Space Flight Center. So much simulation work needed
to be done that Hoelzer developed a simulation system consisting of a
set of general-purpose digital, analog, and hybrid computers that
several projects could use. Usually consisting of a large analog device
and supporting digital minicomputers, the hybrids modeled booster

COMPUTERS IN SIMULATIONS AND IMAGE PROCESSING 283

flight characteristics and tasks such as payload loading, space tele­
scope pointing, attitude control problems, circuit design, and mission
support41. One system, the SMK-23, modeled moving vehicles such
as the lunar rover, providing television window views inside a closed
control cockpit42. Besides this central facility, Marshall Space Flight
Center also developed two large stand-alone simulators for special
complex problems: the Skylab Attitude and Pointing Control
Simulator and the Hardware Simulation Laboratory used to model the
space Shuttle main engines.

Skylab Simulators

Prior to Skylab, the primary method of attitude control in a
spacecraft was the use of reaction control system jets that burned liq­
uid fuels. With a mission profile of up to a year's worth of occupancy
and experimentation, Skylab could hardly carry enough fuel to
maneuver its bulk for that length of time. An alternative solution was
a control moment gyro (CMG) system that was very innovative and
complex. A redundant digital computer system provided commands to
the system in orbit. To study the operation of the complete system, in­
cluding the computer and its attendant software, required the construc­
tion of a complete laboratory dedicated to the task.

Three rooms of the Astrionics Laboratory at Marshall were set
aside for the simulator. In the Black Room sat the hardware that simu­
lated the motion of the space station. The Green Room held the con­
trol devices and some of the computing equipment, with the
remainder in the adjoining computer room. Primary computer for the
simulator was a hybrid consisting of an XDS Sigma V digital com­
puter and Comcor Ci5000 and Ci550 analog computers. These drove
the simulation of the orbital workshop and interfaced with the
ATMDC which flew on the actual spacecraft. A SEL 840 digital com­
puter sent digital commands to the on-board computer43.

Originally, the use of the simulator concentrated on mission plan­
ning and hardware and software verification tasks. Engineers expected
to operate it less than half the working hours of a normal week.
However, due to the severe hardware failures on the actual mission,
the simulator reverted to 24 hours a day, 7 days a week operation.
First the micrometeoroid shield and solar panels were damaged during
ascent. This meant that the workshop had to be oriented in ways not
set out in the requirements. For nearly 2 weeks, while Marshall
prepared tools and techniques to effect repairs with the first crew
aloft, the simulator tested attitude control maneuvers that would keep
the workshop from excessive internal heating. Later failures, espe­
cially the loss of a CMG, were successfully modeled and solutions
devised. As in the Apollo 13 flight, ground simulation of actual flight
damage led to safe alternatives.

284 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Space Shuttle Main Engine Simulator

The main engine of the space Shuttle is another complicated
device that needs its own simulator. The Hardware Simulation
Laboratory is the primary site for verifying the design of the main en­
gines, testing the engine controller software, preparing for hardware
changes such as new controllers, and modeling failures such as faulty
valves and sensors that caused engine shutdowns on the pad and in
flight during the Shuttle program. Begun in the early 1970s, by 1975
the engine simulator became operational. At the heart of the first ver­
sion of the Laboratory were two Ci5000 analog computers and a SEL
840 MP digital computer. The engine, acctuators, and sensors are
simulated with the hybrid system. Actual engine control computers
are mounted in the simulator44.

Figure 9---4. A collage depicting the Hardware Simulation Laboratory at the Mar­
shall Space Center used for testing the Shuttle Main Engine Controllers. (NASA
photo 331594)

ORIGINAL PAGE IS
OF POOR QUALITY,

COMPUTERS IN SIMULATIONS AND IMAGE PROCESSING 285

Since Marshall was responsible for all the booster components of
the Shuttle, it developed other devices that modeled those components
in the largest of the active engineering simulators, the Shuttle
Avionics Integration Laboratory.

SAIL: Fully Operational Shuttle Skeleton

The Shuttle Avionics Integration Laboratory, or SAIL, one of the
largest engineering simulators ever built, sits in a big bay at the
Johnson Space Center. A fully functioning skeleton of the Shuttle or­
biter, it contains all avionics components used on the real orbiter,
totaling nearly 1,750 black boxes weighing 6,000 pounds45 . In fact,
they are placed in exactly the same positions as in the actual
spacecraft so that components can be certified and any changes made
to the avionics can be tested. Also, software for a particular flight can
be run to check for errors. Through the first six flights of the Shuttle
program, the SAIL accounted for 241 errors found in the primary
software and 196 errors in the backup software. For the first flight,
SAIL operated for 644 shifts and since then has averaged 80 shifts in
support of a mission. Just short of 350 contractors and NASA person­
nel manned the Lab in its operational phase.

Planning and construction of the SAIL began in 1968, when the
Shuttle Engineering Simulator first began operations. This simulator,
still functioning after many modifications 15 years later, replicates a
cockpit. Scene generators for one forward window and both rear and
overhead windows, as well as four SEL minicomputers and a Control
Data Corporation Cyber 74 mainframe, drive the simulator. Prelimi­
nary work on this simulator f ave experience that contributed to the
SAIL, which started in 19724 .

Until January of 1983, the SAIL itself consisted of a guidance and
navigation test station; the Shuttle Test Station, which is the skeletal
orbiter; the Marshall Mated Element System, which simulates the
propulsion system; a ground standard interface unit, which sends com­
mands and acquires data from the SAIL for display; and a subset of
the Launch Processing System. Since the avionics system is the only
real hardware in the orbiter mock-up, the orbital maneuvering en­
gines, reaction control system, main propulsion, and other non­
avionics boxes must be simulated by computer software or analog
devices. To preserve the exact signal timing, these simulators must, in
some cases, be located farther from the spacecraft skeleton than the
real equipment. The forward reaction control jets simulation boxes,
for example, are over 10 meters from the spacecraft nose. Since Mar­
shall contributed 55 racks of electronics, and Kennedy Space Center
sent the Launch Processing System subset, each center can use the
SAIL to verify software written for equipment under their develop-

286 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 9-5. Astronaut John 0 . Creighton in the cockpit of the Shuttle Avionics
Integration Laboratory. (NASA photo S-79-39162)

ment control, such as the engine controllers from Marshall and the in­
terfaces and selected test software from Kennedy47.

SAIL operators can monitor tests from display control modules
connected to the interface unit. The consoles have color monitors and
individual processors used for fault detection. Aside from validating
engineering changes and software, the SAIL is used for validating
tests to be carried out later on the spacecraft while it is being prepared
for flight48.

An extensive hybrid computing center drove the SAIL and its at­
tendant simulators during its first decade. A pair of EAi 8800 analog
computers simulated the landing gear, runway, and braking. A pair of
7800s represented the aerosurfaces and rate gyros. These analog com­
puters were replaced with a pair of Gould SEL 32/8780 digital min­
icomputers in 1983. Other SELs provide a digital autopilot simula­
tion, equations of motion, radar altimeter, and other nonavionics
functions49. Separate computers generate the window scenes. These
are so much better than those done in the Shuttle Mission Simulator,
especially in regard to the Remote Manipulator System, that crews
prefer to use the Shuttle Engineering simulator in the SAIL for train-
ing when a mission requiring use of the arm is coming up50.

ORIGINAL PAGE rs
O_E EOOR QUALITY

COMPUTERS IN SIMULA TIO NS AND IMAGE PROCESSING 287

Since the Shuttle was the first manned spacecraft to fly without
unmanned development flights , the SAIL' s importance cannot be
minimized. By essentially replicating the entire spacecraft and its
operations exactly as the spacecraft currently exists, the SAIL
provides NASA and the astronaut crews confidence in the hardware
and software for each mission. In its role, SAIL is the ultimate en­
gineering simulator.

OR GINAL PAGE IS
POOR QUALITYi

Figure 9---6 . Image processing makes poss ible scenes from alien worlds such as
this panorama of the Martian surface . (JPL P-17982)

IMAGE PROCESSING

Image processing is one area in which NASA, primarily through
work done at JPL, clearly leads the field. Ironically, even though the
production of high-quality images from space probes and Landsat
earth orbiters has great scientific and public relations value, the con­
cept of digital image processing was not incorporated in the original
planning of a number of early missions. Instead, it had to gain accep­
tance as a "tack-on" to the Ranger and Surveyor programs51 . Robert
Nathan led the development of digital image processing in its early
stages, and with the technical help of other JPL scientists, won for it a
featured place on the planetary missions of the late 1960s and beyond.
Of the early resistance, he later said that he "had to prove to [project
management] each time what they needed" to get the most out of the
first American pictures coming from space.

288 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Nathan came to the California Institute of Technology as a
graduate student in 1952. He earned a Ph.D. in crystallography in
1955 and soon found himself running CalTech's fledgling computer
center, where he received a good grounding in the potential of digital
computers. In 1959, he went to JPL to help develop imaging equip­
ment to map the moon. When he saw the Russian pictures of the far
side of the moon, he thought he could do better and began developing
digital techniques for image enhancement using a small NCR 102D
computer. Nathan reasoned that analog equipment, such as television
cameras, could only be controlled by hardware changes, just like an
analog computer can only have its internal program changed by rewir­
ing or switching components. However, digital processing allows
changes to be made with software, allowing a wider variety of
enhancements52.

Before an image can be processed, it must be put into digital
form. Frederick Billingsley and Roger Brandt of JPL devised a Video
Film Converter (VFC) that could transform analog video signals, such
as those sent back by Ranger spacecraft, into digital data. While they
supervised the construction of the device, John Morecroft of JPL used
the NCR computer to begin programming processing algorithms.
These events took place in 1963, and by the next year Howard Frieden
had programmed the Laboratory's institutional IBM 7094 computer to
process Ranger data. Success with Ranger images led the Surveyor
project to use Nathan's techniques, as well as Mariner Mars 1964. By
the Mariner Mars 1969 missions, the concept of digital image process­
ing was fully accepted.

Why is image processing needed? Due to the resolution and
design of the video cameras used to make the images, they must be
processed in order to return the most information possible. The sur­
face of Mars is such a low-contrast object that without enhancements,
features would be lost in the wash of monocolor53. Also, because the
human eye cannot ad just to differences in illumination across a field
of view, illumination must be normalized54. The cameras operate by
taking an instantaneous view of the scene; the values of the light im­
pressed on the vidicon tube are then made into digital data. Since
images are taken one after the other, very close together in time,
residual images from prior "snapshots" affect the current view55 .
These residual images must be removed, a technique that took several
missions to perfect. Finally, noise from transmitting a signal over
planetary distances must be accounted for.

To see how such processing is done, the real-time display system
used for the Mariner Mars l 971 orbital mapping mission provides a
useful example. A UNIV AC MTC 1230 computer extracted 9-bit
pixel data from the telemetry stream. A pixel is a single picture ele­
ment, or dot. The spacecraft had a camera capable of recording frames
of 700 lines by 832 pixels, or 580,000 individual dots. Such large

COMPUTERS IN SIMULATIONS AND IMAGE PROCESSING 289

numbers of pixels were only practical as interplanetary communica­
tion advanced. Mariner Mars 1964's 200 by 200 pixel imaging equip­
ment transmitted at the rate of 8 l/3rd bits per second. Thus, it took
nearly one entire shift at a Deep Space Network station to record a
single frame. At that data rate it would take over 1 week for a Mariner
Mars 1971 frame! But by 1971, the data rate increased to 16,200 bits
per second, giving a complete picture in 5 minutes and 40 seconds.
Even these rates increased by over seven times in the next few years.

ORIGINAL PAGE IS'
OF POOR QUALITYj ORIGINAL PAGE IS

Figure 9-7 A. Image processing's decade of progress: Mariner Mars 1964 returns
the first closeups of Mars

290 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 9-78 As the planetwide dust storm clears, Mariner Mars 1971 scans
Nix Olympica in January, 1972

,r'\ ,) T(''1 1'N \ ,,.,,J. AL PAG rs
0.L<' POOR QUALIT...Yi

COMPUTERS IN SIMULATIONS AND IMAGE PROCESSING 291

O RIGi:tJAL PAGE IS
Q_E POOR QUALIT Y'i

Figure 9-7C. .. . Details from the Valles Marineris canyon taken by the Viking
Orbiter in 1976. (JPL photos P-7875A; P-13074; P-17872)

292 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Several techniques could be applied to the data by the computer.
Contrast stretching helped increase the contrast of the single color
Martian surface. Original values of the pixels ranged from O (black)
to 255 (white). The computer truncated these to 6 bits, which yielded
64 levels. Since humans can only discern about 25 levels of grayness,
this was more than enough. By increasing the brighter grays toward
the white end of the scale and decreasing the darker grays toward the
black end, the contrast was increased5 . Illumination could also be
normalized using the computers. A "high pass filter" corrected the
value of the pixels by averaging the immediately surrounding 125
pixels and then subtracting the running average from the value of the
pixel57. Another process compensated for geometric distortion.
Simply because of the way the cameras were made, there was distor­
tion in the image frames. Reference points marked on the image
served to help distortion elimination algorithms properly square off
the image. These techniques were also applicable to developing
mosaic maps by taking images shot at oblique angles and flattening
them out in any one of several projections58. Noise elimination could
be done by assuming that any pixel exceeding a difference of 32
levels of brightness from its neighbors was a spike and then changing
the value of the spike to the average of its two immediate neighbors.
From 20 to 10,000 spikes could be found on a single raw image, so
without removal the image would be noticeably damaged59.

Aside from the near-real-time imaging provided by the UNIVAC
and other computers on later missions, long-term processing with a
number of techniques is done in the Image Processing Laboratory at
JPL. First established in 1965 with a new IBM 360/44 computer that
lasted 10 years, the Processing Lab pioneered new imaging techniques
and developed support software to implement them. Central to the
success of image processing was the Video Information Communica­
tion and Retrieval language, or VICAR. Written in 1966 after a
design by Stan Bressler and Howard Frieden, VICAR enabled users to
define a pipeline of processes without having to use cumbersome job
control language. For instance, VICAR could define an image file to
be processed and then specify the type of processing to be performed
on it in a sequential manner. Output from the stretching program
could thus be directed to the input to the geometric transformation
program. The existence of this language significantly increased the
value of the imaging60_

By 1975, when a 360/65 replaced the older computer, the Image
Lab did roughly half of its work on planetary imaging and half on
earth resources work using Landsat images61 . Also, by that time
numerous spinoffs from the program began to tum up in other fields,
chief among them astronomy and medicine. Astronomers now use
digital techniques to enhance their photographs of celestial objects in
the same way spacecraft images are processed. Nathan left the

COMPUTERS IN SIMULA TIO NS AND IMAGE PROCESSING 293

Figure 9-8. Increasing contrast enhances a Mars image. (JPL 511-4353)

294 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

planetary imaging to his colleagues in 1968, when he turned his atten­
tion to a series of grants from the National Institutes of Health to
study applications of digital image processing to microscopy and
medical diagnosis. Robert Selzer of JPL had applied the techniques to
x-ray enhancement. For Nathan, with a background in x-ray crystal­
lography, this was a natural step. Unfortunately, by 1973 the govern­
ment canceled all fundamental research grants in the field and Nathan
found himself without support and nearly without a JPL position62.

Na than managed to hold on for a few more years at JPL on other
projects until, in the late 1970s, he thought of a way to increase the
speed of the then computer-time-hungry image-processing programs.
With Mariner Mars 1971 it became possible to send images faster
than they could be processed. Since then, the ratio between transmis­
sion time and processing time has gone way up in favor of transmit
time. In general, it does not really matter, since instant images are not
now a requirement, but for users of image processing other than
planetary scientists, additional speed is attractive. Also, as the num­
ber of images has skyrocketed from Mariner Mars 1964' s 22 to
literally tens of thousands in the Voyager and Galileo projects, time to
process the images is of interest even to the most patient. The problem
is that as the number of pixels has increased, the number of individual
computations also increases. A 1,000 by 1,000 pixel image weighted
35 by 35 times requires 1.225 billion multiplications63 ! If these are
done in sequence, the amount of processing time would be formid­
able.

To solve this problem, Nathan suggested putting 35 sets of 35
multipliers in parallel on very large-scale integration (VLSI) chips. By
doing that, the amount of calculations is reduced by 1,225 to 1.
Recently, he has begun design of a set of VLSI chips that will speed
up the geometry or reprojection operations64. Basically, the weighting
algorithm is encapsulated in a single chip as a unit of hardware, rather
than as software. Logic in hardware executes faster than logic in
software because all 1,225 multipliers are operating simultaneously in
par.allel rather than one at a time serially as in a central processor.
Nathan's chips have been plugged into Digital Equipment Corporation
VAX 11/780 computers. When the computer is executing an image­
processing program and reaches the point where it wants to.,.do the al­
gorithm on the chip, the computer "calls" the chip just as though it
were calling a software subroutine.

COMPUTERS IN SIMULATIONS AND IMAGE PROCESSING 295

Figure 9-9A. Mosaics combine detailed images into detailed maps: a Martian
desert

296 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Figure 9-98 Volcanic Io

ORIGINAL PAGE I"
OE POOR QUALITY

COMPUTERS IN SIMULATIONS AND IMAGE PROCESSING 297

Figure 9-9C. Heavily cratered Callisto. (JPL photos 211-4704; P-21278;
P-21746)

Nathan sees his invention not only as the solution to a problem in
image processing but also as the beginning of a new future in comput­
ing. Using this technique, special-purpose computers with a lot of
logic embodied in hardware could easily outstrip the existing systems
in speed and accuracy. In some ways, it would be like electronic
analog computers, but better in that the rearrangement of components
would be simpler.

It is fitting to end on this note, as Nathan's application of com­
puters to fulfill a need in space exploration mirrors the entire story of
NASA's use of computers. He approached his tasks in the late 1950s
and early 1960s as a pragmatist. He had some computing background,
as well as grounding in other fields, so he could see the possibilities of
applications. He used equipment usually behind the state of the art but
got beyond the state-of-the-art results with it. And, finally, he repays
computing by finding one way to improve it on the path to solving yet
another problem. Nathan himself said that "NASA is not to be given
credit for initiating advances in image-processing technology, but
NASA has supported the grass roots initiatives." In general, that is
true. NASA never asked for anything that could not be done with the
current technology. But in response, the computer industry sometimes

298 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

pushed itself just a little in a number of areas. Just a little better
software development practices made on-board software safe, just a
little better networking made the Launch Processing System more ef­
ficient, just a little better operating system made mission control
easier, and just a little better chip makes image processing faster.
NASA did not push the state of the art, but nudged it enough times to
make a difference.

Epilogue: Themes in NASA's

Computing Experience

300 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Running throughout the individual histories of American space flight
computer systems are five themes that encapsulate NASA's intentions
and experiences. Developing and evolving over the last quarter cen­
tury, they promise to dominate NASA's use of computers for space
flight well into the future. The themes are: the need for real time sys­
tems, the use of redundancy to maintain reliability and safety, the
choice of off-the-shelf equipment wherever possible, the adoption of
distributed processing, and adherence to the principles of software en­
gineering in system development.

Real-Time Systems

NASA had no choice but to become a leader in the development
of real-time systems, beginning with the decision to use computers to
support manned and unmanned flights. Including a computer on-board
spacecraft further sealed NASA's fate as a developer and user of em­
bedded computer systems--computers within larger systems replacing
or enhancing existing hardware. Therefore, it is in this field of com­
puting that NASA has had its greatest impact.

Contractors working on NASA's real-time systems have been
able to benefit from what they learned in the process of completing
their contract obligations. For example, an immediate application of
techniques used in the Mercury Monitor was IBM's System 360
operating system. Later, experience with fly-by-wire systems quickly
spread to civilian and military applications. Within 10 years of the
first digital fly-by-wire aircraft flight, airliners using the technology
were in prototype. As computers continue to shrink in size and in­
crease in power, the applications of real-time computing will grow
enormously.

Reliability and Safety Through Redundancy

NASA has achieved increasing levels of reliability through a con­
current increase in the levels of redundancy. Ground systems always
had an active backup. On-board systems acquired them as size and
performance improvements made it possible. The use of computers
running in parallel, working on the same calculations, made necessary
the development of redundancy management techniques. Thus, again,
NASA pioneered an area which was as yet poorly developed.

EPILOGUE 301

Proven Equipment

Even though NASA led the way in the development and use of
some aspects of modem computing, one area in which innovation was
purposely avoided was hardware. Acting in the belief that existing
equipment is inherently more reliable and less risky than new,
custom-designed computers, NASA sought to acquire proven proces­
sors wherever possible. As a result, flight systems are often years be­
hind the current state-of-the-art. Nevertheless, they can complete the
missions for which they were purchased. In long-term programs, such
as the Shuttle, processors are being replaced by newer (but not the
newest) equipment where possible.

Distributed Processing

Partly as a result of safety considerations, partly for convenience,
and partly because different organizations often contribute subsystems
to the same spacecraft, there is a continuing trend toward the use of
distributed computing both in flight and on the ground. Most new
NASA computer systems are functionally distributed. On an un­
manned spacecraft, for instance, separate computers handle command
interpretation, data acquisition and attitude control. Other examples
include the Shuttle Launch Processing System and the Shuttle itself,
which has computers on the main engines as well as other com­
ponents. Again, improved processors will make it cheaper and easier
to continue this trend in the future.

Software Engineering

Software engineering has always been a big part of NASA's busi­
ness, even in the era before 1968 when the term did not yet exist. In
recent years, it has become a central focus of activity. NASA has
developed an Agency-wide software development standard and made
it available to the various Centers. Short courses on software en­
gineering topics are being taught routinely. The Jet Propulsion
Laboratory has established a software resource center. Goddard
Space Flight Center regularly sponsors a software engineering con­
ference. Conferences have been held to get an early start on the use of
the the Ada programming language in the Space Station project. Ob­
viously, NASA is committed to improvement and high quality in this
field, as more and more functions on space flights are taken over by
computers.

302 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

In all, NASA has very effectively adapted its operations to the
Computer Age. Computers, frankly, make useful spaceflight possible.
Even though a spacecraft could theoretically be placed in orbit using a
World War II tilt-table missile guidance system and mechanical
clocks, landing safely on the moon, flying within kilometers of the
outer planets, and landing on runways after descending from space
would all be unlikely happenings with the old technology. As Man
begins the era of permanent presence in space, his partner will be mil­
lions of bits flashing in a sea of transistors, a helpmate in the dis­
covery of the universe.

Source Notes

Chapter One

1. J.M. Grimwood and B. C. Hacker, On the Shoulders of Titans, NASA SP-4203
Washington, D.C., 1977, p.xvi.

2. McDonnell Corporation, NASA Project Gemini Familiarization Manual, 1965,
vol. 2, pp. 8.7, 8.45.

3. Lenz, in Conrad D. Babb, Charles E. Dunn, John J. Lenz, and John
L. Sweeney interview, IBM at Owego, NY, by Ivan Ertel, Afri1 25, 1968,
transcript in Johnson Space Center History Office; McDonnel Corporation,
Gemini Familiarization Manual, p. 8.45.

4. McDonnell Corporation, Gemini Familiarization Manual, p. 8.8.

5. Grimwood and Hacker, On The Shoulders of Titans, pp. 356, 358.

6. Grimwood and Hacker, On The Shoulders of Titans, p. 370.

7. McDonnell Corporation, Gemini Familiarization Manual , pp. 8.10-8.11,
8.48-8.49.

8. J. M. Grimwood, B. C. Hacker, and P. J. Vorzimmer, Project Gemini:
Technology and Operations, G.P.O., Washington, D.C., 1969, p. 40.

9. Grimwood, Hacker, and Vorzimmer, Technology and Operations, p. 110; Lenz
in Babb, Dunn, Lenz, and Sweeney interview.

10. Lenz, in Babb, Dunn, Lenz, and Sweeney interview.

11. McDonnell Corporation, Gemini Familiarization Manual, p. 8.72.

12. Sweeney, in Babb, Dunn, Lenz, and Sweeney interview.

13. IBM, IBM Gemini Guidance Computer, Fact Sheet at Johnson Space Center
History Office, February 17, 1966.

14. 'Astronauts Control Flights, Aided by a Versatile Digital Computer,'
Electronics 71-76, (May 3, 1965).

15. P. W. Malik and G. A. Souris, Project Gemini: A Technical Summary, NASA
CR-1106 Washington, D.C., 1968, p. 117.

304 COMPUTERS IN SPACEFLIGHT

16. McDonnell Corporation, Gemini Familiarization Manual, pp. 8.75, 8.80;
Lenz, in Babb, Dunn, Lenz, and Sweeney interview.

17. Lenz, in Babb, Dunn, Lenz, and Sweeney interview.

18. Homer W. Hutchison interview, Owego, NY, by Ivan Ertel, April 25, 1968;
transcript in Johnson Space Center History Office.

19. McDonnell Corporation, Gemini Familiarization Manual, p. 8.143.

20. 'Magnetic Tape Memory Stores More Data in Space,' Prod. Eng., 47 (April
25, 1966).

21. Hutchison interview.

22. Babb, in Babb, Dunn, Lenz, and Sweeney interview; 'Magnetic Tape
Memory," Prod. Eng., 47.

23. Hutchison interview.

24. Malik and Souris, Gemini Technical Summary , p. 120.

25. Harold E. Dodge interview, Owego, NY, by John J. Lenz, April 25, 1968;
transcript at Johnson Space Center History Office.

26. Grimwood and Hacker, On the Shoulders of Titans, p. 252.

27. Grimwood and Hacker, On the Shoulders of Titans, p. 254.

28. McDonnell Corporation, Gemini Familiarization Manual, pp. 8.82-8.89.

29. See the October 1983 issue of the Annals of the History of Computing (Vol. 5,
[4]) for several articles on SAGE.

30. See Frederick P. Brooks, The Mythical Man-Month Addison-Wesley,
Reading, MA, 1975.

31. Lenz, in Babb, Dunn, Lenz, and Sweeney interview.

32. James Joachim interview, Owego, NY, by Ivan Ertel, April 25, 1968;
transcript in Johnson Space Center History Office; Malik and Souris, Gemini
Technical Summary, p. 25 l.

33. Grimwood, Hacker, and Vorzimmer, Technology and Operations, p. 102;
Malik and Souris, Gemini Technical Summary, p. 25 l.

SOURCE NOTES 305

34. Malik and Souris, Gemini Technical Summary, p. 254.

35. McDonnell Corporation, Gemini Familiarization Manual, p. 8.104.

36. Dale F. Bachman interview, IBM at Owego, NY, by John J. Lenz, April 25,
1968, transcript at Johnson Space Center History Office; Lee Jackson interview,
IBM at Owego, NY, by Ivan Ertel, April 25, 1968, transcript at Johnson Space
Center History Office; Leroy S. Jimerson, Jr., interview, IBM at Owego, NY, by
Ivan Ertel, April 26, 1968, transcript at Johnson Space Center History Office;
Malik and Souris, Gemini Technical Summary, pp. 254--255; Sweeney, in Babb,
Dunn, Lenz, and Sweeney interview.

3 7. Joachim interview.

38. Malik and Souris, Gemini Technical Summary, p. 118.

39. Dodge interview; Malik and Souris, Gemini Technical Summary, p. 118;
McDonnell Corporation, Gemini Familiarization Manual, pp. 8.44, 8.51-8.52,
8. 121 , 8 .123.

40. Malik and Souris, Gemini Technical Summary, p. 137; McDonnell
Corporation, Gemini Familiarization Manual, pp. 8.46, 8.48 .

41. Gene Ceman interview, telephone from Houston, November 7, 1983.

42. John Young interview, telephone from Houston, March 6, 1984.

43. IBM, p. 3.

44. Ceman interview.

45. Young interview.

46. McDonnell Corporation, Gemini Familiarization Manual, p. 8.47.

47. Bachman interview.

48. 'Astronauts Control Flights", Electronics; Sweeney, in Babb, Dunn, Lenz, and
Sweeney interview.

49. Sweeney, in Babb, Dunn, Lenz, and Sweeney interview.

50. Sweeney, in Babb, Dunn, Lenz, and Sweeney interview.

51. Westkaemper, in Lee Jackson and Robert M. Westkaemper interview, IBM at
Owego, NY, by Ivan Ertel, Apr. 25, 1968; transcript in Johnson Space Center
History Office .

306 COMPUTERS IN SPACEFLIGHT

52. Hutchison interview.

53. Joachim interview.

54. Babb, in Babb, Dunn, Lenz, and Sweeney interview.

55. Lenz, in Babb, Dunn, Lenz, and Sweeney interview.

Chapter Two

1. D. G. Hoag, Apollo Navigation Guidance Computer Systems, Report E-2411
MIT, Cambridge, MA, April 1969, p. 2.

2. A. L. Hopkins, 'Electronic Navigator Charts Man's Path to the Moon,"
Electronics, f09 (January 9, 1967); Ralph Ragan interview, MIT, Cambridge,
MA, by Ivan Ertel, April 28, 1966, Johnson Space Center transcript.

3. Hoag, Apollo Navigation Systems, p. 3.

4. Hoag, Apollo Navigation Systems, pp. 3-4.

5. P. Hersch, 'Engineers Reassessing Electronic Hardware in the Light of Some
Near Failures on Apollo 12," IEEE Spec., 23 (January 1970).

6. B. K. Thomas, Jr., 'Apollo 8 Proves Value of Onboard Control,' Aviation Week,
43 (January 20, 1969).

7. Steve Bales interview, Johnson Space Center, Houston, TX, May 31, 1983;
Howard W. Tindall, notes in review of draft chapter, August 1985.

8. John R. Garman interview, Johnson Space Center, Houston, TX, May 25, 1983
and June 1, 1983 .

9. C. G. Brooks, L. S. Grimwood, and L. S. Swenson, Jr., Chariots for Apollo: A
History of Manned Lunar Spacecraft, NASA SP-4205 Washington, D.C., 1979, p.
355.

10. Hopkins, 'Electronic Navigator," p. 116.

11. Brooks, Grimwood, and Swenson, Chariots for Apollo, pp. 38-39.

12. Ragan interview.

13. Hoag, Apollo Navigation Systems, p. 5.

SOURCE NOTES 307

14. Ragan interview.

15. Eldon Hall lecture, "The Apollo Guidance Computer-A Designer 's View,"
Digital Computer Museum, Marlboro, MA, June 10, 1982, transcript at museum's
Boston locauon, p. 4.

16. P. G. Felleman and D. C. Fraser, "Digital Fly-by-Wire: Computers Lead the
Way," Astronaut. and Aeronaut., 30 (July-August l 974).

17. H. J. Goett to G. Low, "Recommendations for Apollo On-board Guidance
Computer," June 6, 1961, JSC History Office.

18. L. A. Wood to R. Chilton, NASA Space Task Group, "Information of RCA
Computers Adaptable to Guidance," June 6, 1961 , JSC History Office.

19. R. G. Chilton to multiple addresses, NASA Space Task Group, "Discussions
at Goddard of a Possible Joint Development Program for Airborne Computers for
OAO and Apollo," memo, June 6, 1961, JSC History Office.

20. R. Alonso to multiple addresses , MIT, "Review of Saturn Computer
Discussions, memo, June 27, 1961, JSC History Office.

21 . D. W. Gilbert to multiple addresses, JSC, "Guidance Computer for Apollo,"
memo, July 9, 1963, JSC History Office.

22. Maj. Gen. Samuel C. Phillips, deputy director of the Apollo Program, reported
on a meeting to discuss the use of the triple modular redundant Saturn faunch
vehicle computer in Apollo. S. C. Phillips to multiple addresses, "Saturn
V/Apollo Spacecraft Guidance Computer Conference," memo, May 14, 1964, JSC
History Office.

23 . Hopkins, "Electronic Navigator", p. 110.

24. Ragan interview.

25 . E. C. Hall, Reliability History of the Apollo Guidance Computer, NASA
CR-140340 MIT, Cambridge, MA, 1972, p. 25.

26. C. D. Brady to multiple addresses, "Integrated Circuit Packages for the AGC,"
memo, June 19, 1964, JSC History Office.

27. D. G. Hoag interview, MIT, Cambridge, MA, by Ivan Ertel , April 29, 1966,
Johnson Space Center transcript.

28. Brooks, Grimwood, and Swenson, Chariots for Apollo, p. 187.

29. R. Alonso, H. Blair-Smith, and A. Hopkins, "Logical Description for the
Apollo Guidance Computer," MIT, Cambridge, MA, March 1963, p. l. l.

308 COMPUTERS IN SPACEFLIGHT

30. Hopkins, "Electronic Navigator," p. l 10.

31. Hall, Reliability History, p. 9.

32. Alonso, Blair-Smith, and Hopkins, "Logical Description," p. 1. 1.

33. Alonso, Blair-Smith, and Hopkins, "Logical Description," p. vii.

34. Ragan interview.

35 . Ragan interview.

36. Hall, Reliability History, p. 5.

37. Hopkins, "Guidance Computer Design," Spacecraft Navigation , Guidance,
and Control MIT, Cambridge, MA, 1965, pp. 13-15.

38 . Hopkins, "Electronic Navigator," p. l 12.

39. R. H. Battin and F. H. Martin, "Computer Controlled Steering of the Apollo
Spacecraft," J. Spacecr. Rockets, 5, 402 (1968); A. Drake and B. I. Savage,
AGC4 Basic Training Manual MIT, Cambridge, MA, 1967, pp. 1.1-1.2.

40. F. Bedford, S. P. Cockrell, and R. T. Savely, Apollo Experience Report:
Onboard Naviq,ational and Alisnment Software, MSC-04238, Houston, TX, 1971,
p. 2; Hopkins, 'Electronic Navigator," p. 113.

41. Drake and Savage, AGC4, p. 1.3.

42. Hopkins, "Electronic Navigator," p. 118.

43. Hall, Reliability History, p. 10; Raytheon Corporation, Apollo Guidance
Computer Program Block 1 (100) and Block 2 Final Report (July 25,
1969-December 31, 1969), p. 2.17.

44. Hall lecture, p. 5.

45. R. Alonso and A. Hopkins, The Apollo Guidance Computer, NASA
CR-118183, MIT, Cambridge, MA, p. 8.

46. E. M. Copps, Recovery from Transient Failures of the Apollo Guidance
Computer, NASA CR-92255, MIT, Cambridge, MA, 1968, p. 2.

47. Drake and Savage, AGC4, p. 1.13.

SOURCE NOTES 309

48. H. Kreide and D. W. Lambert, "Computation: Aerospace Computers m
Aircraft, Missiles, and Spacecraft," Space!Aeronaut., 42 77 (1964).

49. Alonso and Hopkins, Apollo Computer, p. 12.

50. L. J. Carey and W. A. Sturm, "Space Software at the Crossroads,"
Space!Aeronaut. 63 (December 1968); Kre1de and Lambert, "Computation," pp.
97-98.

51 . A. Hopkins, "Design Concepts of the Apollo Guidance Computer,"
Mimeograph, MIT Instrumentation Lab, Cambridge, MA, June 1963, p. 2.1.

52. Alonso, Blair-Smith, and Hopkins, "Logical Description," p. 1.3; Stan Mann
interview, Johnson Space Center, Houston, TX, June 6, 1983.

53. E. C. Hall, MIT's Role in Project Apollo: Computer Subsystem, Charles Stark
Draper Laboratory, Cambridge, MA, 1972, vol. 3, p. 3.

54. Alonso, Blair-Smith, and Hopkins, "Logical Description," p. 4.2; Hopkins,
"Design Concepts," June 1963, p. 2.5; P. Kuttner, "The Rope Memory-A
Permanent Storage Device," Proc. AF/PS, 49 (November 1963).

55 . Hopkins, "Electronic Navigator," p. 114.

56. Raytheon Corporation, Final Report, p. 2.29.

57. Drake and Savage, AGC4, p. 1.6.

58 . John R. Garman interview, Johnson Space Center, Houston, TX, May 25,
1983 and June 1, 1983.

59. Raytheon Corporation, Final Report, p. 4.5.

60. A. Laats and J. E. Miller, Apollo Guidance and Control System Flight
Experience, NASA CR-101823, MIT, Cambridge, MA, 1969, p. 1.

61. Raytheon Corporaton, Final Report, p. 2.56.

62. Ragan interview.

63. R. C. Seamans, Jr., to multiple addresses, "Raytheon Negotiations on Apollo
Guidance Computer," memo, November 9, 1962, JSC History Office.

64. J. F. Shea to multiple addresses, Johnson Space Center, "Integrated Circuit
Packages for the Block II Apollo Guidance Computer (AGC)," memo, September
9, 1964, JSC History Office.

310 COMPUTERS IN SPACEFLIGHT

65. Hall, Reliability History, p. 43.

66. C. W. Frasier to multirle addresses, Johnson Space Center, "Block II
Computer Design Deficiency, memo, August 10, 1965, JSC History Office.

67. I. V. Ertel, The Apollo Spacecraft, GPO, Washington, D.C., 1969, pp. 31-32.

68. Hall, Reliability History, pp. 15-16, 19.

69. Raytheon Corporation, Final Report, p. 3.12.

70. Felleman and Fraser, "Digital Fly-By-Wire," p. 30.

71. W.M. Keese, et al, Management Procedures in Computer Programming for
Apoll~Interim Report, Bellcomm. Inc., Washington, D.C., November 30, 1964.

72. Garman interview.

73. Hopkins, "Design Concepts," June 1963,p. 3.11.

74. Frank Hughes interview, Johnson Space Center, Houston, TX, June 2, 1983.

75. Ertel , Apollo Spacecraft, p. 288.

76. Mann interview.

77. Guidance Software Validation Commission, Apollo Guidance Softv,,1are
Development and Verification Plan, Manned Spacecraft Center, Houston, TX,
October 4, 1957, p. 2.1.

78. Ed Lineberry interview, Johnson Space Center, Houston, TX, June 2, 1983.

79. Dick Parten interview, Johnson Space Center, Houston, TX, June 3, 1983 and
June 16, L 983.

80. M. D. Richter to multiple addresses, MIT, "Summary of AGC Program
Processing Procedures," memo, August 13, 1965, JSC History Office.

81. Garman interview.

82. RASPO to WT memo, JSC History Office Archives, October 22, 1963.

83. Hopkins, "Guidance Computer Design," p. 48 .

84. Mann interview.

SOURCE NOTES 311

85. C. A. Muntz, Users Guide to the Block 2 AGCILGC Interpreter, NASA­
CR-126815, MIT, Cambridge, MA, April 1965.

86. Hopkins, "Electronic Navigator," p. 117.

87. Battin and Martin, "Computer Controlled Steering," p. 403.

88. Hopkins, "Electronic Navigator," p. l l 7.

89. Copps, Recovery From Transient Failures, p. 3.

90. D. J. Bowler, Apollo Guidance Computer Improvement Study-Apollo
Guidance, Navigation, and Control, NASA CR-114898, MIT, Cambridge, MA,
1970, p. 2.

91. George W. Cherry to multiple addresses, "Exegesis of the 1201 and 1202
Alarms Which Occurred During the [Mission G] Lunar Landing," memo no.
370-69, MIT Instrumentation Lab, Cambridge, MA, August 4, 1969, JSC History
Office .

92. Hopkins, "Electronic Navigator," p. 117; T. Lawton and C.A. Muntz,
Organization of Computation and Control of the Apo{{o Guidance Computer,
MIT Instrumentation Lab., Cambridge, MA, E-1758, 1965, p. 15.

93 . Drake and Savage, AGC4, p. 1.21 .

94. Garman interview.

95 . Hopkins, "Design Concepts," June 1963, pp. 2.8-2.9; Lawton and Muntz,
Computation and Control, p. 15.

96. Garman interview.

97. Raytheon Corporation, Final Report, p. 2.32.

98. Howard "Bill" Tindall to multiple addresses, "Spacecraft Computer Program
Names," memo, May 23, 1967, JSC History Office.

99. Ertel, Apollo Spacecraft, p. 238.

100. Copps, Recovery From Transient Failures, p. 4; Hall, Reliability History, pp.
7-8 .

101. Copps, Recovery From Transient Failures , pp. 1, 5; Cherry, "Exegesis of the
1201 and 1202 Alarms."

312 COMPUTERS IN SPACEFLIGHT

102. Copps, Recovery From Transient Failures, p. 3.

103. Hopkins, "Design Concepts," p. 2.11.

104. Hopkins, "Design Concepts," p. 2.11.

L05. Hall, Reliability History, p. 31.

L06. Cherry, "Exegesis of the 1201 and 1202 Alarms."

107. Garman interview.

108. Cherry, "Exegesis of the 1201 and 1202 Alarms."

109. T. Lawton and C. A. Muntz, Verification Plan for AGCILGC, MIT,
Cambridge, MA, E-1786, 1964, p. 5.

L LO. Lawton and Muntz, Verification Plan, p. 5; :MIT, Guidance System
Operations Plan for Manned CM Earth Orbital and Lunar Missions Using
Program COLLOSSUS, sec. 5, NASA CR-97515, MIT, Cambridge, MA, n.d., p.
6.2.

111. Mann interview.

112. Carey and Sturm, "Space Software," p. 63.

113. Mann interview.

114. Lawton and Muntz, Verification Plan, p. 14.

115. Guidance Software Control Panel File, JSC History Office Archives, May
13, 1966.

116. Bowler, Improvement Study, p. 2.

117. Hoag interview.

118. Tindall to multiple addresses, "Apollo Spacecraft Computer Program
Development Newsletter," memo, May 31, 1966, JSC History Office.

119. Tindall, "Program Development Newsletter."

120. See Madeline S. Johnson, MIT's Role in Project Apollo: The Softv.1are
Effort, Charles Stark Draper Laboratory, Cambridge, MA, 1971, vol. 2, pp. 21-22
for a chart showing the "manloading" at MIT during the Apollo effort.

SOURCE NOTES 313

121. Mann interview.

122. Tindall to multiple addresses, "Apollo Spacecraft Computer Programs-Or,
A Bucket of Worms, memo, June 13, 1966, JSC History Office.

123. Tindall to multiple addresses, "Another Apollo Spacecraft Computer Status
Report," memo, July 1, 1966, JSC History Office.

124. Tindall to multiple addresses, "Spacecraft Computer Programming
Development Improvements to be Utilized by MIT," memo, 67-FM-l-T:85,
October 18, 1967.

125. Tindall, "Program Development Newsletter."

126. Tindall to multiple addresses , untitled memos, May 13, 1966 and May 14,
1966, JSC History Office.

127. Tindall, "Apollo Spacecraft Computer Programs-Or, A Bucket of Worms."

128 . Tindall, "Apollo Spacecraft Computer Programs-Or, A Bucket of Worms."

129. Tindall to multiple addresses, "AS-204 Computer Program Status," memo,
July 21, 1966, JSC History Office.

130. Tindall to multiple addresses, "Spacecraft Computer Program Status for
AS-501," memo, September 20, 1966, JSC History Office .

131. Tindall, "Apollo Spacecraft Computer Programs-Or, A Bucket of Worms."

132. Ray Morth, "De-orbit Bum Program," (Flight 204), memo no. 35, January
23, 1967, MIT, Cambridge, MA, JSC History Office.

133. Hughes interview; Tindall concurs. He wrote in a memo for distribution on
April 28, 1967 that "it is almost certain that deficiencies will exist in the program
we will ultimately fly." He then proceeded to improve the software during the
delay in the Apollo program caused by the fire .

134. Tindall to multiple addresses, "In Which is Described the Apollo Spacecraft
Computer Programs Currently Being Developed," memo, March 24, 1967, JSC
History Office.

135. Tindall to multiple addresses, "Spacecraft Computer Program Status, memo,
October 17, 1967, JSC History Office.

136. Tindall to multiple addresses, "A New Spacecraft Computer Program
Development Working Philosophy is Taking Shape," memo, 67-FM-1-39, May
17, 1967.

314 COMPUTERS IN SPACEFLIGHT

137. Ertel, Apollo Spacecraft, p. 250.

138. Ertel, Apollo Spacecraft, pp. 203-204.

139. John P. Mayer to multiple addresses, "Notes on Meeting of the Apollo
Guidance Software Task Force in Washington on February 9, 1968," memo no.
68-RM-10, February 13, 1968.

140. Apollo Guidance Software Task Force, "Final Report," memo, September
23, 1968, JSC History Office, p. 4.

141. Apollo Guidance Software Task Force, "Final Report," p. 7; Ertel, Apollo
Spacecraft, p. 250.

142. Ertel, Apollo Spacecraft, p. 288.

143. Mann interview.

144. W. J. North and C. H. Woodling, "Apollo Crew Procedures, Simulation, and
Flight Planning," Astronaut. and Aeronaut. 58 (March 1970).

145. Howard W. Tindall, in his review of the draft of this chapter, noted that the
crew insisted on flexibility and control from the start of the program, so in a way
they set the level of computer-related activity for themselves.

146. Raytheon Corporation, Final Report, p. 2.9.

147. J. M. Dahlen, Apollo Guidance Navigation and Control: Guidance and
Navigation System Operations Plan, Apollo Mission 202, NASA CR-65770, :MIT,
Cambridge, MA, 1966, p. 3.19; Laats and Miller, Apollo Guidance Flight
E.\perience, p. 6.

148. Hopkins, "Design Concepts," June 1963, p. 2.3 .

.
149. Hall lecture, p. 8.

150. Copps, Recovery From Transient Failures, p. 2.

151. Hopkins, "Electronic Navigator," p. 116.

152. Hopkins, "Electronic Navigator," p. 117.

153. Copps, Recovery From Transient Failures , p. 2.

154. Garman interview.

SOURCE NOTES 315

155. Gene Ceman, telephone interview from Houston, November 7, 1983.

156. Vance Brand interview, Johnson Space Center, Houston, TX, June 2, 1983;
John Young interview, telephone from Houston, TX, March 2, 1984.

157. Ragan interview.

158. Ceman interview.

159. Mann interview.

160. P. M. Kurten, Apollo Experience Report: Guidance and Control
Systems-Lunar Module Abort Guidance System, NASA TN -D-7990, Johnson
Space Center, Houston, TX, 1975, p. 4.

161. TRW, news release, July l, 1969, JSC History Office Archives.

162. TRW, news release, July 1, 1969.

163 . Kurten, Abort Guidance System, p. l; B. Miller, "Abort Backup for LEM
Near Production," TRW Executive Clips, 1 (January 15, 1966).

164. Kurten, Abort Guidance System,p. 5.

165. Kurten, Abort Guidance System, p. 6.

166. B. Miller, "Abort Backup," p. 4.

167. J.J. Seidman, "LEM/AGS Marco 4418" , mimeograph, September 1966, JSC
History Office , p. l.

168. Kurten, Abort Guidance System, p. 7; B. Miller, "Abort Backup," p. 4; TRW,
news release, July 1, 1969.

169. B. Miller, "Abort Backup," p. 3.

170. Jonas Beraru, "The TRW Systems MARCO 4418-A Man Rated
Computer," (TRW, 1979), p. 26.

171. TRW, news release, July 1, 1969.

172. Kurten, Abort Guidance System, pp. 8-9.

173. Kurten, Abort Guidance System, p. 42.

316 COMPUTERS IN SPACEFLIGHT

174. Tindall, notes in review of the draft of this chapter, August, 1985.

175. Kurten, Abort Guidance System, p. 38.

176. Kurten, Abort Guidance System, pp. 22-23.

177. TRW, news release, July 1, 1969.

178. Young interview.

179. Young interview.

180. Apollo Guidance Software Task Force, Final Report, pp. 5-6;
R. R. Regelbrugge, Apollo Experience Report: Apollo Spacecraft and Ground
Software Development for Rendezvous, MSC-02676, 1970, p. 5; S. A. Sjoberg,
"Objectives for Software Controlled Aerospace Systems in the Next Decade,"
memo for distribution, Manned Spacecraft Center, July 14, 1970, p. 2.

181. Bowler, Improvement Study.

Chapter Three

1. Bill Chubb interview, Marshall Space Center, Huntsville, AL, June 22, 1983.

2. Steve Bales interview, Johnson Space Center, Houston, TX, May 31, 1983.

3. IBM, Skylab Reactivation Mission, IBM Federal Systems Division, Huntsville,
AL, September 12, 1979, p. 1.2.

4. See Charles D. Benson and W. David Compton, Living and Working in Space:
A History of S/...')1/ab, NASA SP-4208, Washington, D.C., 1983.

5. IBM, Design and Operation Assessment of S/...')1/ab ATMDC!WCIU Flight
Hardware and Sojnvare, IBM Federal Systems Division Electronics System
Center, Huntsville, AL, May 9, 1974, p. 1.1.3.

6. IBM, Skylab Reactivation Mission, p. 1.1.

7. IBM, Design and Operation Assessment, p. 1.1.1.

8. James McMillion interview, Marshall Space Center, Huntsville, AL, June 22,
1983.

9. Charles Swearingen interview, Huntsville, AL, June 21, 1983.

SOURCE NOTES 317

10. IBM, Design and Operation Assessment, p. 1.1.14.

11. Martin Marietta Corporation, Skylab Data Handbook, Marshall Space Center,
Huntsville, AL, n.d., p. 4.13.

12. IBM, Design and Operation Assessment, p. 1.1.3.

13. John Copeland interview, IBM at Marshall Space Center, June 23, 1983 .

14. IBM, Design and Operation Assessment, p. 1.1.22.

15. Ibid., p. l.1.1.

16. Copeland interview.

17. IBM, Design and Operation Assessment, p. 1.1.12.

18. Ibid., p. 1.1.l.

19. Ibid., p. 1.1.28.

20. Ibid., p. 1.1.11.

21. Ibid., p. 1.1.5.

22. Ibid., pp. 1.1.7, 1.1.15, 1.1.18.

23 . Ibid., p. 1.1.12.

24. Ibid., p. 1.1.11.

25. For a complete discussion of these problems, see Ibid., pp. 1.1.18-1.1.22.

26. IBM, Design and Operation Assessment, p. 1.1.24.

27. Ibid., p. 1.1.3.

28. For the complete story, see Frederick P. Brooks, The Mythical Man-Month,
Addison-Wesley, Reading, MA, 1975, Harlan D. Mills, Software Productivity,
Little, Brown, and Co., Boston, MA, 1983.

29. Madeline S. Johnson, MIT's Role in Project Apollo: The Software Effort,
Charles Stark Draper Laboratory, Cambridge, MA, 1971, vol. 5, p. 18.

318 COMPUTERS IN SPACEFLIGHT

30. Copeland interview.

31. IBM, Design and Operation Assessment, p. 1.2.8.

32. Ibid., p. 1.2.9.

33. Ibid., pp. 1.2.33-1.2.34.

34. Ibid., p. 1.2.28.

35. Ibid.

36. Ibid., pp. 1.2.28-1.2.29.

37. Ibid., p. 1.2.29.

38. Ibid., p. 1.2.54.

39. Ibid., p. 1.2.29.

40. Ibid., p. 1.2.30.

41. Ibid., pp. 1.2.36--1.2.37.

42. Ibid., p. 1.2.36.

43. Ibid., p. 1.2.47.

44. Ibid., p. 1.2.36--1.2.37.

45. IBM, NASA Skylab A: Apollo Telescope Mount Digital Computer Program
Definition Document, Electronic Systems Center, 1972, p. I.5.1.

46. IBM, Design and Operation Assessment, p. 1.2.48.

47. Ibid., p. 1.2.31.

48. Ibid., p. 1.2.64.

49. Ibid., p. 1.2.16.

50. IBM, NASA Skylab A, p. 1.7.8.

SOURCE NOTES 319

51. Ibid., p. 1.1.11.

52. Ibid., p.1.1.10.

53. Copeland interview.

54. IBM, Design and Operation Assessment, p. 1.1.6.

55. IBM, NASA Skylab A, p.1.7.3.

56. IBM, S/...-ylab Reactivation Mission, p. 3.16.

57. Ibid., pp. 3.17-3 .18.

58. IBM, Design and Operation Assessment, pp. 1.2.38-1.2.39, 1.2.51-1.2.52.

59. Ibid., pp. 1.2.1-1.2.3, 1.2.6.

60. Ibid., p. 1.2.67; IBM, Skylab Reactivation Mission, p. 3.25.

61. Copeland interview.

62. Jack Lousma, telephone interview from Houston, July 5, 1983.

63. Copeland interview.

64. IBM, NASA Skylab A, p. 1.5.3.

65. Ibid., p. 1.7.2.

66. IBM, st..,ylab Reactivation Mission, pp. 1.3, 2.1-2.2, 2.4.

67. Ibid., pp. 1.2, 5.3.

68. Ibid., pp. 3.19-3.20.

69. Ibid., pp. 3.3-3.4, 3.9.

70. Ibid., pp. 3.10-11, 3.20, 3.22.

71. Ibid., pp. 3.30, 3.33.

320 COMPUTERS IN SPACEFLIGHT

Chapter Four

1. Interview with Arnold Aldrich, Johnson Space Center, June 13, 1983.

2. Interview with Lynn Killingbeck,IBM, Johnson Space Center, June 7, 1983.

3. For a full discussion of the evolution of Shuttle design concepts, see the first
two chapters of the forthcoming Space Shuttle Chronology.

4. NASA, Space Vehicle Design Criteria : Spaceborne Digital Computer Systems,
SP-8070, March 1971.

5. Killingbeck interview; In 1967, the Manned Spacecraft Center contracted with
IBM for a conceptual study of spacebome computers; see M. Ball , and F.H.
Hardie, "Computer Partitioning Improves Long-term Reliability in Space,"
Space!Aeronaut., 114-118 (May 1967).

6 . F.J. Hudson and J.C. McCall, "Integrated Electronics System for Space
Shuttle," AIM Advanced Space Transportation Meeting, Cocoa Beach, FL,
February 4--6, 1970.

7. M. Hamilton and S . Zeldin "Hi&her Order Software Techniques Applied to a
Space Shuttle Prototype Program,' Programming Symposium, ed. B. Robimet,
Springer-Verlag, New York, 1974, pp. 17- 32; Higher-Order Software-A
Methodology for Defining Sofnvare , AIAA Paper 75-593; Higher Order Soff¼.•are
Requirements, MIT Draper Laboratory , Cambridge, MA, August 1973 .

8. G.A. Vacca et al. "Mission Influences on Advanced Computers," Astronaut.
Aeronaut., 36-37 (April 1967).

9. NASA, Space Vehicle Design Criteria, p . 16.

10. R.L. Alonso; and G.C. Randa "Flight-Computer Hardware Trends,"
Astronautics and Aeronautics, April 1967, pp. 31 .

11. B.W. Boehm, "Some Information Processing Implications of Air Force Space
Missions: 1970--1980," Memorandum, Rand Corp., January 1970, V.

12. Boehm, "Information Processing Implications," p. 21.

13. H. Kreide and D.W. Lambert, "Computation: Aerospace Computers in
Aircraft, Missiles and Spacecraft," Space!Aeronaut., 42, 78 (1964); see also N.H.
Herman and U.S. Lingon, "Mariner 4 Timing and Sequencing," Astronaut.
Aeronaut., 43 (October 1965).

14. A.E. Cooper, "The Shuttle Computer Complex," Space Transportation
System: The IBM Role, IBM Corporation, 1981, p. 3.

SOURCE NOTES 321

15. NASA, Space Vehicle Design Criteria, p. 44.

16. Z. Strickland, "NASA Seeks Ways to Handle Data Flood," Aviation Week,
June 22, 1970, p. 135.

17. E.S. Chevers, "Proposed Avionics Baseline for the Shuttle," Memorandum,
Manned Spacecraft Center, Houston, TX, August 1971, JSC History Office
Archives.

18. Interview with Stan Mann, Johnson Space Center, June 8, 1983.

19. Draper Laboratory, Computer Hardware," charts, March 1971, Johnson Space
Center Archives.

20. Draper Laboratory, "Computer Hardware."

21. P.H. Stakem, "One Step Forward - Three steps Backup: Computing in the
U.S. Space Program," BYTE, 114 (September 1981).

22. Draper Laboratory, "Computer Hardware."

23. J. Kernan, "Desirable Computer Features," Memorandum, Cambridge: MIT,
March 5, 1971, JSC History Office; see also Draper Laboratory, "Computer
Hardware."

24. Boehm, "Information Processing Implications," p. 19.

25. R.E. Poupard et al., "Design Considerations for Shuttle Information
Management," Astronaut. Aeronaut., 53 (May 1973).

26. "Guidance Software Programming Advances," Aviation Week, 73 (November
8, 1976).

27. Interview with Dick Parten, Johnson Space Center, June 16, 1983.

28. Killingbeck interview.

29. "New Family of Computers: Military and Aerospace," Electronics, 42
(October 31, 1966).

30. IBM, Space Shuttle Advanced System/4 Pi Model AP-101 Central Processor
Unit, File no. 75-A97-001, 1975, 4.64; see also Cooper, "Shuttle Computer
Complex," p. 7.

31. A.J . Macina "Space Shuttle Program," Part I, Memorandum, IBM Federal
Systems Division, Houston, p. 16; see also Cooper, "Shuttle Computer Complex,"
p. 5.

322 COMPUTERS IN SPACEFLIGHT

32. IBM, Mode/AP-101 Central Processor Unit., 1.2, 2.8.

33. Macina, "Space Shuttle," Pan I, p. 16.

34. Cooper, "Shuttle Computer Complex", p. 4.

35. IBM, Model AP-101 Central Processor Unit, 2.14.

36. IBM, Space Shuttle Model AP-101 C/M Principles of Operation, File no.
6246156B, 1974, 2.2.

37. Cooper, "Shuttle Computer Complex", p. 6.

38. IBM, Model AP-101 Principles of Operation, 2.15.

39. IBM, Model AP-101 Principles of Operation, 2.17.

40. NASA, Shuttle Flight Operations Manual: Volume 5-Data Processing
System, Flight Operations Directorate, Crew Training and Procedures Division,
Johnson Space Center, Houston, TX, November 1978, p. 50.

41. Cooper, "Shuttle Computer Complex," p. 8.

42. IBM, Model AP-101 Central Processor Unit, 5.1.

43. Killingbeck interview.

44. Interview with John R. Garman, Johnson Space Center, June 1, 1983.

45 . Killingbeck interview.

46. Interview with Dick Parten, June 3, 1983.

47. Garman interview, June 1, 1983 .

48. Parten interview, June 16, 1983.

49. Cooper, "Shuttle Computer Complex," p. 9.

50. IBM, Model AP-101 Central Processor Unit , 4.36.

51. RE. Poupard, "Redundant Computer Operations," in Space Transportation
System, p. 21 .

SOURCE NOTES 323

52. IBM, Space Shuttle Advanced System/4 Pi Input/output Processor, File no.
6246556A, 1976, part III, p. 1.

53. IBM, Input/output Processor, part II, p. 1.

54. IBM, Space Shuttle Advanced System/4 Pi Prototype lnput!Ouput Processor,
File no. 74-A31-016, 1974, p. 1.3.

55. IBM, Prototype Input/Output, p. 1.1.

56. NASA, Data Processing System Overview Workbook, DPS-OV-2102, 1979,
p. 16.

57. A.E. Cooper and E.S. Flanders, "Shuttle Multifunction CRT Display and Mass
Memory Subsystem," in Space Transportation System, p. 11 ; Macina, "Space
Shuttle," Part I, p. 24; NASA, Overview Workbook, p. 54.

58. NASA, Shuttle Operations Manual, p. 4.58.

59. "Velocity, Altitude Regimes to Push Computer Limits ," Aviation Week, 49
(April 6, 1981).

60. D.C. Fraser and P.G. Felleman, "Digital Fly-by-Wire: Computer Lead the
Way," Astronaut. Aeronaut., 12 , 24-32 (July-August 1974).

61. Killingbeck interview.

62. For a more complete description see James E. Tomayko, "Digital Fly-By­
Wire: A Case of Bidirectional Technology Transfer," in Aerospace Historian, 33
(1), 10.18 (March 1986).

63. B.R.A. Bums, "Control Configured Combat Aircraft," Active Controls in
Aircraft Design, P.R. Kurzhals, ed., AGARDograph #234, NATO, London, 1978,
p. 3.15.

64. Poupard, "Redundant Computer," p. 20.

65 . Mann interview, June 8, 1983.

66. AD. Aldrich, "A Sixth GPC On-Orbit," Memorandum, Johnson Space
Center, Houston, TX, October 13, 1978, JSC History Office .

67. Garman interview, June 1, 1983.

68. Mann interview, June 8, 1983.

324 COMPUTERS IN SPACEFLIGHT

69. Killingbeck interview; also Parten interview, June 16, 1983.

70. Killingbeck interview.

71. Parten interview, June 16, 1983.

72. NASA, Shuttle Operations Manual, pp. 4.24-4.25.

73. NASA, Shuttle Operations Manual, p. 4.28.

74. Poupard, "Redundant Computer," p. 23.

75. NASA, Shuttle Operations Manual, pp. 4.28-4.29.

76. NASA, Overview Workbook, p. 6; NASA, Shuttle Operations Manual, p.
4.22.

77. Garman interview, June l, 1983; Killingbeck interview.

78. Mann interview, June 8, 1983.

79. Interview with Kyle Rone, IBM, Johnson Space Center, June 3, 1983.

80. Killingbeck interview.

81. Interview with John Aaron, Johnson Space Center, June 17, 1983.

82. Interview with William Sullivan, Johnson Space Center, June 14, 1983.

83. Parten interview, June 3, 1983.

84. Sullivan interview.

85 . Parten interview, June 3, 1983.

86. Mann interview, June 8, 1983.

87. Parten interview, June 16, 1983.

88. Parten interview, June 16, 1983.

89. Interview with Anthony Macina, IBM, Houston, TX, June 7, 1983.

SOURCE NOTES 325

90. There are widely disparate estimates of how many people actually
contributed to the shuttle software. Macina of IBM says 275, but I think he
means coders. John Aaron of NASA, head of Spacecraft Software in 1983,
estimates 900 contractors and 90 civil servants. Parten said 2,000 but that may
include everyone in all contracting organizations working on hardware and
software. The figure of 1,000 seems reasonable for software developers, as it is
consistent with similar projects.

91. Frederick Brooks, The Mythical Man-Month , Addison-Wesley, Reading, MA,
1975).

92. Parten interview, June 16, 1983.

93 . Aaron interview; Sullivan interview.

94. NASA, Development Spec1fication, Volume Five, Book 1, pp. 3.72-3 .75.

95. Sullivan interview.

96. Parten interview, June 3, 1985.

97 . M. Hamilton and S. Zeldin, Higher Order Software Requirements, MIT
Draper Laboratory, Cambridge, MA, August 1973.

98. An example would be Draper Lab's, Space Shuttle On-Orbit Flight Control
Software Requirements, December 1975.

99. Sullivan interview.

100. Rone interview.

101. Parten interview, June 3, 1983.

102. Killingbeck interview.

103. Sullivan interview.

104. W.A. Madden and K.Y. Rone, Design, Development, Intesration : Space
Shuttle Primary Flight Sofrn·are System, IBM Federal Systems Division, Houston,
TX 1980, p. 36; also reprinted in the Commun . ACM, 27, (9), 914-925
(September 1984).

105. Aaron interview.

106. NASA, Overview Workbook, p. 52.

326 COMPUTERS IN SPACEFLIGHT

107. Killingbeck interview.

108. Mann interview, June 8, 1983.

109. NASA, Space Shuttle Operations, p. 4.32.

110. Macina interview.

111. IBM, Space Shuttle Model AP-101, 2.22.

112. F.H. Martin, "HAL/S The Avionics Programming System for the Shuttle,"
AIAA, 315 (1977).

113 . IBM, Space Shuttle Orbiter Avionics Software Interface Control Document,
HAL/SIFCOS, version 5.

114. Macina interview.

115. Killingbeck interview.

116. Garman interview, June 1, 1983.

117. R.F. Thompson, "Minutes of Shuttle System Software Review,"
Memorandum, Johnson Space Center, Houston, TX, May 29, 1974, JSC History
Office .

118. Killingbeck interview.

119. Macina, "Space Shuttle," Part One, p. 30.

120. David Gifford and Alfred Spector, ed., "Case Study: The Space Shuttle
Primary Computer System," Commun . ACM, 27, 881 (September 1984).

121. Boehm, Information Processing Implications , p. 35 .

122. Gifford and Spector, "Case Study," p. 885.

123. J.R. Garman, Managing the Software Development for the Space Shuttle
Orbiter, Johnson Space Center, Houston, TX, December 9, 1981, JSC History
Office, p. 10.

124. Garman interview, June 1, 1983.

125. Sullivan interview.

SOURCE NOTES 327

126. Macina interview.

127. IBM, SDL Requirements Document. Pt. 2-Hardware Configuration, May
31, 1974, JSC History Office, p. 2.3 .

128. C.C. Kraft jr. "Automatic Data Processing Equipment (ADPE) Acquisition
Plan for the Software Production Facility (SPF)," Memorandum, Johnson Space
Center, Houston, TX, April 18, 1980, JSC History Office.

129. Gannan, Managing the Sojn,vare Development, p. 6.

130. Aaron interview.

131. Sullivan interview.

132. J.R. Gannan, "Software Production Facility: Management
Summary-Concepts and Schedule Status ," NASA Data Systems and Analysis
Directorate, Spacecraft Software Division, February 10, 1981, p. 12.

133. Sullivan interview.

134. Macina interview.

135. A.J. Macina, Independent Verification and Validation Testing of the Space
Shuttle Primary Flight Software System, IBM, Houston, TX, December 1980, p.
4.

136. Macina, Independent Verification and Validation Testing , p. 8.

137. See IBM, Flight Softl-·vare Integrated Test Plan, Volume II, #77-SS-3622 for
examples of test cases.

138. Macina, "Space Shuttle," Part 2, p. 14.

139. Gifford and S_pector, "Case Study," p. 884; Hamilton and Zeldin, Softtvare
Requirements, p. 39.

140. Macina, Independent Verification and Validation Testing, p. 8.

141. Macina, Independent Verification and Validation Testing , p. 8.

142. Macina interview.

143. Macina interview; Mann interview, Jurn~ 8, 1983.

328 COMPUTERS IN SPACEFLIGHT

144. Gannan, Managing the Software Development, p. 3.

145. Macina interview.

146. Parten interview, June 16, 1983.

147. Mann interview, June 8, 1983.

148. Mann interview, June 8, 1983.

149. Mann interview, June 8, 1983.

150. Parten interview, June 16, 1983.

151. See NASA, OFTIS-19 Program Notes and Waivers, Houston, November
1983.

152. Macina interview.

153. Mann interview, June 8, 1983.

154. Gifford and Spector, "Case Study," p. 893.

155. Gannan, "Managing the Software Development," p. 5.

156. Mann interview, June 8, 1983.

157. Telephone interview with John Young, Johnson Spaceflight Center, March
6, 1984.

158. Interview with Frank Hughes, Johnson Space Center, June 2, 1983.

159. Aaron interview.

160. Hughes interview.

161. Interview with Vance Brand, Johnson Space Center, June 2, 1983.

162. Interview with Henry Hartsfield, Johnson Space Center, June 2, 1983.

163. Young interview; Brand interview; Interview with Terry Hart, Johnson
Space Center, June 10, 1983.

164. Hart interview.

SOURCE NOTES 329

165. "Main Engine Controller Location," undated charts, no author, obtained from
Russ Mattox, Marshall Space Flight Center.

166. Interview with Walt Mitchell, Marshall Space Flight Center, June 23, 1983.

167. R.M. Mattox and J.B. White, Space Shuttle Main Engine Controller, NASA
Technical Paper 1932, Marshall Space Flight Center, Huntsville, AL, November
1981, p. 1.

168. "Main Engine Controller".

169. Interview with Russ Mattox, Marshall Space Center, June 23, 1983.

170. Mattox and White, Space Shuttle Main Engine, p. 6.

171. Mattox and White, Space Shuttle Main Engine, pp. 9, 11.

172. Mattox and White, Space Shuttle Main Engine, p. 5.

173. Mattox interview.

174. Mattox and White, Space Shuttle Main Engine, p. 23.

175. Mitchell interview.

176. Mattox and White, Space Shuttle Main Engine, p. 31.

177. Mattox and White, Space Shuttle Main Engine, p. 12.

178. Mitchell interview.

179. Mattox interview.

180. Mitchell interview.

181. Mattox and White, Space Shuttle Main Engine, p. 29.

182. Mattox interview.

183. Telephone interview with Russ Mattox, Marshall Space Center, November
16, 1984.

184. Telephone interview with Gary K. Raines, Johnson Spaceflight Center,
November 1, 1985.

◄

330 COMPUTERS IN SPACEFLIGHT

Chapter Five

1. J.R. Casani, A.G. Conrad, and R.A. Neilson, "Mariner 4 - A Point of
Departure," Astronaut. Aeronaut., 16-24, (August 1965).

2. Interview with Richard Malm, Jet Propulsion Laboratory, May 31, 1984.

3. Malm interview.

4. Casani et al, "Mariner 4-A Point of Departure," p. 17.

5. Jet Propulsion Laboratory, The Mariner R Project Progress Report, September
1, 1962 to January 3, 1963, Tech. Rep. no. 32-422, Vol. 1, Pasadena, CA, 1963.

6. H.K. Bouvier, R.G. Farney, and S.Z. Szinnay, "Mariner 4 Maneuver and
Attitude Control," Astronaut. Aeronaut.," 38 (October 1965).

7. Casani et al, "Mariner 4-A Point of Departure," p. 17.

8. Jet Pro~ul~ion Laboratory, Mariner-Venus 1962 : Final Project Report, NASA
SP-59, Washington, D.C., 1965.

9. Jet Propulsion Laboratory, Mariner Mars 1964 Project Report: Spacecraft
Performance and Analysis, Tech. Rep. no. 32-882, Pasadena, CA, February 15,
1967.

10. N.H. Herman and U.S. Lingon, "Mariner 4 Timing and Sequencing."
Astronaut. Aeronaut. , 40 (October 1965).

11. Interview with Edward Greenberg, Jet Propulsion Laboratory, May 30, 1984.

12. Greenberg interview.

13. J .R. Scull, "Mariner Mars 1969 Navigation, Guidance, and Control," Jet
Propulsion Lab, Pasadena, CA, 1970; A.J. Aukstikalnis, "Spacecraft Computers:
A Survey," Astronaut. Aeronaut., 33 (July-August 1974); C.R. Koppes, The Jet
Propulsion Laboratory and the American Space Program, Yale University Press,
New Haven, CT, 1982.

14. Malm interview.

15. Jet Propulsion Laboratory, Mariner Mars 1969 Final Project Report:
Development, Design, and Test, Volume l, Tech. Rep. no . 32-1460, Pasadena,
CA, November 1, 1970.

SOURCE NOTES 331

16. Jet Propulsion Laboratory, Development, Design, and Test, p. 325.

17. Greenberg interview.

18. J.R. Scull, "Mariner Mars 1969 Navigation, Guidance, and Control," Jet
Propulsion Lab, Pasadena, CA, 1970.

19. Interview with Don Johnson, Jet Propulsion Laboratory, May 16, 1984.

20. Greenberg interview.

21. Jet Propulsion Laboratory, Development, Design, and Test, p. 328.

22. A.J. Hooke, "In Flight Utilization of the Mariner 10 Spacecraft Computer," J.
Br. Interplanet. Soc., 29, 277 (April 1976).

23. Hooke, "Mariner 10 Spacecraft Computer," p. 277; Jet Propulsion Laboratory,
Mariner Mars 1969 Final Project Report: Development, Design, and Test, p.
328.

24. Greenberg interview.

25. After the example given by A.J. Hooke, "The 1973 Mariner Mission to Venus
and Mercury," Spaceflight, 30 (January, 1974).

26. Greenberg interview.

27. J.A. Gleason, Mariner Mars 1971 Space Flight Operations Plan: Mission
Operation Specifications and Constraints, Jet Propulsion Laboratory, Pasadena,
CA, April 6, 1971, Vol. 4, pp. 2, 112-113.

28. Hooke, "Mariner 10 Spacecraft Computer," p. 275.

29. C.E. Kohlhase, H.W. Norris, H.M. Shurmeier, and J.A. Stallkarnp, "The 1969
Mariner Mission to Mars," Astronaut. Aeronaut., 84 (July, 1969).

30. Jet Propulsion Laboratory, Development and Testing of the Central Computer
and Sequencer for the Mariner Mars 1971 Spacecraft, Tech. Rep. no. 33-501,
October 15, 1971, pp. 2-3.

31. Hooke, "Mariner 10 Spacecraft Computer," p. 273.

32. Hooke, "Mariner 10 Spacecraft Computer," pp. 279-81.

33. Hooke, "Mariner 10 Spacecraft Computer," p. 285.

332 COMPUTERS IN SPACEFLIGHT

34. Jet Propulsion Laboratory, Development and Testing of the Central Computer
and Sequencer for the Mariner Mars 1971 Spacecraft, p. 12.

35. A.J. Hooke, "Mariner Mission to Venus and Mercury," p. 29.

36. Jet Propulsion Laboratory, Development and Testing of the Central Computer
and Sequencer for the Mariner Mars 1971 Spacecraft, p. 4.

37. Hooke, "Mariner 10 Spacecraft Computer," p. 285.

38 . A. Avizienis, F.P. Mathur, D. A. Rennels , and J.A. Rohr, "Automatic
Maintenance of Aerospace Computers and Spacecraft Information and Control
Systems," Tech. Rep. no. 32-1449, Jet Propulsion Laboratory, Pasadena, CA,
1969, p. 1.

39. Avizienis et al., "Automatic Maintenance of Aerospace Computers," pp.
10-11.

40. Avizienis et al. , "Automatic Maintenance of Aerospace Computers," p. 10.

41. A. Avizienis, "Design Methods for Fault-Tolerant Navigation Computers,"
Tech. Rep. no . 32-1409, Jet Propulsion Laboratory, Pasadena, CA, October 15,
1969, p. 4.

42. Avizienis et al., "Automatic Maintenance of Aerospace Computers," p. 9.

43. A. Avizienis, An Experimental Self-Repairing Computer, NASA-TR-32-1356,
Jet Propulsion Laboratory, Pasadena, CA, 1968, p. E30.

44. Avizienis et al ., "Automatic Maintenance of Aerospace Computers," p. 10.

45 . Avizienis, An Experimental Self-Repairing Computer, p. E31.

46. -Avizienis , An Experimental Self-Repairing Computer, p. E32.

47. A. Avizienis, "The STAR Computer: A Self-Testing-and-Repairing
Computer for Spacecraft Guidance, Control, and Automatic Maintenance," in The
Application of Digital Computers to Guidance and Control, AGARD, London,
June 2, 1970, p. 17.1.

48. Avizienis, An Experimental Self-Repairing Computer, p. E31.

49. Avizienis et al., "Automatic Maintenance of Aerospace Computers," p. 3;
Avizienis, "Design Methods for Fault-Tolerant Navigation Computers," p. 7.

50. Avizienis et al., "The STAR (Self-Testing and Repairing) Computer: An
Investigation of the Theory and Practice of Fault-Tolerant Computer Design,"
IEEE Trans. Comput., C(l971), p.1316.

SOURCE NOTES 333

51. Avizienis et al., "Automatic Maintenance of Aerospace Computers," p. 2.

52. Avizienis, An Experimental Self-Repairing Computer, p. E33.

53. Avizienis et al., "Automatic Maintenance of Aerospace Computers," p. 6.

54. Avizienis et al., "The STAR (Self-Testing and Repairing) Computer: An
Investigation of the Theory and Practice of Fault-Tolerant Computer Design," p.
1314.

55. Avizienis et al., "Automatic Maintenance of Aerospace Computers," p. 7.

56. Avizienis, "The STAR Computer: A Self-Testing-and-Repairing Computer
for Spacecraft Guidance, Control, and Automatic Maintenance," p. 17 .8.

57. Avizienis, "Design Methods for Fault-Tolerant Navigation Computers," p. 5.

58. Avizienis, "The STAR Computer: A Self-Testing-and-Repairing Computer
for Spacecraft Guidance, Control, and Automatic Maintenance," p. 17.8.

59. Avizienis, "The STAR Computer: A Self-Testing-and-Repairing Computer
for Spacecraft Guidance, Control, and Automatic Maintenance," p. 17.8.

60. Avizienis et al., "The STAR (Self-Testing and Repairing) Computer: An
Investigation of the Theory and Practice of Fault-Tolerant Computer Design," p.
1320.

61. "A Star is Born," Time (December 7, 1970).

62. Carole McKelvey, "JPL's STAR Computer is Out of This World," Glendale
News-Press, 3-594 (May 29, 1971).

63. H. Hecht, "Fault-Tolerant Computers for Spacecraft," J. Spacecr. Rockets, 14,
579-586 (1977).

64. Avizienis, "The STAR Computer: A Self-Testing-and-Repairing Computer
for Spacecraft Guidance, Control, and Automatic Maintenance," p. 17.8.

65. Interview with William Stewart, Goddard Spaceflight Center, July 10, 1984.

66. J. Rhea, "Space Electronics: Electronics Research Center is Focal Point of
Future Efforts," Aerospace Tech., 54 (November 20, 1967).

67. Greenberg interview.

68. Samuel K. Deese, letter to the author, June 3, 1985.

334COMPUTERS IN SPACEFLIGHT

69. The complete story of the Viking project can be found in Edward and Linda
Ezell's history, On Mars : Exploration of the Red Planet: 1958-1978, NASA
SP-4212, Washington, D.C., 1984.

70. Greenberg interview.

71. Greenberg interview.

72. W.H. Kohl, Functional Requirement Viking Orbiter 1975 Flight Equipment
Computer Command Subsystem Hardware, No. V075-4-2005-2A, Pasadena, CA
Jet Propulsion Lab, Jan 17, 197 5, p. 20.

73. Greenberg interview.

74. Kohl, Functional Requirement Viking Orbiter 1975 Flight Equipment
Computer Command Subsystem Hardware, p. 20; Kohl, Functional Requirement
Viking Orbiter 1975 Flight Equipment Computer Command Subsystem Software,
No. 075-4-2005-2A, Pasadena, CA Jet Propulsion Lab, January 17, 1975, p . 7.

75. Kohl, Functional Requirement Viking Orbiter 1975 Flight Equipment
Computer Command Subsystem Hardware, p. 13.

76. R.A. Proud et al., Viking 75 Orbiter Computer Command Subsystem Flight
Software Design Description, 612-28 (DRL Line Item No. N4-SE24), Vol. 1,
Pasadena, CA Jet Propulsion Lab, November 20, 1974, pp. A.1.21-22; Kohl,
Functional Requirement Viking Orbiter 1975 Flight Equipment Computer
Command Subsystem Sofrn·are , p. 30.

77. Kohl, Functional Requirement Viking Orbiter 1975 Flight Equipment
Computer Command Subsystem Hardware, p. 13.

78. Kohl, Functional Requirement Viking Orbiter 1975 Flight Equipment
Computer Command Subsystem Hardware, p. 5.

79. Greenberg interview.

80. Proud et al ., Viking 75 Orbiter Computer Command Subsystem Flight
Software Design Description, p. A.1.21.

81. Proud et al., Viking 75 Orbiter Computer Command Subsystem Flight
Software Design Description, p. 3.15 .

82. Kohl, Functional Requirement Viking Orbiter 1975 Flight Equipment
Computer Command Subsystem Software, p. 16.

83 . Proud et al., Viking 75 Orbiter Computer Command Subsystem Flight
Software Design Description, p. 3.125.

SOURCE NOTES 335

84. Proud et al., Viking 75 Orbiter Computer Command Subsystem Flight
Software Design Description, p. 3.165.

85. Proud et al., Viking 75 Orbiter Computer Command Subsystem Flight
Software Design Description, pp. 228-234.

86. Kohl, Functional Requirement Viking Orbiter 1975 Flight Equipment
Computer Command Subsystem Software, pp. 31-33 contains a complete list of
the instructions.

87. Proud et al., Viking 75 Orbiter Computer Command Subsystem Flight
Software Design Description, p. 3.6.

88. Kohl, Functional Requirement Viking Orbiter 1975 Flight Equipment
Computer Command Subsystem Hardware; Kohl, Functional Requirement Viking
Orbiter 1975 Flight Equipment Computer Command Subsystem Software.

89. Proud et al., Viking 75 Orbiter Computer Command Subsystem Flight
Software Design Description, p. 4.2.

90. Proud et al., Viking 75 Orbiter Computer Command Subsystem Flight
Software Design Description, p. 4.1.

91. Proud et al ., Viking 75 Orbiter Computer Command Subsystem Flight
Software Design Description, p.4.4

92. Proud et al., Viking 75 Orbiter Computer Command Subsystem Flight
Sojhmre Design Description, p. 5.7.

93. Martin-Marietta Corp., Viking Software Data, Rome Air Development Center,
TR-77-168, p. 107.

94. B.A. Claussen II and R.E. Wachs, "Software First: Our Viking Experience
and Continuing Research," Proceedings of the 1977 Summer Computer
Simulation Conference, New York: AIAA, 1977, p . 108.

95)Martin-Marietta Corp., p. 107.

96. Martin-Marietta Corp., p. 111.

97. Claussen and Wachs, p. 108.

98. An excellent introduction to microcode is contained m D.A. Patterson,
"Microprogramming", Scientific American, March, 1983.

99. Martin-Marietta Corp., p. 118.

336 COMPUTERS IN SPACEFLIGHT

100. Martin-Marietta Corp., p. 107.

101. Claussen and Wachs, p. 108.

102. Martin Marietta Corp., p. 106.

103. Claussen and Wachs, p. 108.

104. Martin-Marietta Corp., pp. 131- 132.

105. Martin-Marietta Corp., p. 110.

106. Martin-Marietta Corp. , p. 111.

107. Martin-Marietta Corp., p. 114.

108. Martin-Marietta Corp., pp. 150, 154.

109. Martin-Marietta Corp., p. 104.

110. Martin-Marietta Corp., p. 149.

111. RADC-TR-77-168, May, 1977.

Chapter Six

1. See General Electric Missile and Space Division, "Final Report, Voyager
Spacecraft, "Volume 1, Volume IV, Book 3, Volume VII, Book 3; October 16,
1967.

2. E. Greenberg to T. Gottlieb, "A Proposal for the Development of a New
Spacecraft System Concept," December 8, 1972. From the files of E. Greenberg.

3. Interview with Edward H. Kopf, Jet Propulsion Laboratory, May 18, 1984.

4. E.C. Litty and R.D. Rasmussen, "A Voyager Attitude Control Perspective on
Fault Tolerant Systems," AIAA Paper 81-1812, 1981.

5. F.T. Surber to H.M. Schunneier, "Clarification of Spacecraft Memory
Redundancy Policies," July 28, 1975, Voyager files, Jet Propulsion Laboratory
Record Center.

6. K. Frewing to R. Draper, "MJS77 Software System Engineer," February 20,
1974, Voyager file, JPL Record Center.

SOURCE NOTES 337

7. K. Frewing to multiple addressees, "MJS77 On-board Software Design Team,"
May 10, 1974, Voyager file, JPL Record Center.

8. Raymond L. Heacock, memo to the author, May, 1985; Mr. De Jesus provided
a tour of the facility when I visited JPL in 1984.

9. J.N. Bryden, memo to distribution, November 28, 1973, Jet Propulsion
Laboratory Records Center.

l 0. S. Lingon, "Functional Requirement Mariner Jupiter/Saturn 1977 Flight
Equipment-Computer Command Subsystem Hardware,' No. MJS77-4-2005-1B,
Pasadena, CA Jet Propulsion Lab, August 16, 1977.

11. Interview with Roy Otamura, Jet Propulsion Laboratory, 29 May 1984.

12. Interview with Dick Rice, Jet Propulsion Laboraory, 29 May 1984.

13. Lingon, "Equipment-Computer Command Subsystem Hardware," p. 35;
U. S. Lingon et al., "Voyager Computer Command Subsystem Flight Software
Design Description," Rev. G, Vol. I, No. 618-235, Pasadena, CA Jet Propulsion
Laboratory, July 1983, p. 3.141.

14. U. S. Lingon et al., "Voyager Computer Command Subsystem Flight Software
Design Description," pp. 3.30-38.

15. D. Linick to Laeser, R.P., "Preliminary List of MOS Concerns About
Spacecraft Software Design." August 21, 1975, From the files of R.J. Rice, Jet
Propulsion Laboratory.

16. Otamura interview.

17. Otamura interview.

18. Otamura interview.

19. Interview with Ted Kopf, Jet Porpulsion Laboratory, May 18, 1984.

20. Interview with William Charlen, Jet Propulsion Laboratory, May 18, 1984.

21. Kopf interview, May 18, 1984.

22. E.H. Kopf and L.S. Smith, "The Development and Demonstration of Hybrid
Programmable Attitude Control Electronics with Adaptable Analog/Digital
Design Approach," AGARD Real-Time Computer-Based Systems,: Kopf
interview, May 18, 1984.

23. Kopf interview, May 18, 1984.

338 COMPUTERS IN SPACEFLIGHT

24. Kopf interview, May 18, 1984.

25. Charlan interview.

26. Interview with Edward Greenberg, Jet Propulsion Laboratory, May 30, 1984.

27. Telephone interview with Wayne Kohl, Jet Propulsion Laboratory, January
31, 1985.

28 . Kopf interview.

29. Telephone interview with Sam Deese, Jet Propulsion Laboratory, January 31,
1985.

30. Raymond L. Heacock, comments on the draft of this chapter, July 23, 1985.

31. Kopf interview, May 18, 1984.

32. Kopf interview, May 18, 1984.

33. Jet Propulsion Laboratory, Voyager Guidance and Control Functional
Description and Block Diagrams, 618-623 , August 26, 1980.

34. K. Frewing to multiple addresses, "AACS Fault Protection Proposal," June 16,
1975, Voyager file, Jet Propulsion Laboratory Record Center.

35. Kopf interview, May 18, 1984.

36. Litty and Rasmussen, p. 246.

37. Kopf interview, May 18, 1984.

38. Kopf interview, January 31 , 1985 .

39. Kopf interview, May 18, 1984.

40. Interview with John Wooddell, Jet Propulsion Laboratory, May 21 1984.

41. B.D. Martin, "Data Systems for 12-Year Missions," Astronaut. Aeronaut.,
September 1970, p. 58 .

42. Interview with Don Johnson, Jet Propulsion laboratory, May 16 1984;
Undated at the time, Wooddell thinks he wrote the "Design of a CMOS Processor
for Use in the Flight Data Subsystem of a Deep Space Probe" in 1974, which
makes sense as the development process lasted from 1972 to 1974.

SOURCE NOTES 339

43. J. Wooddell, "Design of a CMOS Processor," pp. 2-3, files of J. Wooddell.
44)J. Morecroft to K. Frewing, "FDS Programming," January 14, 1975, files of
R.J. Rice, Jet Propulsion Lab.

45 . Rice interview.

46. Wooddell, "Design of a CMOS Processor," pp. 8-9.

47. Wooddell, "Design of a CMOS Processor," pp. 14-15.

48 . Wooddell interview.

49. D. Johnson interview.

50. Rice interview.

51. Wooddell, "Design of a CMOS Processor," p. 9-11.

52. Interview with John Morecroft, Jet Propulsion Laboratory, 29 May, 1984.

53. D. Johnson interview.

54. J. Wooddell to multiple addressees, "FDS Processor Changes Allowing Better
Utilization of the Added Memory," June 6, 1975, files of R.J. Rice, Jet Propulsion
Lab.

55. Wooddell, "Design of a CMOS Processor," p. 16.

56. J. Wooddell to multiple addressees, "MJS FDS Processor Architecture and
Instruction Set," October 7 , 1974, files ofR.J. Rice, Jet Propulsion Lab.

57. R. DeSantis, "Functional Requirement Mariner Jupiter/Saturn 1977 Flight
Equipment Flight Data Subsystem Hardware," Number MJS77-4-2006-1A,
Pasadena, CA Jet Propulsion Laboratory, March 20, 1978, p. 13.

58. DeSantis, "Flight Data Subsystem Hardware," p. 44.

59. Wooddell interview.

60. Wooddell, "Design of a CMOS Processor," p. 5.

61. Wooddell, "MJS FDS Processor Architecture and Instruction Set"; D. Johnson
interview.

62. Wooddell interview.

340 COMPUTERS IN SPACEFLIGHT

63. Rice interview.

64. D. Johnson interview.

65. Rice interview.

66. Heacock, notes on the draft.

67. Morecroft interview.

68 . H.M. Schurmeier to multiple addresses, "MJS77 Spacecraft Memory Usage,
MJS77 FDS Pro~ram Development Priorities," June 23, 1975, From files of R.J.
Rice, Jet Propuls10n Laboratory.

69. K. Frewin~ to T. Sorenson, "Response to FDS Flight Software Design Review
Action Items,' March 17, 1976, Voyager file, JPL Record Center.

70. Wooddell, "MJS FDS Processor Archetecture and Instruction Set."

71. DeSantis, "Flight Data Subsystem Hardware,'' pp. 4, 6.

72. Morecroft interview.

73. D. Johnson interview.

74. Otamura interview.

75. Heacock, notes on the draft.

76. Interview with Gentry Lee, Jet Propulsion Laboratory, June 1, 1984.

77. Kopf interview, May 18, 1984.

78 . Charlan interview; Kopf interview, May 18, 1984.

79. C.P. Jones and M.R. Landano, "The Galileo Spacecraft System Design,''
Proceedings of the A/AA 21st Aerospace Science Meeting, Reno, Nevada, January
10-13, 1983, p. 19.

80. Jones and Landano, "Galileo Spacecraft System Design," p. 17.

81. Kohl interview.

82. D. Johnson interview.

SOURCE NOTES 341

83. Kopf interview, May 18, 1984.

84. B. Lannan, Functional Requirement Galileo Orbiter Data System
Intercommunication Requirements, GLL-3-270, Rev. A, Pasadena, CA Jet
Propulsion Lab, March 27, 1981, p. 35.

85. Lannan, Functional Requirement
Intercommunication Requirements, p. 37.

Galileo Orbiter Data System

86. Lannan, Functional Requirement Galileo Orbiter Data System
Intercommunication Requirements, p.34.

87. Telephone Interview with Bill Tindal, Washington, D.C., August 10, 1984.

88. D.A. Rennels, B. Riis-Vestergaard, and V.C. Tyree, "The Unified Data
System: A Distributed Processing Network for Control and Data Handling on a
Spacecraft," NAECON '76 Record, New York: IEEE, 1976, p. 283.

89. Greenberg interview; Rennels et al ., "Unified Data System," p. 283.

90. D.A. Rennels, "Reconfigurable Modular Computer Networks for Spacecraft
On-board Processing," Computer, July 1978, p.57.

91. Rennels et al., "Unified Data System," p.284.

92. Rennels, "Reconfigurable Modular Computer Networks," p. 54.

93. Rennels, "Reconfigurable Modular Computer Networds, p. 49.

94. P. Lecoq and F. Lesh, "Software Techniques for a Distributed Real-Time
Processing System," NAECON '76 Record, New York: IEEE, 1976, p. 291.

95. Rennels et al., "Unified Data System" p. 285.

96. Kopf interview.

97. P.H. Stakem, "One Step Forward - Three Steps Backup: Computing in the
U.S. Space Program," Byte, September 1981 , p. 118.

98 . Kohl, Galileo Orbiter Flight Equipment, p. 144.

99. Stakem, "One Step Forward - 'Three Steps Backup," p. 132.

I 00. Interview with John Zipse, Jet Propulsion Laboratory, May 22, 1984.

342 COMPUTERS IN SPACEFLIGHT

101. D. Johnson interview.

102. D. Johnson interview.

103. Jones and Landano, "Galileo Spacecraft System Design," p.11.

104. Jones and Landano, "Galileo Spacecraft System Design," p. 12.

105. Zipse interview.

106. Zipse Interview.

107. Jones and Landano, "Galileo Spacecraft System Design," p. 12.

108. W.H. Kohl, Functional Requirement Galileo Orbiter Flight Equipment
Command and Data Subsystem, No. GGL-4-2006, Pasadena, CA., Jet Propulsion
Laboratory, March 5, 1981, pp. 101-102,

109. Zipse interview; O.W. Adams, Project Galileo: Software Requirements
Document, Command and Data Subsvstem, 625-340-006000, Rev. A, Jet
Propulsion Laboratory, Pasadena, CA, January 16, 1984, p. 13.

110. Zipse interview.

111. Kohl, Galileo Orbiter Flight Equipment, pp. 89-90.

112. Zipse interview.

113. Kohl,Galileo Orbiter Flight Equipment, p. 48 .

114. D. Johnson interview.

115. O.W. Adams, Project Galileo: Software Requirements Document Command
and Data Subsystem, 625-340-006000, Rev. A, Jet Propulsion Laboratory,
Pasadena, CA, Jan 16, 1984, pp. 144-145.

116. Adams, Project Galileo: Software Requirements, p.215.

117. C. Chadwick to W.J. O'Neil, "Some Thoughts on the HAL/S System," June
19, 1978, Galileo file, Jet Propulsion Laboratory Record Center.

118. Adams, Project Galileo: Sojru·are Requirements, p. 12.

119. Henry Kleine, "Software Design and Development Language," Jet
Propulsion Laboratory Publication 77-24, Rev. 1, August 1, 1979.

SOURCE NOTES 343

120. C. A. Ericson, Apollo Logic Diagram Analysis Guideline, Boeing Co.,
Seattle, WA, 1967, pp. 66.

121. J.T. Buchman, Galileo: General Design Document, Attitude and Articulation
Control Subsystem, 625-350-007000, Jet Propulsion Laboratory, Pasadena, CA,
October 1, 1983.

122. H.K. Bouvier and G.D. Pace, "Management of the Galileo Attitude and
Articulation Control Flight Software Development," 3rd Computers in Aerospace
Conference, AIAA, San Diego, CA, October 26-28, 1981, No. 81-2127, pp.
112-118.

123. Charlan interview.

124. Bouvier and Pace, "Galileo Attitude and Articulation Control Flight," pp.
112-118.

125. Kopf interview.

126. Kopf interview.

127. ITEK, "ATAC-16M Principles of Operation," June 1979, p. 2.60.

128. Kopf interview.

129. ITEK, "ATAC-16M Principles of Operation," p. 1.8.

130. Bouvier and Pace, "Galileo Attitude and Articulation Control Flight ," pp.
112-118.

131. E.H.Kopf, Galileo Real-Time AACS Operating System, "Gracos" Reference
Manual, Jet Propulsion Laboratory, Pasadena, CA, September 1, 1983, p. 29.

132. Buchman, Galileo: General Design Document, p. 1.6.

133. Bouvier and Pace, "Galileo Attitude and Articulation Control Flight," pp.
112-118.

134. Kopf interview.

135. Kopf interview.

136. Kopf interview.

137. Buchman, Galileo: General Design Document, pp. 1.7, 4.1.

344COMPUTERS IN SPACEFLIGHT

138. Kopf, "Gracos," p. 9.

139. Kopf, "Gracos," p. 25.

140. Charlan interview; Kopf interview.

141. Buchman, Galileo: General Design Document, p. 1.11.

142. Buchman, Galileo: General Design Document, p. 3.3.

143. Lee interview.

144. Washburn, Distant Encounters, pp. 87, 107.

145. Kopf interview.

146. Lee interview.

147. D. Johnson interview.

Chapter Seven

1. Interview with Dr. Helmut Hoelzer, Huntsville, AL, June 24, 1983.

2. Interview with Charles Swearingen, Huntsville, AL, June 21 , 1983.

3. Interview with Jim Lewis, Marshall Space Center, June 20, 1983; IBM
Corporation, "Apollo Study Report," October 1, 1963, p. 6.2.

4. Interview with Kyle Rone , IBM, Johnson Space Center June 3, 1983.

5. See IBM, "Apollo Study Report ," Volume II, for a complete technical
description.

6. IBM, "Apollo Study Report," p. 3.4.

7. IBM, "Apollo Study Report," Vol. II, p. 3.5; F.B. Moore and J.B . White,
Applications of Redundancy in the Saturn V Guidance and Control System,
NASA-TM-X-73352, Huntsville, AL, Marshall Space Flight Center, November,
1976, p. 10.

8. IBM, "Apollo Study Report," Vol. II, pp. 3.2, 3.3.

SOURCE NOTES 345

9. Swearingen interview; R. Alonso and G.C. Randa, "Flight-Computer Hardware
Trends," Astronaut. Aeronaut., 33-34 (April 1967).

10. Lewis interview.

11. IBM Corporation, Saturn launch Computer Complex Software System
Description, IBM Federal System Division, Huntsville, AL, March 14, 1972, p.
12.

12. Interview with Jim Willbanks, IBM, Kennedy Space Center, June 29, 1983.

13. J.W. Dahnke, "Computer-Directed Checkout for NASA 's Biggest Booster,"
Control Eng., 84 (August 1962); Lewis interview.

14. C.O. Brooks to multiple addressees, October 5, 1962, Marshall Space Flight
Center.

15. R. Dutton and W. Jafferis, Utilization of Saturn/Apollo Control and Checkout
System for ?relaunch Checkout and launch Operations, NASA-TM-X-65271,
Kennedy Space Center, Cocoa Beach, FL, July 22, 1968, p. 5 .2.

16. Swearingen interview.

17. Willbanks interview.

18. Interview with Thomas S. Walton, Kennedy Space Center, July 6, 1983.

19. Walton interview.

20. Walton interview.

21. Walton interview.

22. Walton interview.

23. W.E. Parsons et al., "PACE: Preflight Acceptance Checkout Equipment,"
Astronaut. Aerospace Eng ., 52 (July 1963).

24. Walton interview.

25. Dutton and Jafferis, p. 3.40.

26. A. Laats and J.E. Miller, Apollo Guidance and Control System Flight
Etperience, NASA-CR-101823, MIT, Cambridge, MA, June , 1969, pp. 1,3.

346 COMPUTERS IN SPACEFLIGHT

27. Interview with Bruce Miller, Kennedy Space Center, July 5, 1983.

28. Interview with James E. Deming, Kennedy Space Center, July 6, 1983.

29. Miller interview.

30. Miller interview.

31. W.O. Robeson to Mr. Siepert, Deputy Director of NASA Kennedy Space
Center, "Optimum Computer Support to NASA," IBM Corp., Cape Canaveral,
FL, July 11, 1965, Kennedy Archives.

32. Deming interview.

33. IBM Corporation, Saturn Software Systems Development Study, December 8,
1972,p.5.l.

34. IBM Corporation, Saturn Software Systems, p.5.2.

35. Deming interview.

36. IBM Corporation, Saturn Software Systems, December 8, 1972.

37. IBM Corporation, Saturn Sofrn1are Systems, p. 4.16.

38. IBM Corporation, Saturn Sofrn1are Systems, pp. 4.18, 2.3.

39. James J. Hart, "Analysis of Apollo Launch Operating Experience" in Space
Shuttle Technology Conference, NASA, Kennedy Space Center, TR-1113, May
3, 1971, p. 15.

40. Hart, "Analysis of Apollo Launch Operating Experience," p. 26.

41. Interview with Pam Biegert, Kennedy Space Center, June 30, 1983.

42. Deming interview.

43 . H.C. Paul, "A Standard Language for Test and Ground Operations,"
Proceedings of the Space Shuttle Integrated Electronics Conference, 2:355-358 ,
Kennedy Space Center, Cocoa Beach, FL, p. 358.

44. H.C. Paul, "Launch Processing System Transistion frm Development to
Operation," Proceedings of the 14th Space Congress, Cocoa Beach, Fl , 27-29
April 1977, pp. 7.1-7.3, Canaveral Council of Technical Societies, Cocoa Beach,
FL, 1977, p. 7.3.

SOURCE NOTES 347

45. Interview with Al Parrish, Kennedy Space Center, June 28, 1983.

46. Space Shuttle Launch Operations Center Study, NASA-TM-X-67292,
Kennedy Space Center, Cocoa Beach, FL, November 4, 1970, pp. 6.5, 6.11.

47. A.B . Sloan, "Vandenberg Planning for the Space Transportation System,"
Astronaut. Aeronaut., 47 (November 1981).

48. Interview with R.C. Bulkley, IBM, Kennedy Space Center, June 27 and 29,
1983.

49. W.E. Parsons, "Kennedy Launch Processing System," Technology Today and
Tomorrow: Canaveral Council of Technical Societies, Proceedings of the Eighth
Space Congress, Cocoa Beach, FL, 19-23 April 1971, 1:11.31-11.40, Canaveral
Council of Technical Societies, Cocoa Beach, FL, 1971, p. 11.34.

50. Space Shuttle Launch Operations Center Study, pp. 2.1, 4.2.

51. E.A. Dalke, "Unified Test Equipment: A Concept for the Shuttle Ground Test
System," NASA Manned Space Center Proceedings of the Space Shuttle
Integrated Electronics Conference, vol. 2, pp. 329-354, Johnson Space Center,
Houston, TX, p. 330.

52. Dalke, "Unified Test Equipment," p. 348.

53. General Electric Co., "Summary Refort for the Universal Control and Display
Console," NASA CR-115350, July 197 .

54. Interview with Henry Paul, Kennedy Space Center, July 7, 1983.

55. Interview with Bill Bailey, Kennedy Space Center, June 30, 1983.

56. C. Covault, "Cape Shuttle Capabilities Broadened," Aviation Week and Space
Technol., 40 (October 13, 1975).

57. Bailey interview.

58. Interview with Frank Byrne, Kennedy Space Center, June 29, 1983; Walton
interview.

59. Henry C. Paul, letter to the author, July 3, 1985.

60. Bailey interview.

61. Byrne interview, June 29, 1983.

348 COMPUTERS IN SPACEFLIGHT

62. G.W. Cunningham and D.M. Welsh, "Launch Processing System: A
Groundbased Component of Space Shuttle," reprinted from Tech. Directions, 3
(1) (Spring 1977), IBM Federal System Division, Bethesda, MD, p. 8.

63. H.C. Paul, "Launch Processing System Transistion from Development to
Operation," p. 7.2.

64. Walton interview; Paul interview.

65. KSC-DD-LPS-007 , October 12, 1973.

66. Interview with Fred Heddens, IBM, Kennedy Space Center, June 27 and 29,
1983.

67. H.C. Paul, "LPS-A System to Support the Space Shuttle," Technology Today
and Tomorrow : Proceedings of the Twelfth Space Congress, Cocoa Beach , FL,
9-11 April 1975, pp. 8.3-8.7, Canaveral Council of Technical Societies, Cocoa
Beach, FL, 1975, p. 8.3; Bailey interview.

68. Paul letter.

69. Cunningham and Welsh, "Launch Processing System," p. 10.

70. Bulkley interview; Bailey interview.

71. Walt on interview.

72. Covault, "Shuttle Capabilities Broadened," p. 40.

73. F. Byrne, G.V. Doolittle, and R.W. Hockenberger, "Launch Processing
System," IBM J. Res. Devel. , 75 (January 1976).

74. Interview with Al Parrish, Kennedy Space Center, June 28, 1983.

75 . Cunningham and Welsh, "Launch Processing System," p. 13.

76. Heddens interview.

77. Byrne interview, June 29, 1983.

78. Covault, "Shuttle Capabilities Broadened," p. 41.

79. Byrne interview, June 29, 1983.

80. Byrne interview, June 29, 1983; Wal ton interview.

SOURCE NOTES 349

81. W.W. Bailey, Launch Processing System: Concept to Reality. Kennedy Space
Center, Digital Electronics Division, p. 5.

82. Parrish interview.

83. Walton interview.

84. Paul interview.

85 . Byrne interview, June 29, 1983.

86. Cunningham and Welsh, "Launch Processing System," p. 10.

87. CCMS Hardware Project Requirements, Pamphlet, no date, p. 189.

88. Byrne, et al. , "Launch Processing System," p. 81.

89. H.C. Paul, "Launch Processing System Transistion from Development to
Operation," p. 7.1.

90. Paul interview; Byrne, et al., "Launch Processing System," p. 82.

91. Byrne interview, June 29, 1983.

92. Paul interview.

93. Byrne interview, June 29, 1983

94. Byrne interview, June 29, 1983

95. Byrne interview, July 8, 1983.

96. CCMS Hardware Project Requirements, p. 197.

97. Byrne interview, July 8, 1983.

98 . Parrish interview; Byrne interview, June 29, 1983.

99. Biegert interview.

100. Parrish interview.

101. Byrne interview, June 29, 1983.

350 COMPUTERS IN SPACEFLIGHT

102. Biegert interview.

103. Parrish interview.

104. T.E. Utsman, "KSC Ground Support Operation and Equipment for the Space
Transportation System," Shuttle Propulsion Systems Proceedings of the Wmter
Annual Meeting, Phoenix, AZ, 14-19 November 1982, pp. 73-77, American
Society of Mechanical Engineers , New York, 1982, p. 76.

105. Bailey interview.

106. Bailey interview.

107. D.A. Springer, "The Launch Processing System for Space Shuttle," AIAA,
ASME and SAE Joint Space Mission Planning and Execution Meeting, Denver,
CO, July 10-12, 1973, p. 4.

108. Biegert interview.

109. Bailey interview.

110. Biegert interview.

111. Interview with Jane Stearns, Kennedy Space Center, June 30, 1983.

112. Steams interview.

113. Interview with Bobby Bruckner, Kennedy Space Center June 30, 1983.

114. Biegert interview; T.E. Utsman, "KSC Ground Support Operation and
Equipment for the Space Transportation System," Shuttle Propulsion Systems
Proceedings of the Winter Annual Meeting. Phoenix, AZ, 14-19 November 1982,
pp. 73-77, American Society of Mechanical Engineers, New York, 1982, p. 76.

115. Bruckner interview.

116. H.C. Paul, "Launch Processing System Transition from Development to
Operation," p. 7.2.

117. Walton interview.

118. Interview with Brad Hughes, Kennedy Space Center, July 5, 1983.

119. Bailey, Launch Processing System : Concept to Reality, p. 7.

SOURCE NOTES 351

120. Paul interview.

121. Paul interview.

122. GOAL On-Board Interface Language Users Packages, KSC-LP-OP-033-4,
April 27, 1983, Kennedy Library; Paul, p. 7.2.

123. H.C. Paul, "LPS-A System to Support the Space Shuttle," p. 8.4.

124. Springer, "The Launch Processing System for Space Shuttle," p. 2.

125. Interview with Jack Bogan, IBM, Kennedy Space Center, June 29, 1983.

126. Shuttle Ground Operations Simulator Users' Reference Manual, Revision 1,
KSC-LPS-UM-073, February 1983.

127. Interview with Dr. Carl Delaune, Kennedy Space Center, July 5, 1983.

128. Delaune interview.

129. Biegert interview; IBM Corporation, Launch Processing System Checkout,
Control and Monitor Subsystem Detailed Software Design Specifications. Book 1,
part 2: Control Logic Language Design, KSC-LPS-IB-070-1, part 2, S33 release,
Kennedy Documents Library, Cape Canaveral, FL, May 5, 1983, p. 1.3.

130. Bogan interview; Remer Prince, a NASA employee, wrote most of the first
GOAL compiler interpreter on this machine in such a short time it paid great
dividends in gaining recognition of the Kennedy effort to build the Launch
Processing System (Paul letter).

131. Byrne interview, June 29, 1983.

132. Utsman, "KSC Ground Support Operation and Equipment," p. 76.

133. Interview with Bob Yarborough, Kennedy Space Center, July 6, 1983.

134. Yarborough interview.

135. Paul interview.

136. Parrish interview.

137. Delaune interview.

138. Sloan, "Vandenberg Planning," p. 44.

352 COMPUTERS IN SPACEFLIGHT

139. D.J. Berrier, "Vandenberg Ground Support Equipment for the Space
Shuttle," AIAA 19th Aerospace Sciences Meeting, St. Louis, MO, January 12-15,
1981,p.5.

Chapter Eight

1. Interview with John Morton, Goddard Spaceflight Center, June 27, 1984.

2. Frederick P. Brooks , Jr., The Mythical Man-Month, Addison-Wesley,Reading,
MA, 1975, p. 56.

3. Morton interview, June 27, 1984.

4. S.E. James, "Evolution of Real-Time Computer Systems for Manned
Spaceflight," IBM J. Res. Devel., 25,418 (1981) .

5. W .R. Corliss, Histories of the Space Tracking and Data Acquisition Network
(STADAN), The Manned Space Flight Network (MSFN), and the NASA
Communications Network (NASCOM), NASA CR-140390, September 1974. p.
29.

6. Western Electric, Inc., Final Project Report to NASA: Progress Mercury,
NASl-430, June 1961 , p. 1.

7. Interview with James Stokes, Johnson Space Center, June 14, 1983.

8. H.R. Karp, "NASA Plans Global Range to Track Man in Space," Control Eng.,
22 (July 1959).

9. Stokes interview, June 14, 1983.

10. Interview with J. Perry Chambers, Goddard Spaceflight Center, June 28,
1984.

11. Chambers interview, June 28, 1984.

12. Corliss , Space Tracking and Data Acquisition Network, September 1974, p.
138.

13. Western Electric, Inc., Final Project Report to NASA : Progress Mercury,
June 1961, pp. 42, 45.

14. IBM, Goddard Monitor Programs, Project Mercury, prepared for NASA,
NASl-430, 1961, p. 1.4, files of John Morton, Goddard Spaceflight Center;
James, "Evolution of Real-Time Computer Systems," p. 424.

SOURCE NOTES 353

15. IBM, Goddard Monitor Programs, Project Mercury, p. 1.8.

16. IBM, Goddard Monitor Programs, Project Mercury, p. 3.2.

17. Chambers interview, June 28, 1984.

18. Interview with Lynwood Dunseith, Johnson Space Center, June 2, 1983.

19. Chambers interview, June 28, 1984.

20. Chambers interview, June 28, 1984.

21. IBM, Goddard Monitor Programs, Project Merrnry , pp. 1.13, 1.18.

22. IBM, Goddard Monitor Programs, Project Mercury, pp. 1.15, 1.16, 3.1.

23 . Chambers interview, June 28, 1984.

24. Stokes interview, June 14, 1983.

25. Chambers interview, June 28, 1984; P. Herget, The Computation of Orbits,
Cincinnati, by the author, 1948.

26. IBM, Goddard Monitor Programs, Project Mercwy, p. 1.2; Stokes interview,
June 14, 1983; IBM Corporation, IBM Launch Monitor Subsystem, MS 124, May
1, 1962, pp. 1.2, 1.3; fames, "Evolution of Real-Time Computer Systems for
Manned Spaceflight," 25 418 (1981).

27. Chambers interview. June 28, 1984.

28. Stokes interview, June 14, 1983.

29. J. Grimwood, B.C. Hacker, and P.J. Vorzimmer, Project Gemini: Technology
and Operations, GPO, Washington, D.C., 1969, p. 23 .

30. H. W. Tindall, jr., Consolidation of Gemini Computer Programming and
Operation at Houston, Texas, memorandum, February 28, 1962, Johnson Space
Center History Office.

31. T.L. Kraft, WDL Tech. Rep. E-167: Mission Display Study, Philco Corp.,
Palo Alto, CA, June 15, 1964, p. 2.1.

32. Philco Corporation, "IMCC Systems and Performance Requirements
Specification," p. 4.1.2.

354COMPUTERS IN SPACEFLIGHT

33. Philco Corporation, "IMCC Systems and Performance Requirements," p.
4.3.5.1.

34. IBM Corporation, Real-Time Computer Complex for NASA Manned
Spacecraft Center, Houston, Texas, IBM Federal Systems Division, Rockville,
MD, September 1, 1962, pp. 1.1, 1.2, 2.5, 2.53.

35. IBM Corporation, Project Gemini Final Report-Summary, NASA CR-72180,
no date, p. 2.

36. IBM Corporation, Project Gemini Final Report-Summary , no date, p. 2; IBM
Corporation, Real-Time Computer Complex for NASA Manned Spacecraft Center,
pp. 2.51 , 3.5.

37. IBM Corporation, Project Gemini Final Report-Summary, no date, p. 39.

38. Corliss, Space Tracking and Data Acquisition Network, p. 145.

39. Stokes interview, June 1, 1983.

40. IBM Corporation, Real-Time Computer Complex for NASA Manned
Spacecraft Center, p. 2.1.

41. IBM Corporation, Real-Time Computer Complex for NASA Manned
Spacecraft Center, p. 2.44.

42. IBM Corporation, Project Gemini Final Report-Summary, p. 7.

43. IBM Corporation, Project Gemini Final Report-Summary, p. 18.

44. IBM Corporation, Real-Time Computer Complex for NASA Manned
Spacecraft Center , p. 2.3 ; IBM Corporation, Project Gemini Final
Report-Summary, p. 38.

45. James, "Evolution of Real-Time Computer Systems," p. 421.

46. IBM Corporation, Project Gemini Final Report-Summary, p. 36.

47. James, "Evolution of Real-Time Computer Systems," p. 422.

48. Interview with William Sullivan, Johnson Space Center, June 14, 1983.

49. IBM Corporation, Real-Time Computer Complex for NASA Manned
Spacecraft Center, p. 2.14.

50. Interview with Dub Pollen, IBM, Johnson Space Center, June 13, 1983.

SOURCE NOTES 355

51. James, "Evolution of Real-Time Computer Systems," p. 424.

52. B.C. Hacker and J.M. Grimwood, On the Shoulders of Titans, NASA
SP-4203, 1977, p. 386.

53. Stokes interview, June 14, 1983.

54. R.C. Seamans, RTCC Computer Requirement for Project Apollo,
memorandum, Washington, D.C., October 7, 1965, Johnson Space Center History
Office.

55. Pollen interview, June 13, 1983.

56. Stokes, "Managing the Development of Large Software Systems-Apollo
Real-Time Control Center," IEEE Proc., A/31-A/315, p. 1 (1970).

57. Stokes interview, June 14, 1983.

58. Dunseith interview, June 9, 1983.

59. Stokes interview, June 14, 1983.

60. Stokes, RTCC Computer Supervisor's Report for the AS-205/CSM-101
Mission, memorandum, November 1, 1968, Johnson Space Center History Office.

61. Stokes, RTCC Computer Supervisor's Report for the Apollo 10 Mission,
memorandum, June 27, 1969, Johnson Space Center History Office.

62. Stokes interview, June 14, 1983.

63. James, "Evolution of Real-Time Computer Systems," p. 419.

64. Stokes interview, June 14, 1983.

65. James, "Evolution of Real-Time Computer Systems," p. 424.

66. M. Forthoffer, "A Comparison of Time-Shared vs. Batch Development of
Space Software," Proceedings of 12th International Symposium on Space
Technology and Science, To/..yo, Japan, 16-20 May 1977, National Aerospace
Laboratory, Chofu, Tokyo, 1977, pp. 1056, 1057, 1059.

67. James, "Evolution of Real-Time Computer Systems," p. 419.

68. Pollen interview, June 13, 1983; Interview with Gene Campbell, IBM,
Houston, TX, June 13, 1983; Interview with Fred Riddle, IBM, Johnson Space
Center, June 13, 1983.

356 COMPUTERS IN SPACEFLIGHT

69. Frank Hughes (JSC) and Kristan Lattu (}PL), A Comparative Study of the
Evolution of Command and Control Activities for Manned and Unmanned
Spaceflight Operations, AIAA-83-294, given by Lattu at International Aerosapce
Foundation Meeting, Budapest, October 10-15, 1983, pp. 2-3.

70. Interview with Ann Merwarth, Goddard Spaceflight Center, July 3, 1984.

71. Interview with Carl Johnson, Jet Propulsion Laboratory , May 23, 1984.

72. See Corliss, Histories of the Space Tracking and Dara Acquisition Network;
N.A. Renzetti, ed., A History of rhe Deep Space Network From Inception to
January 1, 1969, Jet Propulsion Laboratory TR 32-1533, September 1, 1971.

73 . C.R. Gates and M.S. Johnson, "A Study of On-Site Computing and Data
Processing for a World Tracking Network," Jet Propulsion laboratory
Publication no. 154, Jet Propulsion Laboratory, Pasadena, CA, February 9, 1959,
p. 11.

74. C. Johnson interview, May 23, 1984.

75. W.D. Merrick; E. Rechtin; R. Stevens; and W.K. Victor, "Deep Space
Communications," IRE Trans . Military Electron., 160 (April/July 1960).

76. Interview with George Gianopolis, Jet Propulsion Laboratory, June 4, 1984.

77. NASA, Mariner-Venus 1962 : Final Project Report, NASA SP-59,
Washington, 1965, pp. 278-279, 294.

78 . NASA, Mariner-Venus 1962 , 1965, p. 294.

79 . Eberhardt Rechtin, interviewed by Cargill Hall, 1970?, Hall's files in the JPL
Library Vault.

80. W.H. Pickering to multiple addresses, "Establishment of the Deep Space
Network," December 24, 1963, memo. no. 218 .

81. B. Sparks to multiple addresses, "Deep Space network Appointments,"
January 23 , 1964, memo. no. 128; Rechtin interview.

82. Rechtin interview.

83. NASA, Mariner Mars 1964 : Final Project Report, NASA SP-139,
Washington, D.C., p. 216.

84. Corliss, The Inte,planetary Pioneers, Volume / : Summary , NASA SP-278,
Washington, D.C. , 1972, p. 85.

SOURCE NOTES 357

85. Interview with Don Royer, Jet Propulsion Laboratory, June 7, 1984.

86. NASA, Mariner Mars 1964: Final Project Report, pp. 224--225.

87. Jet Propulsion Laboratory, "Spaceflight Operations Facility Data Processing
System," Spec. no. SFOF 372-III-310, Jet Propulsion Laboratory, Pasadena, CA,
October l, 1963,p. 3.

88 . Gianopolis interview. June 4, 1984.

89. NASA, Mariner Mars 1964: Final Project Report, p. 220.

90. Interview with Frank Jordan, Jet Propulsion Laboratory, May 31, 1984.

91. NASA, Mariner-Venus 1967: Final Project Report, NASA SP-190,
Washington, D.C., 1971, pp. 166, 182.

92. Jet Propulsion Laboratory, Surveyor Final Project Report, Volume I, Tech.
Rep. no. 32-1265, Jet Propulsion Laboratory, Pasadena, CA, July 1, 1969, p. 142.

93. Jet Propulsion Laboratory, Mariner Mars 1969 Final Project Report:
Development, Design, and Test, Vol. l, Tech. Rep. no. 32-1460, Jet Propulsion
Laboratory, Pasadena, CA, November 1, 1970, p. 556.

94. Royer interview, June 7, 1984; Jet Propulsion Laboratory , Mariner Mars 1971
Project Final Report, Vol. III, Tech. Rep. no. 32-1550, Jet Propulsion
Laboratory, Pasadena, CA, July l, 1973, p. 27; Interview with Richard Moulder,
Jet Propulsion Laboratory. May 21, 1984.

95. Royer interview, June 7, 1984.

96. Jet Propulsion Laboratory, The Deep Space Network, Space Programs
Summary 37--66, Vol. II, Jet Propulsion Laboratory, Pasadena, CA, November
30, 1970, p. 91.

97. Gianopolis interview, June 4, 1984.

98. Royer interview, June 7, 1984.

99. JPL, Mariner Mars 1971 Final Report, p. 126.

100. R. Scott to W.J. Koselka, "History of the MCIF," memorandum no.
RS-75-103, Jet Propulsion Laboratory, August 27, 1975, files of R. Scott.

101. JPL, Mariner Mars 1971 Final Report, p ._7.

358 COMPUTERS IN SPACEFLIGHT

102. Martin Marietta Corp., Viking Software Data, Rome Air Development
Center, TR-77-168, May 1977, pp. 5, 6.

103. Hughes and Lattu, Evolution of Command and Control Activities, October
10-15, 1983,pp.5,6.

104. Royer interview, June 7, 1984; Interview with Frank Singleton, Jet
Propulsion Laboratory, May 17, 1984.

105. Carl W. Johnson, letter to the author, September 12, 1985.

106. Moulder interview, May 21, 1984; Interview with Lloyd Jennings, Jet
Propulsion Laboratory, May 15, 1984.

107. G.A. Madrid and P.T. Westmoreland, "Adaptation of a Software
Development Methodology to the Implementation of a Large-Scale Data
Acquisition and Control System," AIAA paper 83-2412, 1983, p. 360.

108. Gianopolis interview, June 4, I 984.

109. Jet Propulsion laboratory, Mariner Mars 1969 Final Project Report,
November l, 1970, vol. l, p. 554.

110. C. Johnson interview, May 23, 1984.

111. JPL, Mariner Mars 1971 Final Report, p. 27.

112. Martin Marietta Corp., Viking Software Dara , p. 10.

113. Martin Marietta Corp., Viking Sofnvare Dara, p. 23.

114. Madrid and Westmoreland, Implementation of a Large Scale Data
Acquisition and Control System, 1983, p. 361.

115. Royer interview, June 7, 1984.

Chapter Nine

1. C.H. Woodling et al., Apollo Experience Report: Simulation of Manned Space
Flight for Crew Training, NASA MSC-07036, 1972, p. 2.

2. Interview with John Erickson, Johnson Space Center, June 14. 1983.

3. Interview with Robert Emull, Johnson Space Center, June 16, 1983.

SOURCE NOTES 359

4. Woodling et al., Apollo Experience Report, p. 6.

5. Woodling et al., Apollo Experience Report, p. 47.

6. H.I. Johnson, Facilities for Manned Spacecraft Development Simulation and
Training , NASA Fact Sheet 132, Houston, TX, Manned Spacecraft Center,
February 1963, Johnson Space Center History Office, p. 4.

7. N .R. Cooper, "X-15 Flight Simulation Program," Aerospace Engineering, 77
(November f 961).

8. D.K. Slayton, Apollo Computer Software Report, memorandum, Manned
Spacecraft Center, Houston, TX, June 20, 1967, Johnson Space Center History
Office; Woodling et al., Apollo Experience Report, p. 48; Interview with Ken
Mansfield, Johnson Space Center, June 1, 1983.

9. Interview with Ray Palikowsky, Singer, Johnson Space Center, June 10, 1983.

10. Mansfield interview, June 1, 1983.

11. Erickson interview, June 14, 1983.

12. A.W. Vogeley, Piloted Spaceflight Simulation at Langley Research Center,
NASA-TM-X-59598, Langley Research Center, Hampton, VA, 1966, p. 11.

13. Woodling et al., Apollo EJ..perience Report, p. 3.

14. Woodling et al., Apollo Experience Report, p. 50.

15. Ivan Ertel, News release, September 21, 1966, Johnson Space Center.

16. J.L. Raney, Feasibility Study-Use of a Simulated AGC in the Apollo
Trainers, February 24, 1966, p. 4, Johnson Space Center History Office.

17. Woodling et al., Apollo Experience Report, p. 49.

18. Interview with J arnes Raney, Johnson Space Center, May 31, 1983.

19. Woodling et al., Apollo Experience Report, p. 10.

20. Mansfield interview, June 1, 1983.

21. Raney interview, May 31, 1983.

360 COMPUTERS IN SPACEFLIGHT

22. Warren J. North, memorandum to chief, Computational Analysis Division,
"Simulation of Spacecraft Guidance Computer in the CM and LEM Mission
Simulators," April 5, 1966, files of James Raney.

23. Raney, Use of a Simulated AGC In the Apollo Trainers, February 24, 1966.

24. Raney interview, May 31, 1983; Raney, /SC MC, Johnson Space Center,
Houston, TX, April 1, 1969, Johnson Space Center History Office, pp. 5, 11, 13,
14; Raney, Use of a Simulated AGC In the Apollo Trainers, February 24, 1966.

25. Interview with Stan Mann, Johnson Space Center, June 8, 1983.

26. Palikowsky interview, June 10, 1983 .

27. A.C. Bond, Training and Simulation Requirements for Future Programs,
memorandum, October 23, 1969, Johnson Space Center History Office.

28. R.F. Thompson, Shuttle Engineering/Training Manned Simulation Program
Definition , memorandum, Manned Spacecraft Center, Houston, TX, September 9,
1970, Johnson Space Center History Office.

29. Raney interview, May 31, 1983.

30. Erickson interview, June 14, 1983.

31. Singer Corp., Shuttle Mission Simulator Requirements Report, vol. II, Rev. C,
December 21, 1973.

32. Raney interview, May 31, 1983 .

33. Raney interview, May 31, 1983.

34. Erickson interview, June 14, 1983.

35. Raney interview, May 31, 1983 .

36. Erickson interview, June 14, 1983 .

37. Emull interview, June 16, 1983; Raney interview, May 31, 1983.

38. Emull interview, June 16, 1983.

39. J. Boehm and H.H. Hosenthien, "Flight Simulation of Rockets and
Spacecraft," in From Peenemunde to Outer Space , eds. E. Stuhlinger, et al .,
Marshall Space Flight Center, Huntsville, AL, March 23, 1962, p. 437.

SOURCE NOTES 361

40. See James E. Tomayko, "Helmut Hoelzer's Fully Electronic Analog
Computer," Ann. Hist. Comput., 7 (3) 227-240 (July, 1985).

41. W.K. Polstroff and F.L. Vinz, "General-Purpose Simulation At Marshall
Spaceflight Center," Presented to American Institute of Aeronaut. and Astronaut.
Working Group on Flight Simulation Facilities at Marietta, Georgia, April 22,
1974, pp. 1-4; Interview with Jack Lucas, Marshall Space Center, June 21, 1983.

42. Lucas interview, June 21, 1983; Polstroff and Vinz, "General-Purpose
Simulation At Marshall Spaceflight Center," April 22, 1974, p. 9.

43. Interview with Frank Vinz, Marshall Space Center, June 21, 1983.

44. P.W. Hampton and H.G. Vick, Space Shuttle Main Engine Hardware
Simulation, Marshall Spaceflight Center, Huntsville, AL, no date, pp. l, 2, 7, 8.

45. T.V. Chambers, "Shuttle Avionics Integration Laboratory," AIAA Paper,
1977, p . 212.

46. Mansfield interview, June 1, 1983.

47. Chambers, "Shuttle Avionics Integration Laboratory," 1977, pp. 219-220.

48 . J .T .B. Mayer, "The Space Shuttle Vehicle Checkout Involving Flight
Avionics Software," AIAA Paper no. 1981-2141, pp. 174--175.

49. Chambers, "Shuttle Avionics Integration Laboratory," 1977, p. 216.

50. Mansfield interview, June 1, 1983.

51. Kenneth R. Castleman, Digital Image Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1979, p. 389. Castleman's book contains an excellent short history of
the development of image processing at the Jet Propulsion Laboratory in his
Appendix I, pp. 383-400, including an effective selected bibliography.

52. Interview with Robert Nathan, Jet Propulsion Laboratory, May 30, 1984.

53. J.A. Dunne et al., "Digital Processing of the Mariner 6 and 7 Pictures," J.
Geophys. Res., 395 (1976).

54. Interview with Albert Zobrist, Jet Propulsion Laboratory, May 23, 1984.

55. W.B. Green and D.A. O'Handley, "Recent Developments in Digital Image
Processing at the Image Processing Laboratory at the Jet Propulsion Laboratory,"
Proc. IEEE, 60 (7) 822 (July 1972).

362 COMPUTERS IN SPACEFLIGHT

56. R.F. Stott, "Mariner Mars 1971: Real-Time Video Data Processing," April 4,
1972, from the files of R.F. Stott, p. 3A.

57. Stott, "Mariner Mars 1971: Real-Time Video Data Processing," April 4, 1972,
p. 6.

58. Green and O'Handley, "Recent Developments in Digital Image Processing,"
July 1972, pp. 821-823.

59. Stott, "Mariner Mars 1971: Real-Time Video Data Processing," April 4, 1972.
p. 4.

60. For a description of VICAR and its subroutines, see Chambers, Digital Image
Processing, pp. 52-67, 401-411.

61. Zobrist interview, May 23, 1984.

62. Nathan interview, May 30, 1984.

63. R. Nathan, "Large Array VLSI Filter," Reprinted from 1983 IEEE Computer
Society Workshop on Computer Architecture for Pattern Analysis and Image
Database Management-CAP AIDM, Silver Spring, MD, p. 15.

64. Nathan interview, May 30, 1984.

Bibliographic Note

The detailed references to sources given with each numbered note in
the text serve as the primary record of the evidence used in writing
this volume. This essay provides a general summary of the sources
used and describes the method of locating and evaluating them. As the
volume is a history of technology rather than an institutional history,
the burden of the written evidence lies in technical reports, software
documentation, training manuals, and feasibility studies rather than
memoranda and executive orders. However, the latter sources often
provide the time sense and structure that so quickly fades from an
engineer's mind as he goes on to his next project. Because NASA's
involvement in computer operations during the 1960s and 1970s mir­
rored the stumbling discovery of software engineering principles by
other organizations, interviews not only with managers but program­
mers and contract liasons in both NASA and contractor offices are a
major contribution to my understanding of the flow of events and their
impact on later decisions and developments. Thus, the sources include
the basic mix found in other NASA histories: written institutional
records and oral interviews, with the addition of an extensive list of
technical material.

Identification of source materials was conducted in several
cycles. First, a comprehensive search through standard references,
such as The Applied Science and Technology Index, was made to iden­
tify secondary sources that dealt with NASA's use of computers. The
period surveyed was 1945 to 1981. Articles were found in journals
such as Electronics, Journal of Spacecraft and Rockets, Journal of
Guidance and Control, and various IBM, American Institute of
Aeronautics and Astronautics, and American Federation of Infor­
mation Processing Societies publications. This search revealed that
even though NASA is critically dependent on computers for
spaceflight operations, and that even though massive amounts of
material have been written on the space program in general, relatively
little has been published in public journals or in books on spaceflight
specifically treating the use of computers. Most of what has been
published is short and far from comprehensive. In books about space
projects heavily dependent on computers, such as NASA's own
Chariots for Apollo, generally nothing is said about the configuration,
programming, or operation of those computers. Thus, the general
public, even the technically sophisticated public, is largely in the dark
about the specifics of NASA's computer use. That, of course, is one
reason why this volume is needed.

The identification of primary source materials came next. Thanks
to a Faculty Research Grant from Wichita State University, I was able

364 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

to make a preliminary visit to the Johnson Space Center while prepar­
ing my contract proposal. This visit provided access to the RECON
bibliographic retrieval system that NASA uses. RECON is especially
valuable in this subject area because key words are rather liberally ap­
plied to each item stored: anything remotely to do with computers had
a "computer" key word. Therefore, search keys could be developed
such as "Apollo*Computers," and items with both those key words
could be separated from the mass of material on Apollo. The RECON
search netted over 1,000 items, of which about 25% were rejected
based on their abstracts or because the other associated key words in­
dicated that the item was primarily concerned with another subject,
with only passing reference to computing. The remainder were physi­
cally examined in order to eliminate those that actually did not have
pertinent materials. This process of reading the remaining sources
and doing the interviews turned up a number of new primary sources.
The bulk of these sources are software and hardware specifications,
operations reports, flight training manuals, and spacecraft systems
familiarization manuals, which are not indexed either in standard
bibliographies or RECON.

Most items in the NASA archives at the various centers are not
listed in RECON, so memoranda and other such unpublished items
were discovered the "old-fashioned" way: by physically going through
the files. My contract provided for visits to Johnson Space Center,
Kennedy Space Center, Marshall Space Center, the Jet Propulsion
Laboratory, Dryden Flight Research Center, Goddard Space Center,
and NASA Headquarters. Archives do not exist at either Marshall or
Goddard, so individuals provided whatever new sources were gained
at those places. In each of the other centers, a serious perusal of the
materials relating to computer usage was done. At Johnson, the ar­
chives transferred to the Woodson Library of Rice University were
also consulted.

The tour of the various NASA facilities demonstrated that those
with full-time historians or archivists had the most useful archives.
That is, of course, obvious, but it is interesting to contrast the situation
at, say, Kennedy versus that at Marshall. Marshall has not had an ar­
chivist or historian since the early 1970s. There is no central
repository. The only way information could be located was by finding
division chiefs in the areas to be researched and then depending on
them to help identify the people who had experience with the actual
program. Those people could then be interviewed and some had kept
copies of appropriate documentation. Others had not. For example, the
entire story of the Saturn launch vehicle preflight checkout system is
in danger of being lost. The people who built it are nearing federal
retirement, they have thrown out almost all of the documentation, and
their memories are clouded by the other projects in which they have
been involved in the last 20 years. At Kennedy, even though a lot of
interviews were conducted, the main source of information was the

BIBLIOGRAPHIC NOTE 365

well-kept library and archives, which included a technical documents
section. There the bulk of the story of the Shuttle Launch Processing
System, the successor to the Saturn preflight checkout system, can be
reconstructed from specifications, development reports, and user
manuals. The point is that most of NASA will soon be in the state that
Marshall is in. Johnson has lost its full-time historian, and the archives
are maintained part-time by administrative personnel, with some items
transferred to the Woodson Library. The latter facility has no provi­
sion for extensive xeroxing and is closed-shelf, two crippling defects
for the historian with limited time on-site.

With no one at the various centers to choose what should be
saved, documents are being lost at a prodigious rate. It is true that
much paper generated by NASA is not needed for later historical
research, but there is no apparent system of sifting out the material
that has potential for later use. At the Jet Propulsion Laboratory,
where files are regularly collected for archiving, there is no active
control of what is sent to the records center. Some boxes contained or­
ganized, indexed files. Others looked as though someone had simply
emptied their desk drawers into them; they contained such items as
old copies of the employees' newsletter amidst notes and memos in no
particular order. Additionally, project managers can choose to delete
materials and thus prevent historians from gaining a balanced perspec­
tive.

Personnel assigned as history liasons at each NASA center, even
if they had no historical experience, were unfailingly helpful and
cooperative. They are mentioned and thanked individually in the Ack­
nowledgments. By contacting them ahead of time, I was able to obtain
the names of initial contacts, which led me to the large number of very
candid interviewees whose collective memory adds so much to this
book. They are listed at the end of this note. I was also able, through
the individual efforts of interviewees, to obtain entry to areas nor­
mally restricted to the public. In that way I was able to see firsthand
what I was writing about. There is no substitute for seeing the com­
puters installed and operating and for looking at and using the crew
interfaces. In that way, the true scale of things is established in the
mind.

The remainder of this bibliographic note is a topic-by-topic sum­
mary of the main sources.

THE GEMINI DIGITAL COMPUTER

The most useful written source for the hardware section of the .
chapter on Gemini is the NASA Project Gemini Familiarization
Manual, Volume 2, published by McDonnell Corporation in 1965.
This manual contains a detailed hardware description of the Gemini

366 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

digital computer, its location in the spacecraft, and drawings of the
user interfaces. For the software development cycle and contents of
the Gemini software loads, Project Gemini: A Technical Summary,
(NASA CR-1106, 1968) by P. W. Malik and G. A. Souris, is the most
comprehensive. Ivan Ertel, then of the Manned Spacecraft Center
History Office, conducted extensive interviews with IBM personnel
who worked on the Gemini computer during a visit to the Owego,
New York plant in April of 1968. These interviews are transcribed
and available at Johnson Space Center. They were very useful in iden­
tifying development problems and procedures. Lastly, interviews with
Gene Ceman and John Young provided information about the system
from the user standpoint.

THE APOLLO COMPUTER SYSTEMS

Sources for this chapter were primarily technical reports issued
by the MIT Instrumentation Lab, memos on file at the Johnson Space
Center, and some very illuminating interviews. The best hardware
description of the Block II computer is in R. Alonso and
A. L. Hopkins, The Apollo Guidance Computer (NASA-CR-118183,
August 1963). An introduction to developing software for the com­
puter is B. I. Savage and A. Drake, AGC4 Basic Training Manual
(MIT, January 1967). Copies of these are available at Johnson Space
Center. For NASA's view of the hardware and software difficulties in
developing the onboard computer, the files of Howard W. Tindall are
the most helpful. These are also at Johnson. The best interview
sources for this chapter are John R. Garman of JSC and Stan Mann,
formerly of JSC. Both were involved in the Apollo software develop­
ment effort and later in the Shuttle program. Both were extremely can­
did and very informative. Transcribed interviews of David Hoag and
Ralph Ragan of MIT were also helpful. Astronaut users Vance Brand,
Gene Ceman, and John Young gave good insights in their interviews.
For the Abort Guidance Section, the best source is P. M. Kurten,
Apollo Experience Report: Guidance and Control Systems-Lunar
Module Abort Guidance System (NASA-TN-D-7990, Johnson Space
Center, Houston, TX, July 1975).

THE SKYLAB COMPUTER SYSTEM

The Skylab chapter is overwhelmingly based on two excellent
sources, both produced by IBM Corporation. They are the Design and
Operational Assessment of Skylab ATMDC/WCIU Flight Hardware
and Sojiware(IBM No. 74W-00103, May 9, 1974) and the Skylab

BIBLIOGRAPHIC NOTE 367

Reactivation Mission (IBM No. 79W-0005, September 12, 1979). The
Skylab hardware and software development was an operation largely
local to Huntsville, Alabama, where IBM had a continuing corporate
presence since the early 1960s when work on the computer systems
for the Saturn launch vehicles began. These two sources are detailed
histories of the development and use of the computer system in both
the primary Skylab mission and the reactivation mission. They are
quite frank, documenting both the first-time successes and needed res­
tarts, although obviously proud of the highly reliable record of the
system. By the time I reached Huntsville, the IBM office had closed,
but some ATMDC programmers were still on-site working on
Spacelab. By now, those few are scattered elsewhere. One, John
Copeland, was kind enough to be interviewed and lent the reactivation
documentation. Bill Chubb and Jim McMillion of Marshall
Spaceflight Center were also very good sources on the computer sys­
tem. Steve Bales of Johnson Space Center was able to give a perspec­
tive on the system from the flight controller's angle and was espe­
cially helpful regarding the first 2 weeks of the primary mission be­
fore the crew arrived.

THE SHUTTLE DATA PROCESSING SYSTEM

At the time this volume was being written, the Shuttle was an on­
going project. Therefore, abundant primary source materials in the
form of actual requirements and design documents, program code, and
managers involved in the day-to-day production of the hardware and
software were available. Additionally, the astronauts have fresh
memories, and the artifacts described in the chapter can be actually
seen and touched. I decided to try to base this chapter on these sources
as much as possible, plus my personal experiences in using the equip­
ment and software in simulators. Thus, there are a great number of
references to interviews (of which roughly 35 hours were done) and to
current documentation. Despite this plethora of sources, some things
could not be settled. An example would be the question of who
thought up the eventual scheme used in redundancy management. No
one .could name a specific person or a time. Everyone asked about the
subject said "it just evolved," or "no one person thought it up," both of
which are true, but frustrating!

NASA STANDARD SPACECRAFT COMPUTER-I

Since the ongmation and development of this computer took
place at one place, Goddard Spaceflight Center, it was relatively

368 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

simple to find materials and persons. Ann Merwarth, Bill Stewart, and
John Azzolini were the key informants in describing the design and
capabilities of this device. Stewart led me to a documents distribution
point where I was able to get copies of Merwarth 's guide to the execu­
tive. A fine source of information is an article in the September 1984
issue of Communications of the ACM, authored by Merwarth, Stewart,
and others, which tried to show the evolution of the system from its
beginnings in the mid- l 960s. A chapter on this computer, which was
written for an early draft of the volume was later deleted because it
was too much a restatement of previously published materials.

COMPUTERS ON DEEP SPACE PROBES

The Jet Propulsion Laboratory has three methods of archiving
documentation. One is the "Vellum File," located in the basement of
the Library and containing on microfilm all technical documentation
used in projects. It is possible to obtain hard copy of critical docu­
ments, which I did when told of their existence by my informants. The
Library itself contains indexes of publications written by IPL person­
nel, wherever published and holds copies of most of those in its col­
lection. A third source, and one very critical for historians, is a central
depository that contains memos and other unpublished documentation
from the project offices and permanent section offices. Materials in
this archive are arranged by JPL section number and stored in boxes.
This collection is very erratic in quality. Almost all the materials cited
in Chapters 5 and 6 were found in one of these three locations.

If the section on Galileo contains omissions, it might be because
the project director refused to let me examine his and his chief
deputy's office files. No reason was given. In the face of the existence
of the actual documents, I thought it was foolish to speculate on any
matters possibly contained within them, as a later historian can ex­
amine the materials after they are retired-assuming, that is, that they
are not destroyed beforehand.

Personal contacts at the Lab were among the most satisfying I had
in all my travels. Engineers at JPL are more introspective and more
history conscious than others I have met. Their help is reflected in the
actual notes to Chapters 5 and 6.

EVOLUTION OF LAUNCH PROCESSING

Documentation for this chapter was hard to come by, both be­
cause the information was scattered among Johnson, Marshall, and
Kennedy Space Centers, and because pre-Shuttle primary sources at

BIBLIOGRAPHIC NOTE 369

both Marshall and Johnson had been destroyed. However, the current
Launch Processing System is heavily documented as to function be­
cause it is still operating. Also, Kennedy preliminary studies such as
the Space Shuttle Launch Operations Study are in archives, and
published summaries by IBM tended to be historical in nature. There­
fore, the present System is easy to describe. For specifics of origin,
though, I am again indebted to my informants, particularly Thomas
S. Walton, who lived through the entire era at Kennedy, Jim Lewis of
Marshall, Frank Byrne, the genius behind the common data buffer,
and Henry Paul, who headed the development effort. A short
manuscript history by Bill Bailey of Kennedy and an interview with
him were also very helpful.

MISSION CONTROL

Fortunately, a fair amount of original source material is available
on the subject of mission control. Documentation for the Mercury
Control Center software system is contained in detailed IBM hand­
books such as the "Goddard Monitor System," supplied by John Mor­
ton. He, J. Perry Chambers, and Ray Mazur were excellent sources of
information on Goddard 's Spaceflight Center's role both in manned
and unmanned mission control. Philco's "IMCC Systems and Perfor­
mance Requirements" study and IBM's proposal for the Gemini and
Apollo mission control centers are the best sources for what was in­
stalled at the then Manned Spacecraft Center. Interviews with Lyn
Dunseith and James Stokes helped considerably with that era. Shuttle
mission control information is primarily based on interviews with Dub
Pollen, Fred Riddle, and Gene Campbell of IBM and a publication by
S. E. James of that company. Researchers interested in unmanned
mission control of lunar and planetary probes should consult the final
reports of the various Mariner, Viking, Ranger, Surveyor, and
Voyager projects, usually issued as Jet Propulsion Laboratory tech­
nical reports. Each contains a detailed description of control con­
siderations. George Gianopolis, Richard Moulder, Lloyd Jennings,
Frank Singleton, Carl Johnson, and Don Royer, all of JPL, each con­
tributed informative interviews for this section.

SIMULATIONS AND IMAGE PROCESSING

Again, interviews are the backbone of my understanding any
materials analyzed for this chapter. Jim Raney, Bob Emull, and Ken
Mansfield of Johnson Space Center provided both knowledge and
materials related to mission and engineering simulators. Jack Lucas

370 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

and his staff at Marshall helped with the engineering simulators lo­
cated there. Finally, Bob Nathan of JPL, founder of image processing,
and his colleague Al Zobrist clarified the complex world of digital im­
aging. Almost all written materials used as sources for this chapter
were either given to me by these informants, or they directed me to
them. The monograph Digital Processing of Remotely Sensed
Images, by Johannes G. Moik (NASA SP-431), is a good reference for
NASA's work in this field.

BIBLIOGRAPHIC NOTE 371

Interview List

Note: Unless identified otherwise, all persons on this list were NASA
employees at the time they were interviewed. Locations are also in­
dicated at the time of the interview.

AARON, JOHN, Johnson Space Center, June 17, 1983.

ALDRICH, ARNOLD, Johnson Space Center, June 13, 1983.

AZZOLINI, JOHN, Goddard Spaceflight Center, July 2, 1984.

BAILEY, WILLIAM, Kennedy Space Center, June 30, 1983.

BALES, STEVEN, Johnson Space Center, May 31, 1983.

BIEGERT, PAMELA, Kennedy Space Center, June 30, 1983.

BLIZZARD, EDGAR, Jet Propulsion Laboratory, May 29, 1984.

BOGAN, JACK, IBM, Kennedy Space Center, June 29, 1983.

BORNCAMP, FRANZ, Jet Propulsion Laboratory.

BRADFORD, CLIFFFORD, Marshall Space Center, June 20, 1983.

BRAND, VANCE, Johnson Space Center, June 2, 1983.

BULKLEY, R.C., IBM, Kennedy Space Center, June 27 and 29,
1983.

BRUCKNER, BOBBY, Kennedy Space Center, June 30, 1983.

BYRNE, FRANK, Kennedy Space Center, June 29, and July 8, 1983.

CAMPBELL, GENE, IBM, Houston, June 13, 1983.

CERNAN, GENE, telephone interview from Houston, November 7,
1983.

CHAMBERS, J. PERRY, Goddard Spaceflight Center, June 28, 1984.

CHARLEN, WILLIAM, Jet Propulsion Laboratory, May 18, 1984.

372 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

CHUBB, WILLIAM, Marshall Space Center, June 22, 1983.

CLAYTON, ELDON, Johnson Space Center, June 1, 1983.

COPELAND, JOHN, IBM, Marshall Space Center, June 23, 1983.

COX, KENNETH, Johnson Space Center, June 14, 1983.

DEESE, SAMUEL, Jet Propulsion Laboratory, telephone interview,
January 31, 1985.

DEETS, DWAIN, Dryden Flight Research Center, May 25, 1984.

DELAUNE, CARL, Kennedy Space Center, July 5, 1983.

DEMING, JAMES E., Kennedy Space Center, July 6, 1983.

DUNSEITH, LYNWOOD, Johnson Space Center, June 2 and 9, 1983.

EISENMAN, DAVID, Jet Propulsion Laboratory, May 21, 1984.

ERICKSON, JOHN, Johnson Space Center, June 14, 1983.

ERNULL, ROBERT, Johnson Space Center, June 16, 1983.

FOY, LYNNE, Johnson Space Center, June 16 and 17, 1983.

GARMAN, JOHN R., Johnson Space Center, May 25, and June 1,
1983.

GIANOPOLIS, GEORGE, Jet Propulsion Laboratory, June 4, 1984.

GREENBERG, EDWARD, Jet Propulsion Laboratory, May 30, 1984.

HART, TERRY, Johnson Space Center, June 10, 1983.

HARTSFIELD, HENRY, Johnson Space Center,June 2, 1983.

HEDDINS, FREDERICK, IBM, Kennedy Space Center, June 27 and
29, 1983.

HINSON SHIRLEY, Johnson Space Center, June 16, 1983.

HOELZER, HELMUT, Huntsville, Ala., June 24, 1983.

HUGHES, BRAD, Kennedy Space Center, July 5, 1983.

BIBLIOGRAPHIC NOTE 373

HUGHES, FRANK, Johnson Space Center, June 2, 1983.

JENNINGS, LLOYD, Jet Propulsion Laboratory, May 15, 1984.

JOHNSON, CARL, Jet Propulsion Laboratory, May 23, 1984.

JOHNSON, DONALD, Jet Propulsion Laboratory, May 16, 1984.

JORDAN, FRANK, Jet Propulsion Laboratory, May 31, 1984.

KILLINGBECK, LYNN, IBM, Houston, June 7, 1983.

KOHL, WAYNE, Jet Propulsion Laboratory, telephone interview,
January 31, 1985.

KOPF, EDWARD H., Jet Propulsion Laboratory, May 18, 1984.,
telephone interview, January 31, 1985.

LANIER, RONALD, Johnson Space Center, June 16, 1983.

LEE, B. GENTRY, Jet Propulsion Laboratory, June 1, 1984.

LEMON, RICHARD, Jet Propulsion Laboaratory, May 29, 1984.

LEWIS, JAMES, Marshall Space Center, June 20, 1983.

LINEBERRY, EDWARD, Johnson Space Center, June 2, 1983.

LOCK, WILTON, Dryden Flight Research Center, May 24, 1984.

LOUSMA, JACK, telephone interview from Houston, July 5, 1983.

LUCAS, JACK, Marshall Space Center, June 21, 1983.

MACINA, ANTHONY, IBM, Houston, June 7, 1983.

MALM, RICHARD, Jet Propulsion Laboratory, May 31, 1984.

MANN, STANLEY, Johnson Space Center, June 6 and 8, 1983.

MANSFIELD, KENNETH, Johnson Space Center, June 1, 1983.

MATTOX, RUSSELL, Marshall Space Center, June 23, 1983,
telephone interview, November 16, 1984.

MAZUR, RAYMOND, Goddard Spaceflight Center, June 28, 1984.

374 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

McMILLION, JAMES, Marshall Space Center, June 22, 1983.

MERWARTH, ANN, Goddard Spaceflight Center, July 3, 1984.

MILLER, BRUCE, Kennedy Space Center, July 5, 1983.

MITCHELL, WALTER, Marshall Space Center, June 23, 1983.

MORECROFf, JOHN, Jet Propulsion Laboratory, May 29, 1984.

MORTON, JOHN, Goddard Spaceflight Center, June 27, 1984.

MOULDER, RICHARD, Jet Propulsion Laboratory, May 21, 1984.

NATHAN, ROBERT, Jet Propulsion Laboratory, May 30, 1984.

OTAMURA, ROY, Jet Propulsion Laboratory, May 29, 1984.

PALIKOWSKY RAYMOND, Singer, Houston, June 10, 1983.

PANCIERA, ROBERT, Marshall Space Center, June 20, 1983.

PARRISH, ALBERT, Kennedy Space Center, June 28, 1983.

PARTEN, RICHARD, Johnson Space Center, June 3 and 16, 1983.

PAUL, HENRY, Kennedy Space Center July 7, 1983.

PENDLETON, THOMAS, Johnson Space Center, June 9, 1983.

PENOVICH, FRANK, Kennedy Space Center, July 1, 1983.

PETYNIA, WILLIAM, League City, TX, June 8, 1983.

POLLEN, DUB, IBM, Houston, June 13, 1983.

RAINES, GARY K., telephone interview from Houston, November 1,
1985.

RANDALL, JOSEPH, Marshall Space Center, June 20, 1983.

RANEY, JAMES, Johnson Space Center, May 31, 1983.

RICE, RICHARD, Jet Propulsion Laboratory, May 29, 1984.

RIDDLE, FREDERICK, IBM, Houston, June 13, 1983.

BIBLIOGRAPHIC NOTE 375

RONE, KYLE, IBM, Houston, June 3, 1983.

ROYER, DONALD, Jet Propulsion Laboratory, June 7, 1984.

SINGLETON, FRANK, Jet Propulsion Laboratory, May 17, 1984.

SMITH, GEORGE, IBM, Kennedy Space Center, June 27 and 29,
1983.

STEARNS, JANE, Kennedy Space Center, June 30, 1983.

STEW ART, WILLIAM, Goddard Spaceflight Center, July 10, 1984.

STOKES, JAMES, Johnson Space Center, June 14, 1983.

STORY, SCOTT, Ford Aerospace, Johnson Space Center, June 16,
1983.

STOTT, RUSSELL, Jet Propulsion Laboratory, May 16, 1984.

SULLIVAN, WILLIAM, Johnson Space Center, June 14, 1983.

SWEARINGEN, CHARLES, Huntsville, AL, June 21, 1983.

TINDALL HOW ARD W., telephone interview from Washington,
D. C., August 10, 1984.

VICK, H.G., Marshall Space Center, June 21, 1983.

VINZ, FRANK, Marshall Space Center, June 21, 1983.

WALTON, THOMAS S., Kennedy Space Center, July 6, 1983.

WILLBANKS, JAMES, IBM, Kennedy Space Center, June 29, 1983.

WOODDELL, JOHN, Jet Propulsion Laboratory, May 21, 1984.

YARBOROUGH, ROBERT, Kennedy Space Center, July 6, 1983.

YOUNG, JOHN, telephone interview from Johnson Spaceflight Cen­
ter, March 6, 1984.

ZIPSE, JOHN, Jet Propulsion Laboratory, 22 May 1984.

ZOBRIST, ALBERT, Jet Propulsion Laboratory, May 23, 1984.

376 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

Interviews Conducted by Other Persons

BACHMAN, DALE F., interviewed by John J. Lenz, at IBM, Owego,
NY, April 25, 1968; transcript at Johnson Space Center.

BARTON, JOHN, interviewed by James Grimwood, at Motorola
Aerospace Center, Scottsdale, AZ, July 11, 1966, transcript at Johnson
Space Center.

DODGE, HAROLD E., interviewed by John J. Lenz, at IBM, Owego,
NY, April 25, 1968; transcript at Johnson Space Center.

DRAPER, C. ST ARK, interviewed by Ivan Ertel at Cambridge, MA,
April 23, 1968.

HOAG, DAVID G., interviewed by Ivan Ertel, at MIT, Cambridge,
MA, May 15, 1967; transcript at Johnson Space Center.

HUTCHISON, HOMER W., interviewed by Ivan Ertel, at IBM,
Owego, N. Y., April 25, 1968; transcript at Johnson Space Center.

JACKSON, LEE, interviewed by Ivan Ertel, at IBM, Owego, NY,
April 25, 1968; transcript at Johnson Space Center.

IlMERSON, LEROY S. jr. , interviewed by Ivan Ertel, at IBM,
Owego, NY, April 26, 1968; transcript at Johnson Space Center.

JOACHIM, JAMES, interviewed by Ivan Ertel, at IBM, Owego, NY,
April 25, 1968; transcript at Johnson Space Center.

LENZ, JOHN J., with JOHN L. SWEENEY, CHARLES E. DUNN,
and CONRAD D. BABB, interviewed by Ivan Ertel, at IBM, Owego,
NY, April 25 , 1968; transcript at Johnson Space Center.

MILLER, JOHN E., interviewed by Ivan Ertel, at MIT, Cambridge,
MA, April 28, 1966; transcript at Johnson Space Center.

RAGAN, RALPH, interviewed by Ivan Ertel, at MIT, Cambridge,
MA, April 27, 1966; transcript at Johnson Space Center.

RECHTIN, EBERHARDT, interviewed by Cargill Hall, Jet Propul­
sion Laboratory, c. 1970?; transcript in the Jet Propulsion Laboratory
Library Vault.

WESTKAEMPER, ROBERT M., with LEE JACKSON, interviewed
by Ivan Ertel, at IBM, Owego, NY, April 25, 1968; transcript at
Johnson Space Center.

Appendix I: Glossary Of Computer Terms

Accumulator---The register in the central processing unit of a
computer used to store the current results of calculations.

Algorithm---A step-by-step solution to a problem that is the basis for
writing the code that will enable the computer to solve it.

Analog Circuit---An electrical circuit that models the behavior of a
real object or force, providing a nondigital means of calculation.

Analog Computer---A machine that computes by modeling objects
and forces using either mechanical or electrical means.

Assembly Language---A low-level programming language for
computers that express algorithms in statements consisting of
mnemonics representing actions and numbers representing addresses.
For example, the statement "ADD A, 7FFF" tells a computer to add
the contents of location 7FFF (a hexadecimal number) to the contents
of the accumulator and leave the result in the accumulator. The
specific mnemonics for assembly languages may be different for
different processors but are closely related. Programs written in
assembly languages, although conservative of machine resources and
quite fast, are much more difficult to write and maintain than those
written in high-level languages such as FORTRAN, Pascal, and
HAL/S.

Asynchronous---Occurrences happening at no set time. Asynchronous
interrupts mean that signals to a computer to start a specified process
may come at any time.

Backup Program---A computer program shorter and with less
functionality than the primary program that performs only critical
functions in case the primary program or the hardware in which it
resides fails.

Bandwidth---The amount of information that can be transferred in a
discrete amount of time. The higher the bandwidth, the more
information.

Batch Processing---A method of executing programs on a computer

378 NASA'S USE OF COMPUTERS IN SPACEFLIGHT

that reserves resources for the use of a particular program and releases
them upon completion. Older batch systems could process only one
program at a time.

Binary Object Code---The result of an assembler processing an
assembly language program or a compiler processing a high level
language program. It consists of binary numbers in the machine
language of the specific computer on which the program is to run.

Bit---A binary digit, representing either a one or a zero.

Breadboard---A prototype of a computer or other electronic device
built by the design group to test the device before it is packaged for
production.

Bubble Memory---A type of nonvolatile computer memory using
materials that can retain a specific magnetic polarity when electrical
power is cut off. The polarity determines whether a one or zero is
being stored.

Bujfer---A cache of memory used to store information temporarily
during transfer operations. It is usually used to ad just for differences
in operating speed between devices.

Buffer Register---A register used to temporarily store information in
transit to another device.

Bug---Common term for an error in a computer program or hardware.

Bus---An interconnection device that can be used to speed up
information transfer (as when a bus made up of multiple wires carries
the· bits of an entire computer word in parallel) and to act as a
connector for multiple devices (as when several devices that do not
need to transmit simultaneously time-share the use of the bus for
intercommunication). Also used to refer to heavy-duty electrical
power cables or bars supplying power to many devices.

Byte---A collection of bits, commonly eight.

Central Processor---The portion of a computer that contains the
control circuits and does the actual calculations.

CMOS---Complimentary metal-oxide silicon circuits, characterized by

APPENDIX I: GLOSSARY 379

low-power requirements, tolerance of wide variation in voltages, and
susceptibility to damage from discharges of static electricity.

CMOS Processor---A microcomputer built of CMOS circuits.

Coding---The act of writing a program for a computer.

Compiler---A computer program that accepts statements of a high­
level language as input and generates machine code that will execute
those statements as output.

Condition Code---A message several bits in length used to
communicate the physical status of one device to another device.

Contiguous Memmy Locations---Addresses in a machine memory
located adjacent to one another.

Core Memmy---A type of computer memory constructed of a series of
two-dimensional planes containing networks of wires with ferrite
rings called "cores" at their intersections. The magnetic polarity of the
cores can be changed by electrical pulses. Each core stores 1 bit of
information. Core memory is nonvolatile; when power is cut off, it
does not lose information. Destructive-readout core memory loses the
information stored in a core when the core is read, so a temporary
register must be used to intermediately store the information before
writing it back to its original location as it is simultaneously sent to
other parts of the computer. Nondestructive-readout core memory can
be read without the information being changed.

Core Rope---A type of core memory that stores entire computer words
rather than individual bits. Each core in a core rope is permanently
charged to represent a "one." A number of wires equal to the number
of bits in a word is weaved through the cores. When a bit within a
word is to represent a one, its wire is connected to a core. Bits
representing zeroes are not connected. Thus, by selecting the correct
core and sensing which wires represent ones and which zeroes, the
word can be reconstructed. More than one word can be attached to a
core by adding more wires to the rope. Core rope, once constructed,
can only be read.

Core Storage---Another name for core memory.

Core Transistor Logic---Circuits made up of discrete transistors used
to form the control unit in the central processor of a computer.

380 NASA'S USE OF COMPUTERS IN SPACEFLIGHT

Cycle Time---The length of time it takes for a computer to do a
fundamental operation, such as reading a word from memory into the
central processor. Some instructions, such as multiply, take several
cycles.

Data Flow Diagram---A software design tool that uses circles to
represent operations and arrows to represent data movement. It is used
to determine the ordering of processes and input and output
requirements.

Data Formatters---Hardware or software that takes raw data from
devices and puts it into a uniform format for transmission, usually
adding some special error detection bits.

Data W ord---A computer word containing only data, not instructions.

Demultiplexer---A device that receives data transmitted on a bus and
routes it to the correct device.

Digital Circuit---A circuit constructed to handle discrete units of
information that can represent ones and zeroes.

Digital Computer---A calculating device using digital circuits, usually
consisting of a central processing unit, memory, and input and output
devices.

Diode Transistor Logic Integrated Circuit---A type of miniaturized
digital circuit used to construct logic units in the central processor of a
computer.

Dirfct Addressing---Using the absolute address of a memory location
to access data within it. For example, in a hypothetical machine with a
word size of 4 bits, up to 16 memory locations can be directly
addressed, simply by matching them one for one with the 16 numbers
4 bits can represent. Thus, memory location 1011 is the twelfth
location in the memory. Since it is often necessary to have more
memory than the number of locations a single word can represent,
indirect addressing schemes must be devised. The 4 bit computer can
indirectly represent a memory location by using two words; one word
can indicate which bank of 16 words to access, the second word can
indicate which of the 16 addresses in that bank to read.

APPENDIX I: GLOSSARY 381

Direct Memory Access---Reading or writing to a memory location in a
computer without passing the information through the central
processing unit for disposition.

Discrete Component---A component containing a single entity, such
as a transistor, as opposed to containing many entities, such as an
integrated circuit with thousands of transistors.

Disk Drive---A type of mass storage device in which bits are
represented by magnetized areas on a plane, or disk, covered with a
suitable material of the same type used for magnetic tape. A disk drive
may have one or many disks.

Double Precision---Vsing two computer words to represent a number
instead of one.

Drum Mem01y---A type of mass storage device in which the material
(similar to material used to make magnetic tape) that contains the
information is placed on a rotating drum.

Emulator---A device that can be programmed to replicate the logic
and functions of another device and operate at the same speed.

Erasable Mem01y---Memory in which information can be overwritten
by new information.

Event Word---A word of information containing code to activate
devices or functions.

File---A collection of related information, such as a computer
program or imaging data, which can be thought of as a unit.

Firmware---Software stored in read-only memory devices used to
control logic flow in a computer. Changing the firmware changes the
nature of the computer.

FLred Memo,y---Memory that can only be read.

Fixed Point---A method of representing numbers in a computer in
which the decimal point is permanently fixed. Therefore, numbers
used in calculations must be properly scaled relative to the location of
their decimal point or the results will be meaningless. Such scaling is
usually left to the programmer.

382 NASA'S USE OF COMPUTERS IN SPACEFLIGHT

Flat Packs---Collections of integrated circuits packaged in modules
for use in a computer.

Flip-Flop---A logic device that can change from containing a one to a
zero and vice-versa depending on inputs. Flip-flops are often used in
the central processing unit of a computer.

Floating Point---A method of storing numbers in a computer in which
the location of the decimal point is stored with the values of the
individual places.

Flowchart---A method of program design in which algorithms are
represented by specific two-dimensional shapes and connecting
arrows. Each shape represents a specific logical act. For example, a
diamond indicates a true/false decision.

Full Word---All the bits of a computer's word size.

Gate---A logic device. For example, an "AND Gate" returns the result
of a Boolean AND operation on its inputs.

General-Pwpose Register---A register in the central processing unit
of a computer not assigned to a specific task but that can be
dynamically required to act as an accumulator, program counter, or
index register.

Half Word---One half of the bits of a computer's word size.

Hard-Wired Logic Circuits---Logic implemented in hardware, as
opposed to implementation in software.

Hard-Wiring---Pennanently representing logic in hardware.

Hard Logic---Logic permanently represented in hardware.

Hardware---Physical components of a computer system or other
device, such as memories, registers, and control logic circuits.

Hexadecimal---Base 16. One-digit numbers include O through 9 and A
through F.

APPENDIX I: GLOSSARY 383

High-Level Language---A language in which algorithms can be
represented in a series of structured, formal statements using selected
easily recognizable words from a natural language. For example, "IF
VAL VE_POSITION = 2 THEN SET FUEL_R.,AG TO TRUE" is a
high-level language statement.

Image Processing---Using computers to operate on the digital
information that represents images to enhance its value for specific
purposes. Most images are represented by collections of 8-bit "gray
scale" values, which contain a number ranging from 0 to 255
indicating the level of darkness in one picture element, or dot, in an
image. Image processing works on these 8-bit values to increase
contrast, translate oblique images to vertical images, and emphasize
certain colors.

lmaging---The process of acquiring images using vidicon tubes and
digital circuits.

Index Register---A register in the central processing unit of a
computer that contains the value of the memory bank currently being
accessed.

Instruction Set---The list of instructions that a computer can execute.
It varies from a few to several hundred depending on the computer.

Instruction Word---A word in a computer containing the bits
representing an instruction and an address on which the instruction is
to operate.

Integrated Circuit---An electronic circuit contammg hundreds,
thousands, or millions of components, such as transistors, and used for
a specific purpose, such as logic or memory.

Interactive Processing---Executing computer programs so that the
user can actively send information to the program and receive
information from it while the program is running.

lnte,face---The connection between two devices for the exchange of
data.

lnte1face Table---A collection of information containing instructions
for connecting devices so that data can be exchanged.

384 NASA'S USE OF COMPUTERS IN SPACEFLIGHT

Inte,preter---A computer program that executes statements written in
a high-level language one at a time.

Interrupt Stack---Storage of interrupts so that they can be handled in a
last-in first-out fashion.

Interrupt-Driven System---A computer that is programmed to execute
processes on demand, the demand taking the form of signals sent from
other devices or itself that cause processes of lower priority to halt
execution and be replaced by processes of higher priority. If the
interrupt is of a lower priority than the current process, it is saved for
later execution.

Kilobyte---One thousand twenty-four (1,024) 8-bit bytes. Abbreviated
"Kb" or, more commonly, "K."

Listing---The content of a computer program, often used to refer to the
printed result of sending a program through a compiler.

Logic Channels---Hardware that represents logic and through which
data flows for processing.

Logic Circuit Board---A board containing electrical connections into
which circuits are plugged representing the logic of a device.

Logic Gate---See Gate.

Machine Code---The representation of instructions as a series of bits,
which cause the computer to execute the specified actions. Machine
code is idiosyncratic to a particular type of computer.

Machine Cycle---See Cycle Time.

Machine Time---The amount of time a computer takes to execute a
program or function.

Macro---A subroutine in assembly language that can be invoked by
name.

Magnetic Tape---A mass storage device in which bits are represented
in areas on a magnetic surf ace.

APPENDIX l: GLOSSARY 385

Main Memory---The memory of a computer used for both reading and
writing operations, and of a faster type than secondary storage
devices, such as magnetic tape or disk. Main memory is often made
from core or semiconductor devices.

Mainframe Computer---A large, fast computer system capable of
supporting hundreds of individual users, usually with a long word
size, millions of words of main memory, and many peripherals.

Medium-Scale lntegration---Integration of several thousand
transistors or other devices on a single chip. Abbreviated "MSI."

Megabyte---One million 8-bit bytes. Abbreviated "Mb" or, more
commonly, "M."

Microprocessor---A small computer built of integrated circuits, often
on a single chip. Usually a microprocessor will support a single user
or function.

Microcode---The programs used to create firmware.

Microsecond---One millionth of a second.

Millisecond---One thousandth of a second.

Minicornputer---A computer sized between a microprocessor and a
mainframe computer, capable of supporting from one to several dozen
users or tasks.

Mnemonics---Short groups of letters representing instructions in an
assembly language. The mnenomic for "decrement the number in the
specified register by one and branch to another address if the number
is zero" is "DBZ."

Modularization---A technique for creating large computer programs
based on the principle of "divide and conquer." Each module of a
large program performs one task, can be entered at only one point, and
exited at only one point. For example, the "BOOST THROTTLING
TASK" module of the Shuttle on-board software handles the throttling
of the main engines during the ascent phase of a mission. It is
scheduled to execute many times each second. By isolating the
function to this one module, it can be tested more easily and also
reused in software loads for many Shuttle flights.

386 NASA'S USE OF COMPUTERS IN SPACEFLIGHT

Multiplexer--,-A device that controls the time-sharing of a bus so that
many devices can send information over the same interconnection.

Multitasking---A method of using computer resources so that more
than one program can be in the process of execution at one time. The
operating system of the computer will do calculations for one program
while another is using the printer, for instance.

Nanosecond---One billionth of a second.

Networking---The process of interconnecting several computers
together so that they can share data and programs.

Noise---Stray electromagnetic signals that may or may not interfere
with data transmission and calculations. Noise may be generated
locally, as when devices that leak electromagnetic radiation are placed
next to one another, or from radiation fields in space.

NOR Gate---A type of logic gate that executes a Boolean OR
operation on its inputs and then complements the result (reverses the
value) before outputting it.

Object Code---See Binary Object Code.

Octa/---Representation of numbers in base eight. Octal digits range
from O through 7.

One's Complement---A method of storing binary numbers in which
each bit in a word is complemented (reversed in value). The one's
complement of 101 is 010.

Operation Code---That part of an instruction word that contains the
bits that represent the specific mnemonic to be executed.

Parallel Data---Data transmitted in several bits at once.

Parameter---Data made available as input or output to a module or
procedure. In general, the current value of specific information, such
as fuel remaining, angle of flight, or re-entry time.

Parity---A method of ensuring accurate data transfer. The number of
ones or zeroes in a specific computer word is kept either even or odd

APPENDIX l: GLOSSARY 387

by the addition of a changeable "parity bit." If the device is using
even parity based on the number of ones, or if the number of ones in
the word is odd, then the parity bit is set to one. When the transfer to
another device is complete, that device examines all incoming words
for even parity. If it detects odd parity, it requests a retransmission of
the data that failed the parity test.

Parity Bit---See Parity.

Peripheral Device---Hardware associated with a computer used for
input, output, or memory functions, such as disk drives, printers,
terminals, and card readers.

Pixel---Short for picture element. One dot of a digital image.

Plated-Wire Mem01y---A type of nonvolatile computer memory using
areas of wires plated with material that can be magnetically polarized
to store bits. Its function and advantages are similar to core memory.

Primary Memory---See Main Memory.

Prima,y Storage---See Main Memmy.

Procedural Language---A computer language that can represent
algorithms, such as FORTRAN, Pascal, or Ada.

Processor---Alternative term for computer.

Propagation Time---The amount of time it takes for a signal to get
from one part of a device to another, or to another device.

Pseudocode---A program design tool using structured English to
represent algorithms. It has the advantage of being easily
understandable and independent of the syntax of a particular computer
language.

Radiation-Hardened Chips---Integrated circuits that have been
protected from the effects of radiation, either by shielding, decreasing
the density of components, or both.

Random Access Mem01y---A computer memory in which data can be
written to or read from any location directly.

388 NASA'S USE OF COMPUTERS IN SPACEFLIGHT

R ead---The process of moving information from a storage device to
some other place.

Read Only Memory---A type of computer memory that can only be
read from, not written to, such as core rope.

Real-Time Processing---A type of processing in which the computer
accepts or initiates continuous asynchronous inputs and outputs.

Redundant Circuits---Sections of hardware replicated to increase
reliability.

Register---A storage location containing a set of bits. Registers in
memory contain data words or instruction words, registers in the
central processing unit of a computer contain data, instructions, the
bank of memory currently being accessed, the location of the next
program step, and intermediate results of calculations.

Seconda,y Mem01y---Mass storage such as tapes or disks, usually
slower than main memory.

Seconda,y Storage---See Seconda,y Memo,y.

Semiconductor---Name
semiconducting metals
semiconductor.

for the
such as

electronic
silicon.

devices made of
A transistor 1s a

Sense lines---The wires in a core or core rope memory that sense the
change in polarity during a read operation on the core and transmit the
value of the core to a register.

Sequencer---A hardware device that commands other devices
according to a fixed time or event-initiated sequence.

Serial Access---Transmission of information one bit at a time.

Serial Data---See Serial Access.

Sign Bit---A bit of a computer word reserved for indicating the sign of
a number.

Signed Two's Complement---Storage of the value of a number m
two's complement form with an associated sign bit.

APPENDIX I: GLOSSARY 389

Simulator---A device or software that replicates the functions of
another device, though not necessarily at the same speed or in exactly
the same way.

Single Precision---Representing the value of numbers using one
computer word.

Soft Logic---The representation of logic in software.

Software---Part of a computer or other device that is the representation
of algorithms of functions and problem solutions and that is easily
changeable.

Software Engineering---The creation of software according to
engineering principles; emphasizing proper specification, design,
development, accuracy, and reliability.

Solid-State Computer---A computer built wholly out of solid-state
devices such as transistors and integrated circuits as opposed to
vacuum tubes.

Spike---A portion of the storage medium on a magnetic storage device
such as a tape or disk ruined by an excessive electrical discharge or
other event, preventing that area from being used for reading or
writing.

State Vector--- 'The current position of a spacecraft in three dimensions
plus time.

Status Variable---A parameter indicating the current state of data
processed by a module, either reliable or corrupted. For example, if a
calculation within a module cannot be done because of insufficient or
damaged data, a status variable can be set to a specified value and sent
to the main program indicating that a failure has occurred and, often,
what type of failure.

Stored Command Processor---One of the virtual machines of the
Galileo spacecraft command and data computers that executes stored
commands.

390 NASA'S USE OF COMPUTERS IN SPACEFLIGHT

Structured Macros---A pseudo-high-level language made by naming
routines written in assembly language after statements in a typical
high-level language. These routines can then be invoked by name.
Thus, an IF-THEN statement can be represented by an assembly
language macro which accepts as its parameters the information to be
tested and what to do after the result of the operation is known.

Subroutine---A software module that is part of a larger program, often
repeated many times during the execution of the program.

Subroutine Linkages---Code that collects and connects subroutines
together for execution.

Sum\lvord---The result of adding the current values of specified
commands together. Used to check against sumwords of other
computers operating redundantly on the same processes.

Superminicomputer---A minicomputer with the speed and accuracy
characteristics of a mainframe.

Telemet,y---Signals sent from a spacecraft to the earth containing data
gathered or generated by experiments and flight hardware.

Time-Sharing System---A method of allocating computer resources so
that a number of processes can be executing simultaneously.

Time-Slice Method---A time-sharing or multiprocessing method in
which each currently executing process is given a discrete length of
time to use machine resources. At the end of that time, its execution is
temporarily suspended and the next process in line is activated for a
discrete length of time. Eventually, all current processes are serviced
and the original interrupted program can pick up where it left off,
beginning the cycle again.

Transfer Register---A register used for temporary storage of data,
such as data read from a core memory, before it is sent to the device
that requested it.

Transistor-Transistor Logic---A type of integrated circuit for
representing logic in hardware.

Two's Complement---A method of storing binary numbers that first
complements (reverses) each bit, and then adds one to the result. For

APPENDIX I: GLOSSARY 391

example, the two's complement of 101 is 011. This is useful for
"subtracting by adding." To subtract a two from a five, the five (101)
is added to the one's complement of two (110), with the carry past the
left-most bit discarded. The result is 011, or three.

Uplink---Sending signals from the ground to a spacecraft.

Uplink Telemet,y---See Uplink.

User Friendliness---A term relating to the degree of ease in the use of
a computer system.

Ve,y Large-Scale Integration---Combining millions of components on
a single chip. Also "VLSI."

Virtual Machine---A system of managing machine resources so that
many users have the impression that each has the full attention of the
computer when in actuality it is rapidly servicing the processing needs
of all of them. See Virtual Mem01y.

Virtual Mem01y---A system of memory management in which small
segments of a program or data are brought from secondary mass
storage into main memory on demand. For example, if a programmer
is examining a very large program on an interactive terminal, the code
for one page of the program is in real memory, with the rest on a disk
drive. If the programmer moves to a different portion of the code, the
computer automatically retrieves the correct segment of the code from
secondary storage and places it in main memory. ln this way, many
users can be serviced with a main memory much smaller than
secondary storage, each having the impression that large amounts of
main memory are available _to them. The speed of moving information
from main memory to secondary storage is such that it is not usually
noticeable.

Voter Circuit---A circuit in a device that has multiple identical logic
paths, which compares the results of calculations and outputs the
value that the majority of the input circuits carried. In triple modular
redundant circuits, three logic paths are examined by voter circuits at
frequent intervals in the machine.

Word---A single unit of information in a computer, made up of a
number of bits. Small microprocessors often have 8-bit words; large
mainframe computers, up to 64-bit words.

392 NASA'S USE OF COMPUTERS IN SPACEFLIGHT

Write---The act of placing data in a storage device.

Appendix II: HAL/S,
A Real-Time Language for Spaceflight

HAL/S is a high-level programming language commissioned by
NASA in the late 1960s to meet the real-time programming needs of
the Agency. At the time, programs used on board spacecraft were ei­
ther written in assembly languages or in interpreted languages. The
former make programs difficult to write and maintain, and the latter
are insufficiently robust and slow. Also, future systems were expected
to be much larger and more complex, and cost would be moderated by
the use of a high-level language.

Since NASA directed the development of the language from the
start, it influenced the final form it took and specifically how it
handled the special needs of real-time processing. Statements com­
mon to other high-level languages such as FORTRAN and PL/1 were
put in HAL. These included decision statements such as IF and loop­
ing statements such as FOR, DO, and WHILE. NASA added to the
list of statements several specifically designed to create real-time
processes, such as WAIT, SCHEDULE, PRIORITY, and TER­
MINATE. The objective was to make HAL quickly understandable to
any programmer who had worked in other languages and to give a
variety of tools for developing the new real-time programs. To make
the language more readable by engineers, HAL lists source in such a
way as to retain traditional notation, with subscripts and superscripts
in their correct position, as contrasted with other languages, which
force such notation onto a single level (see Fig. II-1.)

In addition to new statements, HAL provided for new types of
program blocks. Two of these specific to real-time processing are
COMPOOL and TASK. "Compools" are declarations of data to be
kept in a common data area, thus making the data accessible to more
than one process at a time. It was expected that several processes
would be active at once and that many data items would need to be
dynamically shared. Task blocks are programs nested within larger
programs that execute as real-time processes dependent on one of the
most powerful HAL statements, SCHEDULE.

Scheduling the execution of specific tasks was simplified by the
syntax of HAL. Fig. II-2 shows the final page of the procedure STAR­
TUP, written for use on the Galileo spacecraft attitude control com­
puters, containing the master scheduling for the entire program. Note
that the components of the SCHEDULE statement are the task name,
start time, priority, and frequency. The statement "SCHEDULE
ERROR0 ON RUPT0 PRIORITY(22);" tells the operating system to
execute the task ERROR0 when an interrupt named RUPT0 occurs
with a relative priority of 22. A differ_ent form of the SCHEDULE

394 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

statement is "SCHEDULE RGl PRIORITY(12), REPEAT EVERY
6./90," which initiates the task handling the highest frequency rate
group and repeats it 15 times per second. The statement TER­
MINATE cancels a specified task upon a designated interrupt or time.

HAL did not have the widespread use NASA had hoped for when
the language was designed. Although the Shuttle on-board programs
are exclusively in HAL, the Galileo attitude control system is the only
other flight project to make significant use of the language. Other
projects, though instructed to use HAL, found reasons to avoid it, al­
though the Deep Space Network applied it to some ground software.
In late 1985, NASA announced that the language of choice for the up­
coming Space Station project would be Ada. Commissioned by the
Department of Defense in the late 1970s to serve as a standard for all
contractor software development, Ada includes real-time constructs
pioneered by HAL such as task blocks, scheduling, and common data.
The announcement made NASA the first nonmilitary agency to use
Ada. Ada was adopted because commerical compilers were available
and because the DoD's insistence on its use meant that it would be
around for a long time. It appears that HAL will be phased out, des­
tined to join the hundreds of other dead computer languages.

More information on the HAL/S language is contained in the fol­
lowing sources:

Intermetrics, Inc., HALIS-360 Compiler System Specification,
Version IR-60-7, February 23, 1981.

Intermetrics, Inc., HALIS Language Specification, Version
IR-542, September 1980.

Intermetrics, Inc., HALIS Programmer's Guide, Version IR-63-5,
December 1981.

Ryer, Michael J., Programming in HAL/Slntermetrics, Inc.,
Cambridge, MA, 1978.

ORIGINAL PAGE IS
OE POOR QUALITYJ

M: general:
M: COMPOOL;
M: DECLARE num vehiclea
M: STRUCTURE veh atate:
M: 1 time SCALAR,
M : 1 poa VECTOR
M: 1 v VECTOR,
M: 1 accel VECTOR;
M: STRUCTURE vehicle:
M: 1 atatua,

Figure 11-1

CONSTANT(lO) ;

M: 2 nav atate veh_atate-STROCTURE,
M : 2 maaa SCALAR,
M: 2 electrical_ayatema BIT(l2),
M: 2 computer_ayatema BIT(S)
M: 1 com_info ,
M: 2 pilot_name CBARACTER(30) ,
M: 2 call_lettera CBARACTER(lO),
M : 2 receive_frequency INTEGER;
M: DECLARE ahip vehicle-STRUCTURE(num_vehicles) LOCK(l),
M: coord_trana MATRIX,
M: possible_collision EVENT LATCHED INITIAL(OFF),
M: nav_cycle EVENT,
M: guid_cycle EVENt;
M: CLOSE general;

M: read accel:
M: PROCEDURE ASSIGN(loc) REENTRANT;
M: DECLARE loc veh state-STRUCTURE(num_vehicles) ;
M: DECLARE a BIT(30) AUTOMATIC;
M: DO FOR TEMPORARY veh = l TO num_vehicles;
E:
M: CALL get_accel(veh) ASSIGN(a);
M: loo.time RUNTIME;
S: veh
E: *

APPENDIX II: BALIS 395

M: loc.accel coord trans VECTOR(SCALAR(a ,a ,a));
S: veh; 10 AT l 10 AT 1 10 AT 21
M: END;
M: CLOSE read_accel;

M: gnd_startup:
M: PROGRAM;
M: STRUCTURE state:
M: l time SCALAR,
M: 1 poa VECTOR,
M: l v VECTOR,
M: 1 accel VECTOR;
M: DECLARE old_time ARRAY(num_vehiclea) SCALAR,
M: state state-STRUCTURE(num_vehiclea),
M: old_accel ARRAY(num_vehicles) VECTOR,
M: t ARRAY(num_vehiclea) SCALAR;
M: DECLARE collision check FUNCTION BOOLEAN;

396 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

M: CALL Kalman;
M: CALL new_state ;
E :

Figure 11-1 (Continued)

M: IF collision check THEN
M: DO;
C: inform all interested processes of collision threat .
M: SET possible_collision;
M: SCHEDULE fast_nav IN 2 PRIORITY(35),
M: REPEAT EVERY 2 UNTIL 10 FLOOR(RUNTIME / 10) + 9 ;
M: END ;
M: ELSE
M: RESET possible_collision ;

M: fast nav :
M: TASK; /*perform a fast intermediate update of the state vectors*/
M: [t] = {time} - [old_time] ;
E : +
M: CALL read_accel ASSIGN({state});
C :
E :

Update the entire array of position vectors and velocity vectors .
2

M: {pos} {pos} + {v} [t] + . 25 ({accel} +[old_accel]) [t] ;
E :
M: {v) = {v) + . 5 ({accel} + [old_accel)) [t];
M: CALL new_state ;
M: CLOSE fast_nav ;

M: new state:
M: PROCEDURE ; / *internal procure to update the state vectors*/
M: [old_time] = {time} ;
E :
M: [old_accel] {accel} ;

M: UPDATE ;
E :

/ *use update block to access shared data incontrolled manner*/

+ +
M: {ship . status . nav_state} = {state} ;
M: CLOSE ;

M: collision check:
M: FUNCTION BOOLEAN ; / *check if any pair o f vehicles i s too clo se together* /
M: DELCARE too close SCALAR INITIAL(SOOO) ;
M: DO FOR TEMPORARY veh = 1 TO num-vehicles ;
M: DO FOR TEMPORARY other= veh 1 TO num_vehicles ;
E :
M:
S :
M:
M:

IF ABVAL(pos
veh ;

RETURN TRUE ;
END ;

M: END ;
M: RETURN FALSE ;
M: CLOSE collision check;

M: Kalman :

- pos < t oo close THEN
other ;

M: PROCEDURE;
C :

/ *perform a sophisticated but slow navigation algorithm*/

C :
C:
M: CLOSE Kalman ;

M: CLOSE nav;

ORIGL JAL _ AGE IS

OF: POOR QUALITY

ORIGINAL PAGE IS
OE POOR QUALITY

APPENDIX II: HAL/S 397

C

C

C

Figure 11-2

SCHEDULE THE ERROR INTERRUPT SERVICE ROUTINE, 'RTI OPT' .

C 112 CORRECTION #12
C 113 PROB 76
C

C

C

C

C

C

C

SCHEDULE ERRORF ON FAILURE PRIORITY(23);
SCHEDULE ERRORO ON ROPTO PRIORITY(22);
SCHEDULE ERRORl ON RUPTl PRIORITY(21);

SCHEDULE THE RTI INTERRUPT SERVICE ROUTINE, 'RTI OPT' .

SCHEDULE RTI_ROPT ON ROPT4 PRIORITY(20);

SCHEDULE THE STAR INTERRUPT SERVICE ROUTINE, 'STAR ROPT' .

SCHEDULE STAR ROPT ON ROPT5 PRIORITY(l.6);
C
C SCHEDULE TBE 33.33 MS. RATE-GROUP, 'RGO'
C

C ITB PROB #128: TEMPORARY CHANGE FOR RGO
C FSW #210: 33 MSEC RATE GROUP AND SAFERATE VALUE

SCHEDULE RGO PRIORITY(l3), REPEAT EVERY 3/90
C

C

C

C

C

C

SCHEDULE THE 66.66 MS. RATE-GROUP, 'RGI'

SCHEDULE RGI PRIORITY (12) , REPEAT EVERY 6 . / 90

SCHEDULE THE 133.3 MS. RATE-GROUP, 'RG2'

SCHEDULE RG2 PRIORITY(ll), REPEAT EVERY 12./90.;
C

C

C

SCHEDULE THE 666.67 MS . RATE-GROUP, 'RG3'

SCHEDULE RG3 PRIORITY(8), REPEAT EVERY 2./3 . ;
C

C

C
C

SCHEDULE THE RAM CHECKSUM FOCTION TO RON CONTINUOUSLY
(ONLY FOR AIAC NOT FOR FONSIM)

A SCHEDULE CHKSOM PRIORTY(l);
CLOSE STARTUP;

02880000
02890000
02900000
02910000
02911000
02912000
02920000
02930000
02940000
02950000
02960000
02970000
02980000
02990000
03000000
03010000
03020000
03040000
03050000
03051000
03052003
03060003
03070000
03090000
03100000
03110000

03120000
03130000
03140000
03150000

03160000
03170000
03180000
03190000
03200000
03210000
03220000
03230000
03240000

Appendix III: GOAL,
A Language for Launch Processing

GOAL is a high-level language that uses the terminology of test en­
gineers to write tests and procedures to certify that a Shuttle vehicle is
ready for launch. When the first automated preflight checkout
programs were written in the mid- l 960s, Marshall Space Flight Cen­
ter originated ATOLL, a special high-level language for use in prepar­
ing test procedures. GOAL superseded that language in the early
1970s.

Fig. III-1 is a segment of a GOAL program used to safe various
spacecraft systems if a NOGO condition causes the final countdown
to be suspended. Note that names of data items held in common in the
Launch Processing System appear within brackets, <>, and data local
to the program is named between parentheses, (). Statements familiar
to high-level programming language users, such as READ, IF-THEN­
ELSE, and LET, have similar functions in GOAL. Additional state­
ments, such as VERIFY, make it possible for the engineers to test
whether valves or switches are set properly or whether a value is
within a specified range. SET permits switches to be activated.

Although seemingly highly structured, GOAL allows engineers to
frequently repeat the most common error of their peers using
FORTRAN: excessive unconditional jumps such as the one on line
2030, making it difficult for someone to read and modify the program.
Whereas in older versions of FORTRAN it was necessary to create
structures such as those found between lines 2026 and 2039 to handle
multiple statements in the THEN and ELSE blocks of a selection
structure, later versions of the language and GOAL itself (see lines
1980 through 1988) permit multiple lines of code to be included
within the blocks. Therefore, the GOTO statements are often used
less to create structure than to provide a "quick fix" when the logic of
the program needs expanding.

GOAL is used both at the Kennedy Space Center and Vandenberg
Air Force Base in launch processing systems and is expected to last
for the duration of the Shuttle program.

Further information about GOAL is contained in the following
documents:

IBM Corporation, Launch Processing System Checkout, Control
and Monitor Subsystem Detailed Software Design Specifications,
Book 2, Part 1: GOAL Language Processor, KSC-LPS-IB-070-2, pt.
1, release S33, Cape Canaveral, FL, June 3, 1983.

IBM Corporation, Launch Processing System Checkout, Control,
and Monitor Subsystem: GOAL On-Board Inte1face Language , KSC­
LPS-OP-033-4, release S33, Cape Canaveral, FL, April 27, 1983.

400 COMPUTERS IN SPACEFLIGHT: THE NASA EXPERIENCE

RECORD
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000

Figure III-I
GOAL LANGUAGE PROCESSOR SOURCE INPUT LISTING

SOURCE RECORD

SEND INTEGER <N012INTGR> TO CONSOLE <GOXARM>;

$ SEND NOTIFICATION OF "OK TO START GOX ARM EXTEND"
VIA REMOTE COMM INTERRUPTS TO ECS CONSOLE . $

RECORD TEXT (BFS PASS LOB
LINE 5 COLUMN 46 INVERT WHITE;

READ <NGPCLMCNFG>,
<V9802408Cl>,

) TO <PAGE-B>

<V90Q8001Cl> AND SAVE AS (LOB), (BFS), (PASS);

VERIFY <SGPCAREAl> IS ON AND <SGPCFIDAl> = 21,
BEGIN SEQUENCE;

IF (PASS) = 102,
RECORD (PASS) TO <PAGE-B> LINE 5 COLUMN 60 INVERT RED;

ELSE
RECORD (PASS) TO <PAGE-B> LINE 5 COLUMN 60 INVERT GREEN;

END SEQUENCE;

ELSE
RECORD (PASS) TO <PAGE-B> LINE 5 COLUMN 60 INVERT WHITE;

VERIFY <SGPCAREA2> IS ON AND <AGPCFIDA2 IS BETWEEN 12 AND 13,
BEGIN SEQUENCE;

IF (BFS) =102,
BEGIN SEQUENCE;

ASSIGN (BFS SAFING) = ON;
RECORD (BFS) TO <PAGE-B> LINE 5 COLUMN 50 INVERT RED;

END SEQUENCE;
ELSE

RECORD (BFS) TO <PAGE-B> LINE 5 COLUMN 50 INVERT GREEN;

END SEQUENCE;

ELSE RECORD (BFS) TO <PAGE-B> LINE 5 COLOMN 50 INVERT WHITE;

RECORD (LOB) TO <PAGE-B> LINE 5 COLOMN 69 INVERT GREEN;

INHIBIT PROGRAM LEVEL INTERRUPT CHECK FOR <PFPK2>
<PFPK3>
<PFPK5>;

LET (APONOGO) O;

RECORD

2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031

APPENDIX Ill: GOAL 401

Figure 111-1 (Continued)
GOAL PROCESSOR SOURCE INPUT LISTING

SOURCE RECORD

IF (GLS EVENT COMPLETED) IS GREATER TRAN
(ET SRB RSS IGN SA TO ARM) $ -04 : 58 $
THEN GO TO STEP 5150; $ PRIMARY SAFING $

$ IMMEDIATE SAFING OF
SRB IGN S/A DEVICE REQUIRED?$

IF (GLS EVENT COMPLETED) IS GREATER THAN
(FWD CMD DCDR PWR OFF) $ -10 SEC$

THEN GO TO STEP 5103;

LET (C3ERR) = O;

VERIFY <N03IS091E> IS ON, GO TO STEP 5103;

RECORD TEXT (CMD DECODERS PWR ON)
TO <PAGE-B>
LINE 5 COLUMN O YELLOW;

SET (PWR OP AFT CMD DECODER) FUNCTIONS TO ON;

DELAY 0.5 SEC ;

SET (PWR OP FWD CMD DECODER) FUNCTIONS TO ON;

IF (C3ERR) IS NOT EQUAL TOO THEN GO TO STEP 5102 ;

MODIFY <PAGE-B> LINE 5 COLUMN O TO COLUMN 22 GREEN ,:

GO TO STEP 5103 ;

2032 STEP5102 RECORD (CMDERR GSE)
2033 TO <PAGE-B>
2034 LINE 5 COLUMN 23 RED ;
2035
2036 STEP5103 IF (GLS EVENT COMPLETED) IS GREATER TRAN
2037 (FWD MDM LOCKOUT) $ -35 SEC$
2038 THEN GO TO STEP 5107 ;
2039
2040 VERIFY <N03IS100E> IS ON , GO TO STEP 5107 ;
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050

LET (3CERR) = O;

RECORD TEXT (UNLOCK SRB FWD MDMS)
TO <PAGE-B>
LINE 6 COLUMN O YELLOW;

UNLOCK SRB MOM FOR <B75K3065XL> CRITICAL;

UNLOCK SRB MDM FOR <B75K3066XL> CRITICAL;

Appendix IV

Mariner Mars 1969

Flight Program

Figure IV-1

This segment of a Mariner programmable sequencer flight program is given
as an example of the sort of flexiblility gained by adding a memory to the
system. The first segment, the Executive, is only seven lines, yet it
essentially controlled the software. The remaining code demonstrates a
typical subroutine. The entire length of this program was 128 lines.

LOC OPC A/TDGII 8/EVBNT sncs OPC

*CON l!IXECUT:IVE ROUTINE
*COM

0 CLJ 35 102 EXCO CLJ
1 DSJ 126 104 BXCl DSJ

2 DHJ 125 31 l!XC2 DHJ
3 DHJ 11 8 l!XC3 DHJ
4 CLJ 256 12 ICCC4 CLJ
5 CLJ 2 18 ICCC5 CLJ
6 HLT 368 4811 1!:XC6 HLT

*COX
*COM l!:lfD 01!' CR'O'I SI!: CHAIN
*CON

7 ROJ 2 3 l!:lfDC ROJ
*CON
*CON c:c=Ic S'O'BROtJTIHB l!'OR Y1 ICVBHTS

*CON
8 TAB 10 11 CYOl TAB
II ONJ 0 4 CY02 ONJ

10 OJI.TA **** 288 CY03 DATA
11 OJI.TA **** 288 CY04 DATA

*COM
*CON 1!:NABLII: l!'JI.R 1!:NCO'O'HTER*l!:NTRY PT.
*COX

20 JI.DD 48 112 on:o JI.DD
21 JI.DD 27 1011 on:l JI.DD
22 TAB 211 711 TAB
23 TAB 30 84 TAB
24 CLJ 16 20 CYl!:0 CLJ

25 DJI.J 71 26 CYl!:2 DJI.J
26 DJI.J 611 68 CYB3 DJI.J
27 OJI.TA 0 8 on:3 DATA
28 OJI.TA 5 0 on:4 DATA
211 =J **** 43 ons CTJ
30 OJI.TA **** 451 Ol!'J:6 DATA

*COM

A/TDII!: 8/ZVENT

36 REQJC

0V ROJl
LCJll CROl
CY04 CYOl

256 RTOl
2 RDIN

368 4811

EXC2 l!:XC3

CY03 CY04
0 l!'XC4

l!'ILL 0024
l!'ILL 0024

IS CYl!:O

Ol!'E4 CZll
01!'1!:3 CZ14
01!'1!:5 CGC6

01!'1!:6 CGD4
16 01!'1!:0

CTR4 CYl!:3
=R2 CTRl

0 0200
5 0 000
l!'ILL ROJO
l!'ILL 3007

7 WORDS)

(11

ABORT+ltXTRJI. l!'B+NAA TESTS, SI.BlfS
OV,K/C,OPT R TUT, TV PIC CTR
CR'O'ISB AND POST BNCO'O'NTl!:R BVBN"?S
Yl CYCLIC GBNBRJI.TOR
RXAOOOT Tll:XT, NJ' NOif SIJUf JEVKNTS
Tl!.ST l!'OR l!NltNT ADDRESS REA.DIN
!:ND 01!' SCAif

END CR'O'ISII: Sll:QOUCII:

&NTRY----Rl!:LOJI.D CYCLIC TIKI!:
RET'O'RH TO l!:DC'O'TIVB PROGRAM
CYCLIC TIKI!: STORA.GB
CO'O'NTING LOCATION l!'OR Ql ENENLlt

WORDS)

JI.DD 5HRS TO TIMS 01!' Nl(2)
JI.DD 1!'3 l!:Vl!:NT TO CZ14 EVENT TIKB
MOD CYCLII: Gl!!N l!'OR OPT R(CTR)
MOD CYCLII: Gll:N l!'OR OPT 1!'11:(ZVEN'l')
TEST l!'OR OPTIONAL 1!'11:(DC-32)
'O'PDATII: CYCLII: G&NERJI.TOR (1!:VBNT)
'O'PDATII: CYCLII: <ZNl!:RJI.TOR (COIJNTl!:R)
STORA.CZ l!'OR 1!'3 l!NltNT (OPTION)
TIME STORAGII: l!'OR OPTIONAL Fl: SHl!'T
CO'O'NT l!'OR OPTIONAL R PICTIJ1Ul!S

OJI.TA l!'OR OPTIONAL R PICT'O'Rl!:S

ORIGINAL PAGE IS
D.E £.O_OR QUALITY,

1\11\51\
Na1ona1 Aeronaurcs and
Space Adrrnrwslraf,on

1. Report No.

NASA CR-182505

4. Title and Subtitle

Report Documentation Page

2. Government Accession No.

Computers in Spaceflight - The NASA Experience

7. Author(s)

James E. Tomayko

9. Performing Organization Name and Address

Department of Computer Sciences
Wichita State University
Wichita, KS 67208

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

15. Supplementary Notes

16. Abstract

3. Recipient's Catalog No.

5. Report Date

March 1988

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.

NASW-3714

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

This book examines the computer systems used in actual spaceflight or in
close support of it. Computer systems used in administration and in
aeronautical and other research not directly related to spaceflight are
ignored. Each chapter deals with either a specific program, such as
Gemini or Apollo onboard computers, or a closely related set of systems,
such as launch processing or mission control. A glossary of computer terms
is included.

17. Key Words (Suggested by Author(s))

assembly language modularization
core memory
core rope
image processing
bubble memor

virtual memory
time-slice method

18. Distribution Statement

Unclassified

Subject Categor 60
19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page) 21 . No. of pages

Unclassified 405

NASA FORM 1626 OCT 86

22. Price

NASA-Langley, 1988

